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Preface

This short book presents mathematical models for various electric machines,
including brushless doubly-fed reluctance machines and brushless doubly-fed in-
duction machines. These less conventional machines have recently attracted sig-
nificant research interest. Other models include ordinary doubly-fed induction
machines, cascaded doubly-fed induction machines, wound-field synchronous
machines, three-phase machines with single-phase excitation, non-symmetric in-
duction machines, and hybrid motors. The presentation complements another
book from the author where the models of simpler machines are developed. Con-
cepts from winding function theory are given to enable the modeling of more
advanced configurations. A contribution of the work is the derivation of multi-
ple state-space models in a common framework. Complex variable models are
introduced in cases where considerable simplifications can be achieved. The
equivalence between different types of machines is demonstrated. Another con-
tribution of the work is the presentation of models for arbitrary three-phase
to two-phase transformations, showing the impact of the choices made on the
resulting models.
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Chapter 1

Introduction

1.1 Objective

This chapter introduces basic principles of modeling of electric machines, includ-

ing transformations that are useful for three-phase machines.

1.2 General model of an electric machine

The electrical equations of a machine with n windings are

dψk
dt

= vk −Rkik, for k = 1, · · · , n, (1.1)

where ψk is the total flux linkage in winding k, vk is the voltage applied to the

winding, and ik is the current flowing in the winding. The signs of the voltages

and currents are chosen such that vkik > 0 if power is absorbed by the winding.

The total flux linkages in the windings are assumed to be of the form

ψk = ψm,k(θ) +
n�

j=1

Lkj(θ) ij , (1.2)

where ψm,k(θ) originates from the permanent magnets in the machine (if any),

θ is the angular position of the rotor, Lkk(θ) is the self-inductance of winding

k, and Lkj(θ) is the mutual inductance between winding k and winding j (with

Lkj = Ljk).

Combining (1.1) and (1.2),

dψk
dt

=
∂ψm,k(θ)

∂θ
ω +

n�

j=1

Lkj(θ)
dij
dt

+
n�

j=1

∂Lkj(θ)

∂θ
ij ω, (1.3)

where

ω =
dθ

dt
(1.4)
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2 Chapter 1. Introduction

is the angular velocity of rotation of the rotor. The electrical equations of the

machine are then
n�

j=1

Lkj(θ)
dij
dt

= vk − Rkik −
∂ψm,k(θ)

∂θ
ω −

n�

j=1

∂Lkj(θ)

∂θ
ij ω.

(1.5)

Based on principles of energy conservation, the motoring torque can be computed

to be [6]

τM =
n�

k=1

∂ψm,k(θ)

∂θ
ik +

1

2

n�

k=1

n�

j=1

∂Lkj(θ)

∂θ
ij ik. (1.6)

The model can also be written in matrix form as

L(θ)
di

dt
= v −Ri− ∂ψm(θ)

∂θ
ω − ∂L(θ)

∂θ
i ω

τM = iT
∂ψm(θ)

∂θ
+

1

2
iT

∂L(θ)

∂θ
i, (1.7)

where L(θ) is a matrix with elements Lkj(θ) and ψm(θ), v, and i are vectors

with elements ψm,k(θ), vk, and ik, respectively. R is a diagonal matrix with

elements Rk on the diagonal. All vectors, including ∂ψm(θ)/∂θ, are assumed to

be column vectors.

1.3 Three-phase to two-phase transformations

Three-phase to two-phase transformations are useful to represent three-phase

machines as equivalent two-phase machines. A generic 3 − 2 transformation is

defined by



va
vb
vh


 = M3−2




vA
vB
vC


 , with M3−2 = CV




1 −1/2 −1/2
0

√
3/2 −

√
3/2

1/
√
2 1/

√
2 1/

√
2


 .

(1.8)

In (1.8), vA, vB, and vC are three-phase variables, va and vb are equivalent

two-phase variables, and vh is the homopolar variable added to make the trans-

formation invertible. The coefficient CV determines the type of transformation

that is used. Choices made in the literature are typically CV = 1,
�

2/3, and

2/3. The inverse of the 3 − 2 transformation, or 2 − 3 transformation, is given

by



vA
vB
vC


 = M−1

3−2




va
vb
vh


 , with M−1

3−2 =
2

3CV




1 0 1/
√
2

−1/2
√
3/2 1/

√
2

−1/2 −
√
3/2 1/

√
2


 .

(1.9)
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For balanced three-phase voltages

vA = Vpk cos(θS), vB = Vpk cos(θS − 2π/3), vC = Vpk cos(θS + 2π/3),
(1.10)

the two-phase voltages satisfy

va = CMVpk cos(θS), vb = CMVpk sin(θS), vh = 0, (1.11)

where

CM =
3

2
CV . (1.12)

Power in the three-phase and two-phase variables is defined through

P = vAiA + vBiB + vCiC, P2 = vaia + vbib + vhih. (1.13)

It turns out that

P2 = CPP, with CP =
3

2
C2
V . (1.14)

The coefficients CP and CM are given in the following table for the three

typical choices of CV [6]. For each choice, one coefficient is equal to 1. The

labels used in the table are chosen to reflect the property, but are not standard

in the literature.

Equal vector Equal power Equal magnitude

CV 1
�

2/3 2/3
CP 3/2 1 2/3

CM 3/2
�

3/2 1

Note that the homopolar variable can be multiplied by a separate coefficient

in the 3 − 2 transformation and divided by the same coefficient in the 2 − 3

transformation. The change has no impact on the results of this document,

except for the power equivalence in (1.14). The homopolar variable is typically

assumed to be zero or is neglected.



Chapter 2

Winding Function Theory

2.1 Objective

The objective of this chapter is to present elements of winding function theory

and apply the results to compute inductances for various winding configurations.

2.2 Winding function

Fig. 2.1 shows the cross-section of the cylindrical stator and rotor of a machine.

The rotor is slightly smaller than the stator, and the difference between the

radius of two circles is called the airgap length. The airgap is said to be uniform.

A concentrated winding is shown on the periphery of the stator and has two turns

The conductors are represented by circles with dots and crosses representing the

direction of the current as the front and back of an arrow (the current flows into

the page for the cross and out of the page for the dot). The rotor position is

identified by the angle α of an arbitrary location with respect to the horizontal.

α

Figure 2.1: Concentrated winding with two turns

Fig. 2.2 shows how the so-called winding function associated with the winding

5



6 Chapter 2. Winding Function Theory

of Fig. 2.1 is obtained. On the left, the number of conductors is counted in the

counterclockwise direction, starting from α = −π. The count is incremented

by 1 when a cross is encountered and -1 when a dot is encountered. So, the

count becomes 2 for α = −π/2 and returns to zero when α = π/2.

−π −π/2 π/2 π α

2

−π π

α

1

N  (α)

-1

1

Figure 2.2: Winding function for a concentrated winding with two turns

On the right of the figure, the winding function N1(α) is obtained from the

function on the left by adding a constant (-1 in this case) such that the average

of N1(α) is equal to zero. For a concentrated winding with N1 turns, the winding

function becomes

N1(α) =
N1

2
sign(cos(α)), (2.1)

where the sign function is such that

sign(x) = 1 for x > 0

sign(x) = 0 for x = 0

sign(x) = −1 for x < 0.

(2.2)

Fig. 2.3 shows a configuration with two windings having a 90◦ span instead

of a single winding with a 180◦ span. The two windings are connected in series.

The overall winding is said to have 4 poles or 2 pole pairs (as opposed to 2 poles

and 1 pole pair in Fig. 2.1). In this case,

N1(α) =
N1

2
sign(cos(n1α)), (2.3)

where N1 is the number of turns per pole pair and n1 is the number of pole

pairs. If the windings are rotated by an angle ϕ1/n1 in the counter-clockwise

direction, the function is replaced by

N1(α) =
N1

2
sign(cos(n1α− ϕ1)). (2.4)
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Figure 2.3: Concentrated winding with two pole pairs

Sinusoidally-distributed windings are obtained by carefully setting the con-

ductors so that the winding function can be approximated by a sinusoidal func-

tion. Then, the winding function is assumed to be

N1(α) =
N1

2
cos(n1α− ϕ1), (2.5)

where N1 is the number of turns per pole pair, n1 is the number of pole pairs,

and ϕ1 specifies the orientation of the winding.

2.3 Computation of inductances

Winding function theory [22] states that the mutual inductance (in H) between

two windings is

L12 = c

� π

−π

N1(α)N2(α) dα, (2.6)

where

c =
µ0 r l

g
. (2.7)

The parameters of the equation are g, the airgap length (in m), µ0, the per-

meability of free space (equal to 4π 10−7 H/m), r, the radius of the rotor (in

m), and l, the length of the rotor (in m). The self-inductance of a winding is

obtained as a special case where N2(α) = N1(α).

The expression (2.6) is based on idealized assumptions and should not be

expected to be very accurate. The airgap is assumed to be small, and the result

is applied in the same way regardless of whether a winding is located on the stator

or on the rotor. Still, the theory is useful to understand general charateristics

of electric machines and how inductances depend on machine parameters.
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For two sinusoidally-distributed windings,

L12 =
cN1N2

4

� π

−π

cos(n1α− ϕ1) cos(n2α− ϕ2) dα

=
cN1N2

8

� π

−π

cos ((n1 + n2)α− (ϕ1 + ϕ2)) dα

+
cN1N2

8

� π

−π

cos ((n1 − n2)α− (ϕ1 − ϕ2)) dα. (2.8)

Note that L12 = 0 if n1 �= n2. In other words, two windings with different

numbers of pole pairs are not coupled magnetically. On the other hand, if

n1 = n2,

L12 =
cN1N2π

4
cos (ϕ1 − ϕ2) . (2.9)

As a special case, the self-inductance of a winding is

L11 =
cN2

1π

4
. (2.10)

Example of a two-phase machine with identical AB windings: let NA =

NB = N , ϕA = 0, and ϕB = π/2. Then

LAA = LBB =
cN2π

4
, LAB = 0. (2.11)

Example of a three-phase machine with identical ABC windings: let

NA = NB = NC = N , ϕA = 0, ϕB = 2π/3, and ϕC = −2π/3. Then

LAA = LBB = LCC =
cN2π

4

LAB = LBC = LCA = −cN2π

8
. (2.12)

In the theory of electric machines, the self-inductances are assumed to be slightly

larger than the predicted values to account for the presence of so-called leakage

fluxes.

2.4 Non-uniform airgap

In some cases, electric machines are deliberately built with a varying airgap

length. For example, Fig. 2.4 shows a rotor built so that the airgap length

reaches a maximum (or minimum) value three times along the periphery of the

rotor. The dotted circle shows the average airgap length with respect to the

stator. An angle θ is introduced that identifies the position of the rotor through



2.4. Non-uniform airgap 9

α

θ

Figure 2.4: Machine with varying airgap

one of the locations where the airgap length is the smallest. Note that a varying

airgap length will also be used to model rotors with heterogeneous constructions,

such as in Fig. 4.1.

For the analysis of machines with non-uniform airgaps, (2.6) and (2.7) are

used, but with g replaced according to

1

g
→ 1

g
(1 + d cos(nR(α− θ)) , (2.13)

where 0 < d < 1 and nR is the number of peaks of the airgap length (nR = 3

in Fig. 2.4). With this change, 1/g represents the average inverse airgap length.

The case d = 0 corresponds to a uniform airgap. While it may have been

more intuitive to choose a sinusoidal variation of the airgap length, the choice

of inverse airgap length produces useful analytic results.

The mutual inductance (2.6) between two sinusoidal windings becomes

L12 = L12,0 + L12,d, (2.14)

where

L12,0 =
cN1N2

4

� π

−π

cos(n1α− ϕ1) cos(n2α− ϕ2) dα, (2.15)

and

L12,d =
cN1N2d

4

� π

−π

cos(n1α− ϕ1) cos(n2α− ϕ2) cos(nR(α− θ)) dα.
(2.16)

The component L12,0 is the same as was obtained for the uniform airgap in

(2.9), so that

L12,0 =
cN1N2π

4
cos (ϕ1 − ϕ2) for n1 = n2

L12,0 = 0 for n1 �= n2.

(2.17)
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The component depending on the parameter d is equal to

L12,d =
cN1N2d

16

� π

−π

(cos ((n1 + n2 + nR)α− (ϕ1 + ϕ2 + nRθ))

+ cos ((n1 + n2 − nR)α− (ϕ1 + ϕ2 − nRθ))

+ cos ((n1 − n2 + nR)α− (ϕ1 − ϕ2 + nRθ))

+ cos ((n1 − n2 − nR)α− (ϕ1 − ϕ2 − nRθ))) dα. (2.18)

The result of the integration is that

L12,d = 0 unless nR = n1 + n2, nR = n2 − n1, or nR = n1 − n2.
(2.19)

A case of interest is

L12,d =
cN1N2πd

8
cos(nRθ − (ϕ1 + ϕ2)) if nR = n1 + n2.

(2.20)

Example of a two-phase machine with identical AB windings: let NA =

NB = N , nA = nB = nP , nR = 2nP , ϕA = 0, and ϕB = π/2. Then

LAA =
cN2π

4
+

cN2πd

8
cos(2nPθ)

LBB =
cN2π

4
− cN2πd

8
cos(2nPθ)

LAB =
cN2πd

8
sin(2nPθ). (2.21)

Example of a three-phase machine with identical ABC windings: let

NA = NB = NC = N , nA = nB = nC = nP , nR = 2nP , ϕA = 0, ϕB = 2π/3, and

ϕC = −2π/3. Noting that an angle 4π/3 is the same as −2π/3,

LAA =
cN2π

4
+

cN2πd

8
cos(2nPθ)

LBB =
cN2π

4
+

cN2πd

8
cos(2nPθ + 2π/3)

LCC =
cN2π

4
+

cN2πd

8
cos(2nPθ − 2π/3))

LAB = −cN2π

8
+

cN2πd

8
cos(2nPθ − 2π/3)

LBC = −cN2π

8
+

cN2πd

8
cos(2nPθ)

LCA = −cN2π

8
+

cN2πd

8
cos(2nPθ + 2π/3). (2.22)



Chapter 3

Doubly-Fed Induction Machines

3.1 Objective

The objective of this chapter is to derive a model of the machine shown schemat-

ically on Fig. 3.1. The machine is called a doubly-fed induction machine (DFIM)

or wound-rotor induction machine (WRIM) Both the stator and the rotor have

three-phase windings (A, B, C, and X, Y, Z, respectively). With short-circuited

rotor windings, the model also represents a three-phase cage rotor induction

machine, or squirrel-cage induction machine. The results of the chapter:

• derive the model of the machine.

• show that the machine is equivalent to a two-phase machine if an equal

power 3 − 2 transformation is used. With other 3 − 2 transformations,

the equations are the same, except for an extra coefficient appears in the

equation for the torque.

• derive a model of the machine in complex variables.

• extend the model to a rotating reference frame.

3.2 Model in phase variables

Define vectors of stator voltages, stator currents, and stator total flux linkages

vS =




vSA
vSB
vSC


 , iS =




iSA
iSB
iSC


 , ψS =




ψSA
ψSB
ψSC


 . (3.1)

11



12 Chapter 3. Doubly-Fed Induction Machines

+

v+
iRY RX

i

RZ
i

RY

v
RX

+

vRZ

θ

+ v

+

i

SB

SA

i

SCi

SB

v
SA

+

v
SC

Figure 3.1: Schematic of a machine with three-phase stator and rotor windings

Rotor variables are similarly defined as

vR =




vRX
vRY
vRZ


 , iR =




iRX
iRY
iRZ


 , ψR =




ψRX
ψRY
ψRZ


 . (3.2)

The electrical equations describing the machine are

dψS
dt

= vS − RSiS,
dψR
dt

= vR − RRiR, (3.3)

where RS is the resistance of a stator winding and RR is the resistance of a rotor

winding.

An explicit model of the machine can be obtained by expressing the total

flux linkages as functions of the currents. Based on the geometry of the machine

on Fig. 3.1 and the results of Section 2.3, we assume that

�
ψS
ψR

	
= L(θ)

�
iS
iR

	
, L(θ) =

�
LSS LSR(θ)
LTSR(θ) LRR

	
, (3.4)

where

LSS =




LSW MSW MSW

MSW LSW MSW

MSW MSW LSW


 , LRR =




LRW MRW MRW

MRW LRW MRW

MRW MRW LRW


 ,

(3.5)
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and

LSR(θ) = MSR




cos(nPθ) cos(nPθ + 2π/3) cos(nPθ − 2π/3)
cos(nPθ − 2π/3) cos(nPθ) cos(nPθ + 2π/3)
cos(nPθ + 2π/3) cos(nPθ − 2π/3) cos(nPθ)


 .

(3.6)

The variables of the model are:

• θ, the angle of the rotor (in rad).

• nP , the number of poles pairs (nP = 1 on Fig. 3.1).

• LSW , the self-inductance of a stator winding.

• MSW , the mutual inductance between two stator windings.

• LRW , the self-inductance of a rotor winding.

• MRW , the mutual inductance between two rotor windings.

• MSR, the mutual inductance between a stator winding and a rotor winding

when the windings are aligned (e.g., between windings A and X when

θ = 0).

Using (3.3) and the expressions for the inductances, explicit differential equa-

tions describing the machine can be derived, specifically

d

dt

�
iS
iR

	
= L−1(θ)

��
vS − RSiS
vR −RRiR

	

−ω

�
0 ∂LSR(θ)/∂θ

∂LTSR(θ)/∂θ 0

	�
iS
iR

		
, (3.7)

where ω = dθ/dt is the angular velocity of the machine. The general formula

for the torque (1.7) gives

τM =
1

2
iTS

∂LSR(θ)

∂θ
iR +

1

2
iTR

∂LTSR(θ)

∂θ
iS

= iTS
∂LSR(θ)

∂θ
iR

= −nPMSR [sin(nPθ)(iSAiRX + iSBiRY + iSCiRZ)

+ sin(nPθ + 2π/3)(iSAiRY + iSBiRZ + iSCiRX)

+ sin(nPθ − 2π/3)(iSAiRZ + iSBiRX + iSCiRY )] . (3.8)
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Inversion of the inductance matrix: Fact 1 of Section 3.7 shows that the

inverse of the matrix L(θ) has an explicit expression

L−1(θ) =

�
D(θ)−1LRR −D(θ)−1LSR(θ)

−D(θ)−1LTSR(θ) D(θ)−1LSS

	
, (3.9)

where D(θ) is the matrix

D(θ) = LSSLRR − LSR(θ)L
T
SR(θ). (3.10)

Further, Fact 2 of Section 3.7 shows that the determinant of D(θ), which is also

the denominator of L−1(θ), is equal to

det (D(θ)) = (LSW + 2MSW )(LRW + 2MRW )
�
(LSW −MSW )(LRW −MRW )− 9

4
M2
SR

	2
. (3.11)

Define

LS = LSW −MSW , LR = LRW −MRW , M =
3

2
MSR,

LSh = LSW + 2MSW , LRh = LRW + 2MRW . (3.12)

Then, (3.11) becomes

det (D(θ)) = LShLRh(LSLR −M2). (3.13)

Thus, for the matrix L(θ) to be invertible, one needs

LSh �= 0, LRh �= 0, and LSLR −M2 �= 0. (3.14)

Leakage fluxes: assuming that the stator and the rotor windings have NS and

NR turns, respectively, the results of Section 2.3 give the values

LSW =
cN2

Sπ

4
, MSW = −cN2

Sπ

8
, LRW =

cN2
Rπ

4
, MRW = −cN2

Rπ

8
,

MSR =
cNSNRπ

4
, (3.15)

resulting in

LS =
3cN2

Sπ

8
, LR =

3cN2
Rπ

8
, M =

3cNSNRπ

8
, LSh = 0, LRh = 0.

(3.16)

Note that

M =
�

LSLR, (3.17)
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so that all three terms in (3.13) are zero.

In practice, addfitional leakage fluxes result in LSh, LRh, and LSLR −M2

having positive values. With these leakage fluxes, (3.14) is satisfied. The so-

called leakage factor

σ = 1− M2

LSLR
, 0 � σ � 1, (3.18)

is small but nonzero. The mutual inductance

M =
√
1− σ

�
LSLR (3.19)

is slightly smaller than the maximal value
√
LSLR.

Numerical example: consider a DFIM with LS = 1.6 mH, LR = 19 mH, and

M = 5.2 mH. Then, σ = 0.11 and

M√
LSLR

=
√
1− σ = 0.94. (3.20)

In other words, the leakage fluxes cause a reduction of the mutual inductance

from the maximal value by about 6%.

3.3 Two-phase equivalent machine

The three-phase machine can be transformed into an equivalent two-phase ma-

chine by using the three-phase to two-phase transformation (1.8). The model

(3.4) becomes




ψSa
ψSb
ψSh


 = M3−2LSSM

−1
3−2




iSa
iSb
iSh


+M3−2LSR(θ)M

−1
3−2




iRx
iRy
iRh


 ,

(3.21)

where iRx, iRy, and iRh are the two-phase rotor currents corresponding to iRX,

iRY , and iRZ. Computing the products1, one finds that




ψSa
ψSb
ψSh


 =




LS 0 0
0 LS 0
0 0 LSh






iSa
iSb
iSh




+M




cos(nPθ) − sin(nPθ) 0
sin(nPθ) cos(nPθ) 0

0 0 0






iRx
iRy
iRh


 , (3.22)

1A symbolic mathematical software, such as Matlab’s Symbolic Math Toolbox, is useful for
such purpose (see Section 3.6).
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where LS, LSh, and M were defined in (3.12). In a similar manner, the following

equations can be obtained for the rotor fluxes



ψRx
ψRy
ψRh


 =




LR 0 0
0 LR 0
0 0 LRh






iRx
iRy
iRh




+M




cos(nPθ) sin(nPθ) 0
− sin(nPθ) cos(nPθ) 0

0 0 0






iSa
iSb
iSh


 . (3.23)

Due to the fact that the three-phase to two-phase transformation is linear

and does not depend on time, the transformed variables satisfy

d

dt




ψSa
ψSb
ψSh


 =




vSa −RS iSa
vSb −RS iSb
vSh − RS iSh




d

dt




ψRx
ψRy
ψRh


 =




vRx − RR iRx
vRy − RR iRy
vRh −RR iRh


 . (3.24)

Therefore, the two-phase model is given by

d

dt


L2(θ)




iSa
iSb
iRx
iRy





 =




vSa − RS iSa
vSb − RS iSb
vRx −RR iRx
vRy −RR iRy


 , (3.25)

with

L2(θ) =




LS 0 M cos(nPθ) −M sin(nPθ)
0 LS M sin(nPθ) M cos(nPθ)

M cos(nPθ) M sin(nPθ) LR 0
−M sin(nPθ) M cos(nPθ) 0 LR


 ,

(3.26)

and

LSh
diSh
dt

= vSh − RS iSh

LRh
diRh
dt

= vRh − RR iRh. (3.27)

Equations (3.25) and (3.26) are the same for all choices of CV in (1.8) and

are the same as the equations describing a two-phase machine with windings a,

b, x and y [6]. An explicit form of (3.25) is

d

dt




iSa
iSb
iRx
iRy


 = L−12 (θ)







vSa −RS iSa
vSb − RS iSb
vRx − RR iRx
vRy − RR iRy


− ω

∂L2(θ)

∂θ




iSa
iSb
iRx
iRy





 ,

(3.28)
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with

∂L2(θ)

∂θ
= nPM




0 0 − sin(nPθ) − cos(nPθ)
0 0 cos(nPθ) − sin(nPθ)

− sin(nPθ) cosnPθ) 0 0
− cos(nPθ) − sin(nPθ) 0 0


 .

(3.29)

In the transformed variables, the torque (3.8) becomes

τM =
�
iSa iSb iSh


 �
M−1
3−2


T ∂LSR(θ)

∂θ
M−1
3−2




iRx
iRy
iRh




= nP M C−1
P (−iSa iRx sin(nPθ)− iSa iRy cos(nPθ)

+iSb iRx cos(nPθ)− iSb iRy sin(nPθ)) , (3.30)

where CP is the coefficient of power associated with the 3 − 2 transformation.

Note that the torque is also equal to

τM = C−1
P

�
iSa iSb iRx iRy


T ∂L2(θ)

∂θ




iSa
iSb
iRx
iRy


 . (3.31)

In other words, the torque is the same as the torque of the transformed two-

phase machine multiplied by the coefficient C−1
P . The coefficient CP originates

from the relationship between three-phase and two-phase powers in (1.14).

The homopolar variables satisfy stable first-order differential equations that

are independent of the equations for the two-phase variables and the variables

do not affect the torque. In general, the homopolar variables can be neglected

for control development.

One can verify that

L−12 (θ) =
1

LSLR −M2



LR 0 −M cos(nPθ) M sin(nPθ)
0 LR −M sin(nPθ) −M cos(nPθ)

−M cos(nPθ) −M sin(nPθ) LS 0
M sin(nPθ) −M cos(nPθ) 0 LS


 ,

(3.32)

by computing that L2(θ) L−12 (θ) = I, where I is the identity matrix. Therefore,

the conditions for the transformed system (3.27), (3.28) to be well-defined are

the same as those for the three-phase system (3.14).
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3.4 Complex model of a DFIM

A compact representation of the two-phase model can be obtained by grouping

pairs of variables into complex variables. Specifically, let

�vS = vSa + jvSb, �ıS = iSa + jiSb,

�vR = vRx + jvRy, �ıR = iRx + jiRy.
(3.33)

The left-hand side of (3.25) is transformed to the complex domain by computing

�
1 j 0 0
0 0 1 j

	
d

dt


L2(θ)




iSa
iSb
iRx
iRy







=
d

dt



�

LS jLS MejnP θ jMejnP θ

Me−jnP θ jMe−jnP θ LR jLR

	



iSa
iSb
iRx
iRy







=
d

dt

��
LS MejnP θ

Me−jnP θ LR

	�
�ıS
�ıR

		
. (3.34)

For the right-hand side of (3.25),

�
1 j 0 0
0 0 1 j

	



vSa −RS iSa
vSb − RS iSb
vRx − RR iRx
vRy − RR iRy


 =

�
�vS −RS �ıS
�vR − RR �ıR

	
.

(3.35)

Therefore, the complex model is given by

d

dt

��
LS M ejnP θ

M e−jnP θ LR

	�
�ıS
�ıR

		
=

�
�vS − RS �ıS
�vR − RR �ıR

	
.

(3.36)

When using complex variables, the transpose of the inductance matrix is

equal to its complex conjugate. Such a matrix is called Hermitian, and the

property replaces the symmetry property that applies in the real domain. The

torque (3.30) becomes

τM = nPM C−1
P Im

�
�ıS
�
�ıR ejnP θ


∗�
, (3.37)

where Im denotes the imaginary part and * the complex conjugate.

The overall complex model (3.36), (3.37) is the same as the two-phase model,

but is more compact. Derivations using the model are often simplified [2], [5],

[7], [12], [14].
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Three-phase to conplex transformation: the complex variables can be com-

puted directly from the three-phase variables. Indeed, (1.8) implies that

va + jvb = CV
�
vA + ej2π/3vB + e−j2π/3vC



. (3.38)

Therefore

�vS = CV zT3 vS, �ıS = CV zT3 iS,

�vR = CV zT3 vR, �ıR = CV zT3 iR,
(3.39)

where zT3 is the complex vector

zT3 =
�
1 ej2π/3 e−j2π/3



. (3.40)

From (1.9), the inverse of the three-phase to complex transformation is

vS =
2

3CV




1 0

−1/2
√
3/2

−1/2 −
√
3/2



�

Re (�vS)
Im (�vS)

	
+

√
2

3CV
vSh




1
1
1


 .

(3.41)

Note that

√
2

3CV
vSh =

vSA + vSB + vSC
3

, (3.42)

so that the offset in (3.41) is the average of the three-phase voltages. Neglecting

vSh, the inverse of the three-phase to complex transformation is

vS =
2

3CV
Re (�vS z∗3) =

1

3CV
( �vS z∗3 + �v∗S z3) . (3.43)

3.5 Complex model of a DFIM in a rotating

reference frame

The complex model can be expressed in a rotating reference frame by letting

vS = e−jθS �vS, ıS = e−jθS �ıS,
vR = e−jθR �vR, ıR = e−jθR �ıR,

(3.44)

where θS and θR are angles to be defined. The angles correspond to angular

frequencies

ωS =
dθS
dt

, ωR =
dθR
dt

. (3.45)

Marc Bodson

/

Marc Bodson

m
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Inserting the new variables in (3.36),

d

dt

�
LS ejθS ıS +M ej(θR+nP θ) ıR



= ejθS (vS − RS ıS)

d

dt

�
M ej(θS−nP θ) ıS + LR ejθR ıR



= ejθR (vR − RR ıR) . (3.46)

The equations are simplified for the choice

θR = θS − nPθ, ωR = ωS − nPω. (3.47)

Then, multiplying the first equation by e−jθS and the second equation by e−jθR,

the complex model becomes
�

LS M
M LR

	
d

dt

�
ıS
ıR

	
=

�
vS − RS ıS − jωS(LS ıS +M ıR)
vR −RR ıR − j(ωS − nPω)(M ıS + LR ıR)

	
,

(3.48)

with the torque

τM = nPM C−1
P Im (ıS ı∗R) . (3.49)

When θS = 0, the model is said to be expressed in the stator frame of reference or

in stationary coordinates. If θS is such that the variables are constant in steady-

state, the model is said to be expressed in synchronous or DQ coordinates.

3.6 Symbolic code

The code below produces the results of (3.22), (3.23), (3.30), and (3.54).

%

% Symbolic code for DFIM

%

syms lss lsw msw lrr lrw mrw lsr msr np th m3t2 cv l2ss ...

l2sr l2rr is2 isa isb ish ir2 irx iry irh tm lslrt real

%

% Original model

%

a=2*pi/3;

lss=[lsw msw msw;msw lsw msw;msw msw lsw];

lrr=[lrw mrw mrw;mrw lrw mrw;mrw mrw lrw];

lsr=msr*[cos(np*th) cos(np*th+a) cos(np*th-a); ...

cos(np*th-a) cos(np*th) cos(np*th+a);
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cos(np*th+a) cos(np*th-a) cos(np*th)];

%

% 2-phase equivalent inductance matrices

%

m3to2=cv*[1 -1/2 -1/2;0 sqrt(3)/2 -sqrt(3)/2;1/sqrt(2) ...

1/sqrt(2) 1/sqrt(2)];

l2ss=simplify(m3to2*lss*inv(m3to2))

l2sr=simplify(m3to2*lsr*inv(m3to2))

l2rr=simplify(m3to2*lrr*inv(m3to2))

%

% 2-phase equivalent torque

%

is2=[isa;isb;ish];ir2=[irx;iry;irh];

tm=simplify(is2’*inv(m3to2)’*diff(lsr,th)*inv(m3to2)*ir2)

%

% Proof of Fact 2

%

lsrlsrt=simplify(lsr*lsr’)

3.7 Auxiliary results

Definition: a 3× 3 circulant matrix is a matrix of the form

M =




a b c
c a b
b c a


 . (3.50)

Circulant matrices M1, M2 are such that M1 +M2, M1M2, and (M1)
−1 are also

circulant matrices. The product of two such matrices commutes, i.e., M1M2 =

M2M1.

Fact 1: the inverse of the matrix L(θ) in (3.4) is given by (3.9).

Proof of Fact 1: the result is obtained by checking block-by-block that

L(θ) L−1(θ) is the identity matrix. Partition the matrix as four blocks of equal

size, with

L(θ)L−1(θ) =

�
M1 M2

M3 M4

	
. (3.51)
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Given (3.9),

M1 = LSSD(θ)−1LRR − LSR(θ)D(θ)−1LTSR(θ)

M2 = −LSSD(θ)−1LSR(θ) + LSR(θ)D(θ)−1LSS

M3 = LTSR(θ)D(θ)−1LRR − LRRD(θ)−1LTSR(θ)

M4 = −LTSR(θ)D(θ)−1LSR(θ) + LRRD(θ)−1LSS. (3.52)

Given (3.5) and (3.6), all the matrices appearing in the above expressions are

circulant matrices. Using the commutation property

M1 = (LSSLRR − LSR(θ)L
T
SR(θ))D(θ)−1 = I

M2 = −(LSSLSR(θ + LSR(θ)LSS)D(θ)−1 = 0

M3 = (LTSR(θ)LRR − LRRL
T
SR(θ))D(θ)−1 = 0

M4 = (−LTSR(θ)LSR(θ) + LRRLSS)D(θ)−1 = I, (3.53)

which proves the result.

Fact 2: (3.11) is satisfied.

Proof of Fact 2: from (3.6),

LSR(θ)L
T
SR(θ) =

3

2
M2
SR




1 −1/2 −1/2
−1/2 1 −1/2
−1/2 −1/2 1


 . (3.54)

With (3.5), it follows that

LSSLRR − LSR(θ)L
T
SR(θ) =




f g g
g f g
g g f


 , (3.55)

where

f = LSWLRW + 2MSWMRW −
3M2

SR

2

g = LSWMRW +MSWLRW +MSWMRW +
3M2

SR

4
. (3.56)

In general,

det




f g g
g f g
g g f


 = f3 + 2g3 − 3fg2 = (f − g)2(f + 2g).

(3.57)
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Therefore,

det
�
LSSLRR − LSR(θ)L

T
SR(θ)




=

�
LSWLRW +MSWMRW − LSWMRW −MSWLRW −

9M2
SR

4

	2

(LSWLRW + 4MSWMRW + 2LSWMRW + 2MSWLRW )

= (LSW + 2MSW )(LRW + 2MRW )

�
(LSW −MSW )(LRW −MRW )− 9

4
M2
SR

	2
.

(3.58)



Chapter 4

Brushless Doubly-Fed

Reluctance Machines

4.1 Objective

The objective of this chapter is to study brushless doubly-fed reluctance machines

(BDFRM). The results of the chapter:

• derive a model of the BDFRM.

• show that the machine is equivalent to a doubly-fed induction machine.

4.2 Model in phase variables

Fig. 4.1 shows a schematic representation of a brushless doubly-fed reluctance

machine [4], [24]. The rotor is such that the reluctance reaches a maximum

and a minimum nR times along the periphery of the rotor (with nR = 3 on

the figure). Although quite different in construction compared to Fig. 2.4, the

reluctance variation of Fig. 4.1 is assumed to be modeled as the airgap length

variation of Section 2.4.

The stator has a set of three-phase windings called the power windings (with

nP = 1 on the figure), and another set of three-phase windings called the control

windings (with nC = 2 on the figure). Other values of nP and nC are possible,

but one needs nP �= nC and nR = nP + nC to obtain useful results. The choice

nR = nP − nC or nR = nC − nP (whichever is positive) is also possible, but is

not considered here.

The power and control windings are labelled PA, PB, PC, and CA, CB, CC,

respectively. The angle of the PA winding is assumed to be zero, while the angle

of the first CA winding is ϕ/nC. The angle of the rotor is defined so that the

25
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reluctance of the flux paths for winding PA is minimum at angles θ = 0◦, 120◦,

and −120◦.

θ

PC

PB

PA
CA

CC

CB

CA

CC

CB

ϕ

C
n

Figure 4.1: Schematic representation of a brushless doubly-fed reluctance ma-
chine

As usual for windings with multiple pole pairs, the two elements of the CA,

CB, and CC windings are placed in series to constitute three windings. The

machine then has a total of 6 windings, with currents and voltages

iP =




iPA
iPB
iPC


 , iC =




iCA
iCB
iCC


 , vP =




vPA
vPB
vPC


 , vC =




vCA
vCB
vCC


 .

(4.1)

The 6× 6 inductance matrix is of the form

L(θ) =

�
LPP LPC(θ)

LTPC(θ) LCC

	
. (4.2)

Using (2.14), (2.17), and (2.20) with n1 = n2 = nP and nR �= 2nP , one finds

that only the L12,0 terms remain in LPP . Specifically, for NP the number of

turns per pole pair of the power winding,

LPP =




LPW MPW MPW

MPW LPW MPW

MPW MPW LPW


 , (4.3)

where

LPW =
cN2

Pπ

4
, MPW = −cN2

Pπ

8
. (4.4)
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In practice, the value of LPW is slightly larger than −2MPW due to the leakage

flux.

Similarly, for NC the number of turns per pole pair of the control winding,

LCC =




LCW MCW MCW

MCW LCW MCW

MCW MCW LCW


 , (4.5)

where

LCW =
cN2

Cπ

4
, MCW = −cN2

Cπ

8
. (4.6)

Using (2.14), (2.17), and (2.20) again, but this time with n1 = nP �= n2 = nC,

one finds that the L12,0 terms are zero in LPC(θ). With n1 + n2 = nR,

LPC(θ) = MPC




cos(nRθ − ϕ) cos(nRθ − ϕ− 2π/3)
cos(nRθ − ϕ− 2π/3) cos(nRθ − ϕ+ 2π/3)
cos(nRθ − ϕ+ 2π/3) cos(nRθ − ϕ)

cos(nRθ − ϕ+ 2π/3)
cos(nRθ − ϕ)

cos(nRθ − ϕ− 2π/3)


 , (4.7)

where

MPC =
cNPNCπd

8
. (4.8)

The electrical equations of the machine are

dψP
dt

= vP −RP iP ,
dψC
dt

= vC −RCiC, (4.9)

where RP is the resistance of a power winding, RC is the resistance of a control

winding, and the total flux linkages satisfy

�
ψP
ψC

	
= L(θ)

�
iP
iC

	
. (4.10)

The torque is given by the general form (1.7), or

τM =
1

2

�
iTP iTC


 ∂L(θ)
∂θ

�
iP
iC

	

= iTP
∂LPC(θ)

∂θ
iC. (4.11)
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4.3 Equivalence between a BDFRM and a

DFIM

The inductances (4.2), (4.3), (4.5), and (4.7) are the same as those of doubly-

fed induction machine (see (3.4), (3.5), and (3.6)). The subscripts S, R of the

DFIM are replaced by P , C, nP is replaced by nR, and the angle θ is replaced

by θ−ϕ/nR. The offset ϕ/nR is insignificant and can easily be compensated for

in a control system.

There is a notable difference in terms of the parameter values to be expected.

Using (3.12), we have that

LP = LPW −MPW =
3cN2

Pπ

8

LC = LCW −MCW =
3cN2

Cπ

8

M =
3

2
MPC =

3cNPNCπd

16
. (4.12)

It follows that

M =
d

2

�
LPLC. (4.13)

Even for the extreme value of d = 1 and without leakage flux, the mutual

inductance is 1/2 the value for a DFIM. The leakage factor (3.18) is

σ = 1− M2

LPLC
= 1− d2

4
. (4.14)

For σ = 0.75 for d = 1, compared to σ = 0 for the DFIM without leakage (see

(3.17)). The BDFRM appears as a doubly-fed induction machine with a large

leakage factor that is not due to leakage, but to the construction of the machine.

Considering the homopolar variables in (3.12), we have that

LPh = 0, LCh = 0. (4.15)

In the absence of leakage flux, the homopolar inductances are zero, as for the

DFIM.



Chapter 5

Cascaded Doubly-Fed Induction

Machines

5.1 Objective

The objective of this chapter is to study cascaded doubly-fed induction machines

(CDFIM). The results of the chapter:

• derive a model of the CDFIM.

• compute an equivalent two-phase model in the form of a complex variable

model.

• extend the model to a general model in a rotating reference frame.

5.2 Model of a cascaded doubly-fed induction

machine

A cascaded doubly-fed induction machine (CDFIM) is obtained by connecting

two doubly-fed induction machines electrically and mechanically [13]. One ma-

chine is called the power machine and the other is called the control machine.

The two machines are connected front to back mechanically. Electrically, the

rotors are connected in parallel, but with the second and third phases crossed.

The concept is shown on Fig. 5.1.

Using the results of Section 3.2 while adjusting the notation, the power ma-

chine is modeled as

d

dt
(LPP iP + LPR(θ)iRP ) = vP −RP iP , (5.1)

29



30 Chapter 5. Cascaded Doubly-Fed Induction Machines

Rotor

Stator

Stator

Rotor

Stator

Stator

Control Power

Figure 5.1: Cascaded doubly-fed induction machine

with

d

dt

�
LTPR(θ)iP + LRRP iRP



= vRP − RRP iRP . (5.2)

The submatrices are given by

LPP =




LPW MPW MPW

MPW LPW MPW

MPW MPW LPW


 , LRRP =




LRWP MRWP MRWP

MRWP LRWP MRWP

MRWP MRWP LRWP


 ,

(5.3)

and

LPR(θ) = MPR




cos(nPθ) cos(nPθ + 2π/3) cos(nPθ − 2π/3)
cos(nPθ − 2π/3) cos(nPθ) cos(nPθ + 2π/3)
cos(nPθ + 2π/3) cos(nPθ − 2π/3) cos(nPθ)


 .

(5.4)

In the model of the control machine, an angle θCP is added to the rotor angle

θ to account for the fact that the rotor of the control machine may not be aligned

with its stator in the same way as for the power machine. This angle depends

on how the machines are coupled. If the stators are aligned, θCP is the angle of

the X winding of the control machine relative to the angle of the X winding of

the power machine. Accordingly,

d

dt
(LCCiC + LCRO(θ + θCP )iRC) = vC −RCiC (5.5)

and

d

dt

�
LTCRO(θ + θCP )iC + LRRCiRC



= vRC −RRCiRC . (5.6)
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The stator/rotor coupling matrix for the control machine is denoted LCRO(θ) to

keep the label LCR(θ) for a different purpose.

In (5.6), the submatrices are given by

LCC =




LCW MCW MCW

MCW LCW MCW

MCW MCW LCW


 , LRRC =




LRWC MRWC MRWC

MRWC LRWC MRWC

MRWC MRWC LRWC


 ,

(5.7)

and

LCRO(θ) = MCR




cos(nCθ) cos(nCθ + 2π/3) cos(nCθ − 2π/3)
cos(nCθ − 2π/3) cos(nCθ) cos(nCθ + 2π/3)
cos(nCθ + 2π/3) cos(nCθ − 2π/3) cos(nCθ)


 .

(5.8)

Given the rotor electrical connection,

vRC = SBC vRP , iRC = −SBC iRP , (5.9)

where SBC is a matrix representing the swapping of the phases B and C, i.e.,

SBC =




1 0 0
0 0 1
0 1 0


 . (5.10)

Note that

SBC = STBC = S−1BC. (5.11)

The model of the control machine can be expressed in terms of the rotor

variables using (5.9). Equation (5.5) becomes

d

dt
(LCCiC + LCR(θ)iRP ) = vC − RCiC , (5.12)

where

LCR(θ) = −LCRO(θ + θCP )SBC. (5.13)

Multiplying (5.6) by S−1BC gives

d

dt

�
S−1BCL

T
CRO(θ + θCP )iC − S−1BCLRRCSBCiRP




= S−1BC (SBCvRP +RRCSBCiRP ) . (5.14)



32 Chapter 5. Cascaded Doubly-Fed Induction Machines

The special form of LRRC in (5.7) implies that swapping the last two rows as

well as the last two columns leaves the matrix unchanged. Using (5.11), (5.13),

and the fact that RRC is a scalar,

d

dt

�
−LTCR(θ)iC − LRRCiRP



= vRP +RRCiRP . (5.15)

Subtracting (5.15) from (5.2) and defining

iR = iRP , RR = RRP +RRC , LRR = LRRP + LRRC , (5.16)

the following equation is obtained

d

dt

�
LTPR(θ)iP + LTCR(θ)iC + LRRiR



= −RRiR. (5.17)

Overall model: (5.1), (5.12), and (5.17) give the overall model of the machine

d

dt


L(θ)




iP
iC
iR




 =




vP − RP iP
vC − RCiC
−RRiR


 , (5.18)

where

L(θ) =




LPP 0 LPR(θ)
0 LCC LCR(θ)

LTPR(θ) LTCR(θ) LRR


 . (5.19)

According to (1.7), the torque is given by

τM =
1

2

�
iTP iTC iTR


 ∂L(θ)
∂θ




iP
iC
iR




= iTP
∂LPR(θ)

∂θ
iR + iTC

∂LCR(θ)

∂θ
iR. (5.20)

The torque is the sum of the torque τMP produced by the power machine and

the torque τMC produced by the control machine

τM = τMP + τMC, (5.21)

where

τMP = iTP
∂LPR(θ)

∂θ
iR, τMC = iTC

∂LCR(θ)

∂θ
iR. (5.22)

The power and control torques are not independent however, since they are

coupled through the current iR.
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5.3 Complex model of a CDFIM

Power machine: with small adjustments of notation, a complex model of

the power machine can be obtained using the results of Section 3.4. As in

(3.39), complex variables for the power machine are related to the original vectors

through

�vP = CV zT3 vP , �ıP = CV zT3 iP ,

�vRP = CV zT3 vRP , �ıRP = CV zT3 iRP ,
(5.23)

where

zT3 =
�
1 ej2π/3 e−j2π/3



. (5.24)

The complex model (3.36) gives

d

dt

�
LP�ıP +MP ejnP θ�ıRP



= �vP − RP �ıP , (5.25)

and

d

dt

�
MP e−jnP θ�ıP + LRP�ıRP



= �vRP − RRP �ıRP . (5.26)

The parameters are

LP = LPW −MPW , LRP = LRWP −MRWP , MP =
3

2
MPR.

(5.27)

From (3.37), the torque of the power machine is

τMP = nPMP C−1
P Im

�
�ıP
�
�ıRP ejnP θ


∗�
, (5.28)

where CP is the coefficient of power of the 3− 2 transformation, Im denotes the

imaginary part, and * denotes the complex conjugate.

Control machine: for the control machine, a slightly different transformation

is used for the stator, so that

�vC = CV z∗T3 e−jϕ vC, �ıC = CV z∗T3 e−jϕ iC ,

�vRC = CV zT3 vRC , �ıRC = CV zT3 iRC,
(5.29)

where ϕ is a constant angle to be determined. Note that

�v∗C = CV zT3 ejϕ vC, (5.30)

so that

CV zT3 vC = �v∗C e−jϕ. (5.31)
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Therefore, the following substitutions should be made in the complex DFIM

model for the control machine

�vC → �v∗C e−jϕ, �ıC → �ı∗C e−jϕ, θ → θ + θCP . (5.32)

The variables �vRC and �ıRC are unchanged.

The resulting complex model for the control machine is then

d

dt

�
LC �ı∗C e−jϕ +MC ejnC(θ+θCP )�ıRC



= �v∗C e−jϕ − RC �ı∗C e−jϕ,

(5.33)

with

d

dt

�
MC e−jnC (θ+θCP ) �ı∗C e−jϕ + LRC�ıRC



= �vRC −RRC �ıRC,

(5.34)

and

τMC = nCMC C−1
P Im

�
�ı∗C e−jϕ

�
�ıRC ejnC(θ+θCP )


∗�
. (5.35)

The parameters are

LC = LCW −MCW , LRC = LRWC −MRWC, MC =
3

2
MCR.

(5.36)

Let

ϕ = π − nCθCP , (5.37)

so that (5.33) multiplied by ejϕ becomes

d

dt

�
LC �ı∗C −MC ejnCθ �ıRC



= �v∗C − RC �ı∗C , (5.38)

and (5.34) becomes

d

dt

�
−MC e−jnCθ �ı∗C + LRC�ıRC



= �vRC − RRC �ıRC. (5.39)

Rotor connection: the electrical connection between the machines is described

by (5.9). Expressed in the complex domain, the equations become

�vRC = �v∗RP , �ıRC = −i∗RP . (5.40)

Due to the rotor currents being the same, the two rotor equations merge into

a single differential equation. Indeed, taking the complex conjugates of (5.38)

and (5.39), and using (5.40), one finds that

d

dt

�
LC �ıC +MC e−jnCθ �ıRP



= �vC − RC �ıC , (5.41)
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and

d

dt

�
−MC ejnCθ �ıC − LRC�ıRP



= �vRP +RRC �ıRP . (5.42)

Subtracting (5.42) from (5.26) gives

d

dt

�
MP e−jnP θ�ıP + LRP�ıRP +MC ejnCθ�ıC + LRC�ıRP




= −RRP �ıRP − RRC�ıRP . (5.43)

Simplifying the notation with (5.16) and �ıR = �ıRP ,
d

dt

�
MP e−jnP θ�ıP +MC ejnCθ�ıC + LR�ıR



= −RR �ıR. (5.44)

With (5.37) and (5.40), the torque (5.35) of the control machine becomes

τMC = nCMC C−1
P Im

�
�ı∗C e−jϕ

�
�ıRC ejnC (θ+θCP )


∗�

= nCMC C−1
P Im

�
�ı∗C
�
�ı∗RP ejnCθ


∗�

= −nCMC C−1
P Im

�
�ıC
�
�ıRP e−jnCθ


∗�
. (5.45)

Overall model: collecting (5.25), (5.41), and (5.44) with �ıR = �ıRP , and τM =

τMP + τMC with (5.28) and (5.45), the overall complex model of the CDFIM is

d

dt






LP 0 MP ejnP θ

0 LC MC e−jnCθ

MP e−jnP θ MC ejnCθ LR





�ıP
�ıC
�ıR






=



�vP − RP�ıP
�vC −RC�ıC
−RR�ıR




τM = nPMP C−1
P Im

�
�ıP
�
�ıR ejnP θ


∗�

−nCMC C−1
P Im

�
�ıC
�
�ıR e−jnCθ


∗�
. (5.46)

5.4 Complex model of a CDFIM in a rotating

coordinate frame

Similarly to the DFIM in Section 3.4, the model can be expressed in a rotating

reference frame by letting

vP = e−jθP �vP , ıP = e−jθP �ıP ,
vC = ejθC �vC , ıC = ejθC �ıC,
vR = e−jθR �vR, ıR = e−jθR �ıR,

(5.47)
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where θP , θC , and θR are angles to be defined. Again, a different definition is

applied for the variables of the control machine, so that the variables vC and ıC

are the complex conjugates of what the definition would normally specify.

The angular frequencies corresponding to the angles of the reference frames

are denoted

dθP
dt

= ωP ,
dθC
dt

= ωC,
dθR
dt

= ωR. (5.48)

Using (5.47), the first equation of (5.46) becomes

d

dt

�
LP ejθP ıP +MP ejnP θ ejθR ıR



= ejθP vP − RP ejθP ıP .

(5.49)

Differentiating the products on the left-hand side, and multiplying both sides

by e−jθP ,

d

dt
(LP ıP ) + jωP LP ıP + ej(nP θ+θR−θP )

d

dt
(MP ıR)

+j (nPω + ωR) ej(nP θ+θR−θP ) MP ıR = vP − RP ıP . (5.50)

The result is simplified for the special choice

θR = θP − nPθ, (5.51)

which implies that

ωR = ωP − nPω. (5.52)

Then, (5.50) becomes

d

dt
(LP ıP +MP ıR) = vP − RP ıP − jωP (LP ıP +MP ıR) .

(5.53)

For the second equation of (5.46),

d

dt

�
LC e−jθC ıC +MC e−jnCθ ejθR ıR



= e−jθC vC −RC e−jθC ıC.

(5.54)

Differentiating the products and multiplying by ejθC ,

d

dt
(LC ıC)− jωC LC ıC + ej(−nCθ+θR+θC)

d

dt
(MC ıR)

−j (nCω − ωR) ej(−nCθ+θR+θC) MC ıR = vC − RC ıC . (5.55)

The result is simplified for

θC = nCθ − θR, (5.56)
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which implies that

ωC = nCω − ωR. (5.57)

With (5.56), (5.55) becomes

d

dt
(LC ıC +MC ıR) = vC − RC ıC + jωC (LC ıC +MC ıR) .

(5.58)

For the third equation of (5.46)

d

dt

�
MP ej(θP−nP θ) ıP +MC ej(nCθ−θC) ıC + LR ejθR ıR



= −RR ejθR ıR.

(5.59)

Differentiating the products and multiplying by e−jθR ,

ej(θP−nP θ−θR)
d

dt
(MP ıP ) + j (ωP − nPω) ej(θP−nP θ−θR) (MP ıP )

+ej(nCθ−θC−θR)
d

dt
(MC ıC) + j (nCω − ωC) ej(nCθ−θC−θR) (MC ıC)

+
d

dt
(LR ıR) + jωR (LR ıR) = −RR ıR. (5.60)

With the choices made on the reference frames (i.e., (5.51), (5.52), (5.56), and

(5.57)), equation (5.60) becomes

d

dt
(MP ıP +MC ıC + LR ıR) = −RR ıR − jωR (MP ıP +MC ıC + LR ıR) .

(5.61)

The torque in (5.46) with (5.47), (5.51), and (5.56) becomes

τM = nPMP C−1
P Im (ıP ı∗R)− nCMC C−1

P Im (ıC ı∗R) . (5.62)

Overall model: combining (5.53), (5.58), (5.61), and (5.62), the complex model

in the rotating reference frame is



LP 0 MP

0 LC MC

MP MC LR


 d

dt




ıP
ıC
ıR




=




vP −RP ıP − jωP (LP ıP +MP ıR)
vC − RC ıC + jωC (LC ıC +MC ıR)

−RR ıR − jωR (MP ıP +MC ıC + LR ıR)




τM = nPMP C−1
P Im (ıP ı∗R)− nCMC C−1

P Im (ıC ı∗R) . (5.63)

For the model to hold, the reference frames for the rotor and for the stator of the

control machine must be tied to the reference frame of the stator of the power
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machine, with

θR = θP − nPθ, θC = nCθ − θR = −θP + (nP + nC) θ,

ωR = ωP − nPω, ωC = nCω − ωR = −ωP + (nP + nC) ω. (5.64)

The complex model of the CDFIM can be found in [13]. A small difference is

that the definition of the control winding variables was adjusted here to remove

complex conjugates in the electrical model.

5.5 Steady-state operation

The condition on the angular rates indicates that the steady-state speed associ-

ated with power and control frequencies ωP and ωC is given by

ω =
ωP + ωC
nP + nC

. (5.65)

Operation may require a control system to bring or keep the machine close to

the steady-state speed. A special case corresponds ωC = 0 (DC currents in the

control windings). Then,

ω =
ωP

nP + nC
(5.66)

is called the natural speed, or the synchronous speed of the CDFIM.

The CDFIM can also be operated in asynchronous mode [16]. The simple

induction mode corresponds to iC = 0 and the cascade induction mode corre-

sponds to vC = 0. The synchronous speed in asynchronous mode is ωP/nP , with

the actual speed of rotation determined by the load torque (as in a squirrel-cage

induction machine). Then, (5.65) determines ωC rather than ω.



Chapter 6

Brushless Doubly-Fed Induction

Machines

6.1 Objective

The objective of this chapter is to study brushless doubly-fed induction machines

(BDFIM). The results of this chapter:

• apply winding function theory to fractional pitch windings.

• derive a model of the single-loop BDFIM.

• compute an equivalent two-phase model in the form of a complex variable

model and show that the BDFIM is equivalent to a CDFIM. The BDFIM

model is also shown to become equivalent to a DFIM model when the rotor

resistance is neglected.

• extend the model to a general model in a rotating reference frame.

• extend the model to a BDFIM with nested loops and derive a reduced-

order model similar to the single-loop model.

6.2 Winding function theory for fractional

pitch windings

Before developing the model of a brushless doubly-fed induction machine, addi-

tional results are obtained using winding function theory.

Self-inductance of a fractional pitch winding: Fig. 6.1 shows a winding

with one pole pair but spanning an angle 2θ1 less than π, which was the case in

39
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θ1

Figure 6.1: Fractional pitch winding

Fig. 2.1. The winding is referred to as a fractional pitch winding. Although one

turn is shown, the number of turns will be taken to be equal to N1.

Fig. 6.2 shows the winding function associated with Fig. 6.1. The result is

similar to Fig. 2.2, except that the function is not symmetric with respect to

the horizontal axis. The average of the function on the left is N1θ1/π.

-π -θ θ π α

N

1

1

1

-N  θ  /π11

N  (π-θ  )/π1

1

1

-π π

α

N  (α)

Figure 6.2: Winding function associated with Fig. 6.1

Self-inductance of a fractional pitch winding: using (2.6), the self-inductance

of the winding is given by

L11 = c

� π

−π

N2
1 (α) dα

= cN2
1

�
2θ1

�
π − θ1

π

	2
+ 2(π − θ1)(−

θ1
π
)2

�

=
2cN2

1

π
θ1 (π − θ1) . (6.1)

Mutual inductance between two fractional pitch windings without

overlap: assume that another fractional pitch winding is added that does not
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overlap with the first winding. The case is shown on Fig. 6.3 (note that the cen-

terlines of the windings are shown at 0◦ and 90◦, but the angles are arbitrary).

θ2

θ1

Figure 6.3: Fractional pitch windings without overlap

Using (2.6), the mutual inductance is composed of three terms

L12 = cN1N2

�
2θ1

�
π − θ1

π

	
(−θ2

π
) + 2θ2

�
π − θ2

π

	
(−θ1

π
)

+2 (π − θ1 − θ2) (−
θ1
π
)(−θ2

π
)

	

= −2cN1N2

π
θ1θ2. (6.2)

If the windings are identical

L12 = −
2cN2

1

π
θ21. (6.3)

θ2

θ1

Figure 6.4: Fractional pitch windings with complete overlap
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Mutual inductance between two fractional pitch windings with com-

plete overlap: Fig. 6.4 shows two fractional pitch windings where winding 1

fits inside winding 2. Using (2.6), the mutual inductance is given by

L12 = cN1N2

�
2θ1

�
π − θ1

π

	
(
π − θ2

π
) + 2(θ2 − θ1)(−

θ1
π
)

�
π − θ2

π

	

+2 (π − θ2) (−
θ1
π
)(−θ2

π
)

	

= −2cN1N2

π
θ1(π − θ2). (6.4)

Mutual inductance between a fractional pitch winding and a sinusoidally-

distributed winding: assume that a fractional pitch winding is placed on a

rotor at an angle θ, as shown on Fig. 6.5. A sinusoidally-distributed winding

with N2 turns and n2 pole pairs is placed on the stator at an angle ϕ2/n2.

θ

ϕ
2/n2

Figure 6.5: Coupling between a fractional pitch winding and a sinusoidally-
distributed winding

Noting that integration can be performed over any interval of length 2π

in (2.6), the mutual inductance between the fractional pitch winding and the

sinusoidally-distributed winding is equal to

L12 = c

� 2π+θ−θ1

θ−θ1

N1(α)
N2

2
cos(n2α− ϕ2) dα

=
cN1N2

2

�� θ+θ1

θ−θ1

�
π − θ1

π

	
cos(n2α− ϕ2) dα

+

� 2π+θ−θ1

θ+θ1

(−θ1
π
) cos(n2α− ϕ2) dα

	

=
cN1N2

2π n2

�
(π − θ1) [sin(n2α− ϕ2)]

α=θ+θ1
α=θ−θ1

− θ1 [sin(n2α− ϕ2)]
α=2π+θ−θ1
α=θ+θ1

�

=
cN1N2

2n2
(sin(n2(θ + θ1)− ϕ2)− sin(n2(θ − θ1)− ϕ2))

=
cN1N2

n2
cos(n2θ − ϕ2) sin(n2θ1). (6.5)
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6.3 Model of a brushless doubly-fed induction

machine

Fig. 6.6 shows a schematic representation of a brushless doubly-fed induction

machine . The rotor has nR fractional pitch windings with spacing 2π/nR (nR =

3 on the figure). The span of each rotor winding is 2θR, which is slightly smaller

than 2π/nR. The centerline of the first winding defines the angle θ of the rotor.

The rotor windings are short-circuited, as in a squirrel-cage induction machine.

θ
ϕ

PC

PB

PA
CA

CC

CB

C
n

CA

CC

CB

θR

Figure 6.6: Schematic representation of a brushless doubly-fed induction ma-
chine

The configuration of Fig. 6.6 is a simplified representation of a nested cage

brushless doubly-fed induction machine. In actual construction, the so-called

nests include additional windings placed inside the span of the rotor windings

shown on Fig. 6.6. The analysis presented here can either be extended to in-

corporate the additional windings, or used as an approximation of the machine

with nested loops.

The stator is the same as the stator of the BDFRM in Fig. 4.1, with power

and control windings. The figure shows a machine with nP = 1 and nC = 2.

Other values of nP and nC are possible, but one needs nP �= nC , and nP +nC =

nR. Also, performance depends on the specific values of nP , nC, and nR. The

choice nR = nP − nC or nR = nC − nP (whichever is positive) is also possible,
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but is not considered here.

The power, control, and rotor windings have NP , NC, and NR turns per pole

pair, respectively. The angle of the PA winding is zero, while the angle of the

CA winding is ϕ/nC.

The model of the machine is

d

dt


L(θ)




iP
iC
iR




 =




vP − RP iP
vC − RCiC
−RRiR


 , (6.6)

where the inductance matrix is of the form

L(θ) =




LPP 0 LPR(θ)
0 LCC LCR(θ)

LTPR(θ) LTCR(θ) LRR


 . (6.7)

The LPC sub-matrix is zero because nP �= nC and the airgap is uniform. LPP

and LCC are given by

LPP =




LPW MPW MPW

MPW LPW MPW

MPW MPW LPW


 , LCC =




LCW MCW MCW

MCW LCW MCW

MCW MCW LCW


 ,

(6.8)

where

LPW =
cN2

Pπ

4
, MPW = −cN2

Pπ

8
, LCW =

cN2
Cπ

4
, MCW = −cN2

Cπ

8
.

(6.9)

LRR is an nR × nR matrix given by

LRR =




LRW MRW · · · MRW

MRW LRW · · · MRW
...

...
. . .

...
MRW MRW · · · LRW


 , (6.10)

where, according to (6.1) and (6.2),

LRW =
2cN2

R

π
θR (π − θR) , MRW = −2cN2

R

π
θ2R. (6.11)

From (6.5), LPR(θ) is the nR × 3 matrix

LPR(θ) = MPR




cos(nPθ) cos(nP (θ + 2π/nR))
cos(nPθ − 2π/3) cos(nP (θ + 2π/nR) − 2π/3)
cos(nPθ + 2π/3) cos(nP (θ + 2π/nR) + 2π/3)

· · · cos(nP (θ + 2π(nR − 1)/nR))
· · · cos(nP (θ + 2π(nR − 1)/nR)− 2π/3)
· · · cos(nP (θ + 2π(nR − 1)/nR) + 2π/3)


 , (6.12)
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where

MPR =
cNPNR

nP
sin(nPθR). (6.13)

Similarly

LCR(θ) = MCR




cos(nCθ − ϕ) cos(nC(θ + 2π/nR)− ϕ)
cos(nCθ − 2π/3− ϕ) cos(nC(θ + 2π/nR)− 2π/3− ϕ)
cos(nCθ + 2π/3− ϕ) cos(nC(θ + 2π/nR) + 2π/3− ϕ)

· · · cos(nC(θ + 2π(nR − 1)/nR)− ϕ)
· · · cos(nC(θ + 2π(nR − 1)/nR)− 2π/3− ϕ)
· · · cos(nC(θ + 2π(nR − 1)/nR) + 2π/3− ϕ)


 , (6.14)

where

MCR =
cNCNR

nC
sin(nCθR). (6.15)

According to (1.7), the torque is given by

τM =
1

2

�
iTP iTC iTR


 ∂L(θ)
∂θ




iP
iC
iR




= iTP
∂LPR(θ)

∂θ
iR + iTC

∂LCR(θ)

∂θ
iR. (6.16)

Special case: for nP = 1, nC = 2, nR = 3,

LPR(θ) = MPR




cos(nPθ) cos(nPθ + 2π/3) cos(nPθ − 2π/3)
cos(nPθ − 2π/3) cos(nPθ) cos(nPθ + 2π/3)
cos(nPθ + 2π/3) cos(nPθ − 2π/3) cos(nPθ)




(6.17)

and

LCR(θ) = MCR




cos(nCθ − ϕ) cos(nCθ − 2π/3− ϕ)
cos(nCθ − 2π/3− ϕ) cos(nCθ + 2π/3− ϕ)
cos(nCθ + 2π/3− ϕ) cos(nCθ − ϕ)

cos(nCθ + 2π/3− ϕ)
cos(nCθ − ϕ)

cos(nCθ − 2π/3− ϕ)


 . (6.18)

The structure of the BDFIM model in (6.6) and (6.7) and of the CDFIM

model in (5.18) and (5.19) are the same. Further, the submatrices are the

identical when nP = 1, nC = 2, and nR = 3. In other words, the BDFIM is

equivalent to a CDFIM in the special case of Fig. 6.6. The offset ϕ of the CA

winding in the BDFIM is tied to the offset θCP in the coupling of the CDFIM

through (5.37). Using the complex model, we will show that the equivalence

extends for other values of nP , nC , and nR, as long as nP + nC = nR.
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6.4 Complex model of a BDFIM

Complex variables and properties: a model in complex variables is obtained

by letting

�vP = CV zT3 vP , �ıP = CV zT3 iP ,

�vC = CV z∗T3 e−jϕ vC, �ıC = CV z∗T3 e−jϕ iC,

�vR = CV,R zTR vR, �ıR = CV,R zTR iR,

(6.19)

where CV is the coefficient of the 3-2 transformation and

zT3 =
�
1 ej2π/3 e−j2π/3



. (6.20)

For the control winding, the transformation involves the complex conjugate of

the variables, as for the CDFIM. A factor e−jϕ was also inserted to account for

the offset of the winding CA in Fig. 6.6. For the rotor, a new transformation with

coefficient CV,R was introduced to account for a number nR of rotor windings

that may be greater than 3. The vector zR is given by

zTR =
�
1 ej2πnP /nR · · · ej2πnP (nR−1)/nR



. (6.21)

The number of pole pairs also appears in the formula for the rotor variables.

The complex vector z3 satisfies

z∗T3 z3 = 3, zT3 I3 = zT3 , zT3 O3 = 0,

zT3 z3 = 0, z∗T3 I3 = z∗T3 , z∗T3 O3 = 0,
(6.22)

where I3 is the 3 × 3 identity matrix and O3 is a 3 × 3 matrix of 1’s. On the

other hand, for nR � 3,

z∗TR zR = nR, zTR IR = zTR, zTR OR = 0,

zTR zR = 0, z∗TR IR = z∗TR , z∗TR OR = 0,
(6.23)

where IR is the nR×nR identity matrix and OR is a matrix of 1’s with dimension

nR × nR. The fact that zTR zR = 0 follows from

zTR zR =

nR−1�

k=0

�
ej4πknP /nR



=

nR−1�

k=0

�
ej4πnP /nR


k
, (6.24)

and the standard formula

n−1�

k=0

ak =
1− an

1− a
. (6.25)
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With nR > nP , it follows that

zTR zR =
1− ej4πnP

1− ej4πnP /nR
= 0. (6.26)

Properties of the inductance matrices: define

LP = LPW −MPW =
3cN2

Pπ

8

LC = LCW −MCW =
3cN2

Cπ

8
LR = LRW −MRW = 2cN2

RθR. (6.27)

(6.8) and (6.10) become

LPP = LP I3 +MPW O3

LCC = LCI3 +MCW O3

LRR = LRIR +MRW OR. (6.28)

The following properties result

zT3 LPP = LP zT3

z∗T3 LCC = LC z∗T3

zTR LRR = LR zTR. (6.29)

Further, from (6.12) and (6.22),

zT3 LPR(θ) = zT3 MPR Re
�
ejnP θz∗3 zTR




=
MPR

2
zT3

�
ejnP θz∗3 zTR + e−jnP θz3 z∗TR




=
3MPR

2
ejnP θ zTR. (6.30)

On the other hand, (6.12) and (6.23) give

zTR LTPR(θ) = zTR MPR Re
�
ejnP θzR z∗T3




=
MPR

2
zTR

�
ejnP θzR z∗T3 + e−jnP θz∗R zT3




=
nRMPR

2
e−jnP θ zT3 . (6.31)

A most important property is that, for nR = nP + nC,

zTR =
�
1 ej2πnP /nR · · · ej2πnP (nR−1)/nR




=
�
1 ej2π(nR−nC )/nR · · · ej2π(nR−nC)(nR−1)/nR




=
�
1 e−j2πnC/nR · · · e−j2πnC(nR−1)/nR



. (6.32)
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In other words, nP can be replaced by −nC in zR. In the derivations, this change

has a similar effect as the swapping of the phases in the CDFIM.

With (6.32), (6.14) implies that

z∗T3 LCR(θ) = z∗T3 MCR Re
�
ej(nCθ−ϕ)z∗3 z∗TR




=
MCR

2
z∗T3

�
ej(nCθ−ϕ)z∗3 z∗TR + e−j(nCθ−ϕ)z3 zTR




=
3MCR

2
e−j(nCθ−ϕ) zTR. (6.33)

On the other hand

zTR LTCR(θ) = zTR MCR Re
�
ej(nCθ−ϕ)z∗R z∗T3




=
MCR

2
zTR

�
ej(nCθ−ϕ)z∗R z∗T3 + e−j(nCθ−ϕ)zR zT3




=
nRMCR

2
ej(nCθ−ϕ) z∗T3 . (6.34)

Complex model: using (6.19),



CV zT3 0 0
0 CV z∗T3 e−jϕ 0
0 0 CV,R zTR






vP − RP iP
vC −RCiC
−RRiR


 =



�vP − RP�ıP
�vC − RC�ıC
−RR�ıR


 .

(6.35)

On the other hand, using (6.29), (6.30), (6.31), (6.33), and (6.34),



CV zT3 0 0
0 CV z∗T3 e−jϕ 0
0 0 CV,R zTR







LPP 0 LPR(θ)
0 LCC LCR(θ)

LTPR(θ) LTCR(θ) LRR







iP
iC
iR




=




LP CV zT3 0

0 LC CV z∗T3 e−jϕ

(nRMPR/2) e−jnP θ CV,R zT3 (nRMCR/2) ejnCθ CV,R z∗T3 e−jϕ

(3MPR/2) ejnP θ CV zTR

(3MCR/2) e−jnCθ CV zTR

LR CV,R zTR







iP
iC
iR




=




LP 0 MP ejnP θ

0 LC MC e−jnCθ

M ′

P e−jnP θ M ′

C ejnCθ LR





�ıP
�ıC
�ıR


 , (6.36)

where

MP =
3MPR

2

CV
CV,R

, M
′

P =
nRMPR

2

CV,R
CV

MC =
3MCR

2

CV
CV,R

, M
′

C =
nRMCR

2

CV,R
CV

. (6.37)
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Overall, the complex model is

d

dt






LP 0 MP ejnP θ

0 LC MC e−jnCθ

M ′

P e−jnP θ M ′

C ejnCθ LR





�ıP
�ıC
�ıR






=



�vP − RP�ıP
�vC − RC�ıC
−RR�ıR


 . (6.38)

Special choice of 3-2 transformation for the rotor variables: note that

the transpose of the inductance matrix is equal to the complex conjugate of the

matrix if and only if M ′

P = MP and M ′

C = MC . The condition occurs when

3

2
C2
V =

nR
2

C2
V,R, (6.39)

or

CV,R =

�
3

nR
CV . (6.40)

(6.39) can be interpreted to mean that the power coefficients CP and CP,R as-

sociated with the stator and rotor variables (generalized to nR) are the same.

Observe that CV,R = CV if nR = 3.

With (6.39), the parameters satisfy

MP =

√
3nR
2

MPR =

√
3nR
2

cNPNR

nP
sin(nPθR)

MC =

√
3nR
2

MCR =

√
3nR
2

cNCNR

nC
sin(nCθR). (6.41)

The electrical equations become

d

dt






LP 0 MP ejnP θ

0 LC MC e−jnCθ

MP e−jnP θ MC ejnCθ LR





�ıP
�ıC
�ıR






=



�vP − RP�ıP
�vC − RC�ıC
−RR�ıR


 . (6.42)

An interesting result is that the inductance matrix is Hermitian and independent

of CV if (6.39) is satisfied.

Torque computation: following the initial steps of (6.30) and using (6.19),
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the first term of the torque (6.16) is

iTP
∂LPR(θ)

∂θ
iR = iTP

∂

∂θ

�
MPR

2

�
ejnP θz∗3 zTR + e−jnP θz3 z∗TR


	
iR

=
MPR

2
jnP

�
ejnP θiTP z∗3 zTR iR − e−jnP θiTP z3 z∗TR iR




=
MPR

2 CV CV,R
jnP

�
ejnP θ �ı∗P �ıR − e−jnP θ �ıP �ı∗R




=
nPMPR

CV CV,R
Im
�
�ıP
�
�ıR ejnP θ


∗�
. (6.43)

Similarly with (6.33) and (6.19), the second term of the torque (6.16) is

iTC
∂LCR(θ)

∂θ
iR = iTC

∂

∂θ

�
MCR

2

�
ej(nCθ−ϕ)z∗3 z∗TR + e−j(nCθ−ϕ)z3 zTR


	
iR

=
MCR

2
jnC

�
ej(nCθ−ϕ)iTC z∗3 z∗TR iR − e−j(nCθ−ϕ)iTC z3 zTR iR




=
MCR

2 CV CV,R
jnC

�
ejnCθ �ıC �ı∗R − e−jnCθ �ı∗C �ıR




= − nCMCR

CV CV,R
Im
�
�ıC
�
�ıR e−jnCθ


∗�
. (6.44)

With (6.37), the torque is

τM = nPMP C−1
P Im

�
�ıP
�
�ıR ejnP θ


∗�

−nCMC C−1
P Im

�
�ıC
�
�ıR e−jnCθ


∗�
, (6.45)

where CP = 3C2
V /2 is the coefficient of power of the 3− 2 transformation used

for the power and control windings.

Overall model: assuming that (6.39) is satisfied, the complex model of the

BDFIM is

d

dt






LP 0 MP ejnP θ

0 LC MC e−jnCθ

MP e−jnP θ MC ejnCθ LR





�ıP
�ıC
�ıR






=



�vP − RP�ıP
�vC −RC�ıC
−RR�ıR




τM = nPMP C−1
P Im

�
�ıP
�
�ıR ejnP θ


∗�

−nCMC C−1
P Im

�
�ıC
�
�ıR e−jnCθ


∗�
. (6.46)
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6.5 BDFIM simulation using the complex

model

Simulation and control of the BDFIM can be implemented in the complex do-

main. Fig. 6.7 shows a block diagram implementing the model in Simulink. The

variables vp, vc, ip, ic, and ir are 3-dimensional vectors representing the corre-

sponding variables. The BDFIM ODE block computes the derivatives dip, dic,

and dir that are specified by the model. om, th, and tau represent ω, θ, and τ .

5

tau

4

ir

2

ip

1
s

Int ir

con

vt

vc

om

th

ip

ic

ir

vp

dip

dic

dir

tau

BDFIM
ODE

5

th

4

om

2

vt

3

vc

3

ic

1
s

Int ic

1

con

1
s

Int ip

1

vp

Figure 6.7: Simulink block representing the electrical equations of the BDFIM

A feature was added to enable the simulation with an open stator for a

variable called con equal to 0. In that case, vp is the stator voltage induced on

the power windings. For con = 1, the voltage applied to the power windings is

vt and vp = vt.

The code inside the BDFIM ODE block implements the complex-variable

equations of the previous section and is given below using parameters from [23].

Control design and implementation using complex variables is discussed in [15].

function [vp,dip,dic,dir,tau] = BDFIM(con,vt,vc,om,th,ip,ic,ir)

% BDFIM electrical model

% Parameters

Rp=2.3;Lp=0.3498;Mp=3.1e-3;Rc=4;Lc=0.3637;Mc=2.2e-3;
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Rr=1.2967e-4;Lr=4.4521e-5;npp=2;npc=4;phi=0;

% Three-phase to complex transformation

m3toc=sqrt(2/3)*[1 -1/2+1i*sqrt(3)/2 -1/2-1i*sqrt(3)/2];

cm3toc=conj(m3toc);ephi=exp(1i*phi);

vtx=m3toc*vt;ipx=m3toc*ip;irx=m3toc*ir;

vcx=cm3toc*vc*ephi’;icx=cm3toc*ic*ephi’;

% Complex model

nppom=npp*om;enppth=exp(1i*npp*th);

npcom=npc*om;enpcth=exp(1i*npc*th);

if con==0 % Open stator

L=[Lc Mc*enpcth’;Mc*enpcth Lr];

di=L\[vcx-Rc*icx+1i*npcom*Mc*enpcth’*irx;...

-Rr*irx-1i*npcom*Mc*enpcth*icx];

dipx=0+0i;dicx=di(1);dirx=di(2);

vpx=Mp*enppth*dirx+1i*nppom*Mp*enppth*irx;

else

vpx=vtx;

L=[Lp 0 Mp*enppth;0 Lc Mc*enpcth’;Mp*enppth’ Mc*enpcth Lr];

di=L\[vpx-Rp*ipx-1i*nppom*Mp*enppth*irx;...

vcx-Rc*icx+1i*npcom*Mc*enpcth’*irx;...

-Rr*irx+1i*nppom*Mp*enppth’*ipx-1i*npcom*Mc*enpcth*icx];

dipx=di(1);dicx=di(2);dirx=di(3);

end

tau=npp*Mp*imag(ipx*conj(irx*enppth))...

-npc*Mc*imag(icx*conj(irx*enpcth’));

% Complex to three-phase transformation

dip=real(m3toc’*dipx);dic=real(cm3toc’*ephi*dicx);

dir=real(m3toc’*dirx);vp=real(m3toc’*vpx);

6.6 Equivalence between a BDFIM and a

CDFIM

The complex models of the BDFIM in (6.46) and of the CDFIM in (5.46) are

the same. Therefore, the two machines are equivalent under the assumptions

made. Note that the offset ϕ of the CA winding in the BDFIM is tied to the

offset θCP in the coupling of the CDFIM through (5.37).

Parts of the derivation of the complex BDFIM model can be found in [1]. The
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input/output model was obtained through a direct transformation to complex

variables, without consideration for the homopolar variables. In the case of

the rotor, the homopolar variables become a vector of nR − 2 states that do

not contribute to the torque. A more complete analysis of these variables is

performed in [19].

6.7 Approximation of the BDFIM as a DFIM

Consider the multiplication of the electrical equations of (6.46) by a 2×3 matrix

as follows
�

I 0 −MP/LR ejnP θ

0 I −MC/LR e−jnCθ

	

d

dt






LP 0 MP ejnP θ

0 LC MC e−jnCθ

MP e−jnP θ MC ejnCθ LR





�ıP
�ıC
�ıR






=
d

dt



�

LP −M2
P/LR −MPMC/LR ejnRθ 0

−MPMC/LR e−jnRθ LC −M2
C/LR 0

	

�ıP
�ıC
�ıR






=

�
I 0 −MP/LRe

jnP θ

0 I −MC/LR e−jnCθ

	

�vP −RP�ıP
�vC − RC�ıC
−RR�ıR


 . (6.47)

If RR can be neglected, the equations become

d

dt

��
LP −M2

P/LR −MPMC/LR ejnRθ

−MPMC/LR e−jnRθ LC −M2
C/LR

	�
�ıP
�ıC

		

=

�
�vP − RP�ıP
�vC − RC�ıC

	
. (6.48)

These equations are the same as those for the DFIM in (3.36) if the power and

control variables become the stator and rotor variables of the DFIM, and the

following substitutions are made.

DFIM parameters From the BDFIM parameters

LS LP −M2
P/LR

LR LC −M2
C/LR

RS RP

RR RC

M −MPMC/LR
nP nR

Note that the mutual inductance of the DFIM is negative, but a positive value

can be obtained by switching the sign of the complex control voltage and current,

or by shifting the angle θ by an offset π/nR.
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Numerical example: consider the BDFIM model of [23] with LP = 0.3498 H,

LC = 0.3637 H, MP = 3.1 mH, MC = 2.2 mH, and LR = 4.4521 10−5 mH.

The equivalent DFIM parameters of the approximation are LS = 0.1339 H,

LR = 0.255 H, and M = −0.1532 H. Compared to the DFIM example on p. 15,

σ = 0.313 and

M√
LSLR

=
√
1− σ = 0.829. (6.49)

The reduction of M compared to the maximum value is greater for the BDFIM,

because the magnetic coupling of the windings is smaller than for sinusoidally-

distributed windings. The outcome is an apparent leakage, even when there is

no leakage flux. A similar issue was encountered for the BDFRM in (4.14), but

the reduction is smaller in this case.

Caution: as the equations of the BDFIM and DFIM are the same, the two

models are equivalent. The DFIM approximation is sometimes referred to as the

reduced T-model, in reference to the equivalent circuit [21]. Because the rotor

resistance is small in a BDFIM, the approximation can be very useful. However,

discrepancies can be observed in certain cases [9]. In particular, one should

be cautious that the approximation is invalid if the rotor frequency approaches

zero, i.e., for ω ≃ ωP/nP .

6.8 Complex model of a BDFIM in a rotating

frame of reference

As in (5.47), define

vP = e−jθP �vP , ıP = e−jθP �ıP ,
vC = ejθC �vC , ıC = ejθC �ıC,
vR = e−jθR �vR, ıR = e−jθR �ıR,

(6.50)

where θP is arbitrary and

θR = θP − nPθ, θC = nCθ − θR. (6.51)
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Since the model is the same as the CDFIM in Section 5.3, the BDFIM in the

rotating frame of reference is obtained from the results of Section 5.4 as




LP 0 MP

0 LC MC

MP MC LR


 d

dt




ıP
ıC
ıR




=




vP − RP ıP − jωP (LP ıP +MP ıR)
vC −RC ıC + jωC (LC ıC +MC ıR)

−RR ıR − jωR (MP ıP +MC ıC + LR ıR)




τM = nPMP C−1
P Im (ıP ı∗R)− nCMC C−1

P Im (ıC ı∗R) . (6.52)

6.9 Model of a BDFIM with nested loops

In the BDFIM with nested loops, additional short-circuited rotor windings are

placed inside the original windings of Fig. 6.6. The resulting rotor is shown

schematically on Fig. 6.8. On the figure, there are three nests (nR = 3) and

each nest has three loops (L = 3).

θ

θR,2

θR,1

θR,3

3

1
1

1

1
1

1

2

2

2

2

2
2

3
3

3
3

3

Figure 6.8: BDFIM with nested loops

The current vector iR is replaced by

iRL =




iP
iC
iR,1
...

iR,L




, (6.53)
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where iR,1, · · · , iR,L are vectors of dimension nR associated with the L loops.

The inductance matrix (6.7) becomes

L(θ) =




LPP 0 LPRL(θ)
0 LCC LCRL(θ)

LTPRL(θ) LTCRL(θ) LRRL


 , (6.54)

where

LPRL(θ) =
�
LPR,1(θ) · · · LPR,L(θ)




LCRL(θ) =
�
LCR,1(θ) · · · LCR,L(θ)




LRRL =




LRR,11 · · · LRR,1L
...

. . .
...

LRR,1L · · · LRR,LL


 . (6.55)

The matrices LPP and LCC are the same as for the single loop case, i.e., (6.8).

The matrices LPR,1(θ), . . . , LPR,L(θ), LCR,1(θ), . . . , LCR,L(θ), and LRR,11, . . . ,

LRR,LL can be computed separately for each loop using the same formulas as

for LPR(θ), LCR(θ), and LRR in (6.12), (6.14), and (6.10), respectively. The

“off-diagonal” matrices LRR,jk have a similar structure as the matrices LRR,kk,

that is

LRR,jk =




LRW,jk MRW,jk · · · MRW,jk

MRW,jk LRW,jk · · · MRW,jk
...

...
. . .

...
MRW,jk MRW,jk · · · LRW,jk


 . (6.56)

The parameter LRW,jk is the mutual inductance between two loops of differ-

ent size in the same nest. Using the formula for two fractional windings with

complete overlap (6.4),

LRW,jk =
2cNjNk

π
θj(π − θk), if j < k

=
2cNjNk

π
θk(π − θj), if j > k. (6.57)

The parameter MRW,jk is the mutual inductance between two loops of different

size in separate nests. Using the formula for two fractional windings without

overlap (6.2),

MRW,jk = −
2cNjNkθjθk

π
. (6.58)

Note that LRR,jk = LTRR,jk = LRR,kj.
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The transformation to complex variables (6.36) is extended in a straightfor-

ward manner to



CV zT3 0 0 0 0
0 CV z∗T3 e−jϕ 0 0 0
0 0 CV,R zTR 0 0
...

...
...

. . .
...

0 0 0 0 CV,R zTR




L(θ)




iP
iC
iR,1
...

iR,L




=




LP 0 MPL ejnP θ

0 LC MCL e−jnCθ

MT
PL e−jnP θ MT

CL ejnCθ LRL





�ıP
�ıC
�ıRL


 ,

(6.59)

where the previous scalar parameters become vectors and matrices

MPL =
�
MP,1 · · · MP,L




MCL =
�
MC,1 · · · MC,L




LRL =




LR,11 · · · LR,1L
...

. . .
...

LR,1L · · · LR,LL


 . (6.60)

Similar parameter definitions apply as for the single loop case.

The BDFIM model becomes

d

dt






LP 0 MPL ejnP θ

0 LC MCL e−jnCθ

MT
PL e−jnP θ MT

CL ejnCθ LRL





�ıP
�ıC
�ıRL






=



�vP − RP�ıP
�vC −RC�ıC
−RRL�ıR




τM = nP C−1
P Im

�
�ıP
�
MPL �ıRL ejnP θ


∗�

−nC C−1
P Im

�
�ıC
�
MCL �ıRL e−jnCθ


∗�
, (6.61)

with the diagonal rotor resistance matrix

RRL =




RR,1 · · · 0
...

. . .
...

0 · · · RR,L


 . (6.62)

The model of the BDFIM with multiple loops has a higher order than the single

loop model and is not equivalent to a CDFIM anymore.

Numerical example: consider the BDFIM model of [20]. The inductances of

the complex model can be computed using the Matlab code below.
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%

% BDFIM design parameters

%

r=0.1745/2;l=0.1899;g=6.35e-4;

np=2;nc=4;nr=np+nc;Np=80;Nc=80;Nr1=1;Nr2=1;Nr3=1;

thr1=pi*1/36;thr2=pi*3/36;thr3=pi*5/36;

%

% Compute inductance parameters

%

c=4e-7*pi*r*l/g;

Lpw=c*Np^2*pi/4,Mpw=-c*Np^2*pi/8

Lcw=c*Nc^2*pi/4,Mcw=-c*Nc^2*pi/8

Lrw11=2*c*Nr1^2*thr1*(pi-thr1)/pi+Lr1s,Mrw11=-2*c*Nr1^2*thr1^2/pi

Lrw12=2*c*Nr1*Nr2*thr1*(pi-thr2)/pi,Mrw12=-2*c*Nr1*Nr2*thr1*thr2/pi

Lrw13=2*c*Nr1*Nr3*thr1*(pi-thr3)/pi,Mrw13=-2*c*Nr1*Nr3*thr1*thr3/pi

Lrw22=2*c*Nr2^2*thr2*(pi-thr2)/pi+Lr2s,Mrw22=-2*c*Nr2^2*thr2^2/pi

Lrw23=2*c*Nr2*Nr3*thr2*(pi-thr3)/pi,Mrw23=-2*c*Nr2*Nr3*thr2*thr3/pi

Lrw33=2*c*Nr3^2*thr3*(pi-thr3)/pi+Lr3s,Mrw33=-2*c*Nr3^2*thr3^2/pi

Mpr=(c*Np/np)*[Nr1*sin(np*thr1) Nr2*sin(np*thr2) Nr3*sin(np*thr3)]

Mcr=(c*Nc/nc)*[Nr1*sin(nc*thr1) Nr2*sin(nc*thr2) Nr3*sin(nc*thr3)]

%

% Compute complex model parameters

%

Lp=Lpw-Mpw,Lc=Lcw-Mcw

Lrl=[Lrw11-Mrw11 Lrw12-Mrw12 Lrw13-Mrw13; ...

Lrw12-Mrw12 Lrw22-Mrw22 Lrw23-Mrw23; ...

Lrw13-Mrw13 Lrw23-Mrw23 Lrw33-Mrw33]

Mpl=(sqrt(3*nr)/2)*Mpr,Mcl=(sqrt(3*nr)/2)*Mcr

The results are:

Lp = 0.2472

Lc = 0.2472

Lrl = 1.0e-04 *

0.0572 0.0572 0.0572

0.0572 0.1717 0.1717

0.0572 0.1717 0.2861

Mpl = 0.0005 0.0014 0.0021

Mcl = 0.0005 0.0012 0.0014
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The parameters are similar to those reported in [20], but not identical be-

cause the stator windings were assumed to be sinusoidally-distributed instead

of concentrated in [20]. Some other fine details were also neglected. On the

other hand, all the inductance parameters were computed using simple analyti-

cal formulas. It is interesting to note that, with the assumption of sinusoidally-

distributed stator windings and fractional-pitch rotor windings, pure sinusoidal

steady-state operation is possible, and the computations do not require to dis-

card any harmonic components..

6.10 Reduced-order model of a BDFIM with

nested loops

It is common to derive a reduced-order model that has the same structure as the

single-loop BDFIM. A technique proposed in [20] proceeds as follows. Observe

that the matrix LRL must be symmetric positive semi-definite. Therefore, its

eigenvalues are all real and positive, and the matrix can be decomposed as

LRL = U DRL UT , (6.63)

where DRL is a diagonal matrix containing the eigenvalues of LRL and U is a

matrix of orthogonal eigenvectors satisfying

U−1 = UT . (6.64)

Multiplying the last row of the model by UT and replacing �ıRL by UUT�ıRL,
the model becomes

d

dt






LP 0 (MPLU) ejnP θ

0 LC (MCLU) e−jnCθ

(MPLU)T e−jnP θ (MCLU)T ejnCθ UTLRLU






�ıP
�ıC

UT �ıRL






=




�vP − RP�ıP
�vC −RC�ıC

−
�
UTRRLU



UT �ıRL




τM = nP C−1
P Im

�
�ıP
�
MPLUUT �ıRL ejnP θ


∗�

−nC C−1
P Im

�
�ıC
�
MCLUUT �ıRL e−jnCθ


∗�
. (6.65)

Assume that the eigenvalues have been ordered from the smallest to the largest

in the matrix DRL, and that the largest eigenvalue is much larger than the other

eigenvalues. The model order reduction technique consists in retaining only the

last rotor variable in the vector UT �ıRL. Letting

xT =
�
0 · · · 0 1



, (6.66)
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the model (6.46) is obtained where

MP = MPL U x, MC = MCL U x

LR = xT
�
UTLRLU



x = xTDLLx

RR = xT
�
UTRRLU



x. (6.67)

Note that LR is the largest eigenvalue of LRL.

Numerical example: the code below shows a Matlab implementation of the

procedure (parameters from [20] are used, with some adjustments).

%

% Reduction of BDFIM model from three loops to one loop

%

Lrl=[0.72 0.576 0.576;0.576 1.878 1.727;0.576 1.727 3.037]*1e-5;

Rrl=[1.056 0 0;0 1.209 0;0 0 1.361]*1e-4;

Mpl=[0.5793 1.6693 2.5533]*1e-3;

Mcl=[0.5555 1.4137 1.6072]*1e-3;

[v,d]=eig(Lrl);

x=[0;0;1];

Lr=x’*d*x

Mp=Mpl*v*x

Mc=Mcl*v*x

Rr=x’*(v’*Rrl*v)*x

The code produces:

Lr = 4.4525e-05

Mp = 0.0031

Mc = 0.0022

Rr = 1.2969e-04



Chapter 7

Three-Phase Synchronous

Machines

7.1 Objective

The objective of this chapter is to model a three-phase synchronous machine with

field and damper windings, as shown schematically on Fig. 7.1 for a machine

with one pole pair. The results of the chapter:

• derive a model of the machine in phase variables.

• deduce a DQ model for the machine.

7.2 Machine structure

The stator has a set of three-phase windings (A, B, and C). The rotor also has

three windings, but they are organized differently. One winding (F ) is called the

field winding, and typically has a constant voltage applied to it. The resulting

magnetic field is similar to the field produced by the permanent magnet (PM)

in PM synchronous motors if the current is constant. In dynamic situations,

however, the field and stator currents can interact in ways that are absent in

PM machines. The direction used to define the position of the rotor is chosen to

be aligned with the field winding. Two other windings (D and Q) are present

on the rotor: the first is placed along the same axis as the field winding, and

the second is placed at a 90◦ angle. Both windings are typically short-circuited

and produce a torque similar to squirrel-cage induction machines. The windings

increase the damping of oscillations around the synchronous speed and are called

damper windings.

61
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Figure 7.1: Schematic of a three-phase synchronous machine with field and
damper windings

7.3 Inductances with salient rotor

The derivation of the model proceeds by expressing the flux linkages as functions

of the currents, based on the geometry of the machine. The expressions are com-

plicated by the fact that the rotor has salient poles (a schematic representation

is shown on Fig. 7.2). The angle that will be used for the DQ transformation

is the angle θ that defines the direction of the field winding. It will be assumed

that the D-axis is also the direction of lowest reluctance. Figs. 7.1 and 7.2 show

a machine with one pole pair. For multiple pole pairs, θ is replaced by nPθ.

The salient pole machine is modeled as a non-uniform airgap machine, as

described in Section 2.4, where nR = 2nP and nP is the number of pole pairs.

In (2.22), inductances were obtained

LAA = L0 + L1 cos(2nPθ) LAB = M0 + L1 cos(2nPθ − 2π/3)

LBB = L0 + L1 cos(2nPθ + 2π/3) LBC = M0 + L1 cos(2nPθ)

LCC = L0 + L1 cos(2nPθ − 2π/3)) LCA = M0 + L1 cos(2nPθ + 2π/3).

(7.1)

L0, L1, and M0 are parameters that depend on the winding characteristics.

Without leakage flux, (2.22) gave M0 = −L0/2. Practically, L0 is assumed to

be slightly larger than −2M0. One must also have L1 � L0.
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θ

DQ

Figure 7.2: Rotor with salient poles (nP = 1)

The inductance functions LAA and LAB are shown on Fig. 7.3 for M0 ≃
−L0/2. As expected, the self-inductance of winding A reaches a maximum

value when the rotor is aligned with winding A (0◦), and reaches a minimum for

90◦ (electrical). Interestingly, the mutual inductance peaks for nPθ = 60◦, 150◦,

240◦, and 330◦.
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Figure 7.3: Self-inductance LAA and mutual inductance LAB as functions of the
rotor angle
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7.4 Model in phase variables

Define vectors of stator voltages, stator currents, and stator total flux linkages

vS =




vA
vB
vC


 , iS =




iA
iB
iC


 , ψS =




ψA
ψB
ψC


 . (7.2)

Rotor variables are defined similarly with

vR =




vF
vD
vQ


 , iR =




iF
iD
iQ


 , ΨR =




ψF
ψD
ψQ


 . (7.3)

The electrical equations describing the machine are

dψS
dt

= vS −RSiS,
dψR
dt

= vR −




RF 0 0
0 RD 0
0 0 RQ


 iR, (7.4)

where RS is the resistance of a stator winding, and RF , RD, and RQ are the

resistances of the F , D, and Q windings, respectively.

For the analysis of the machine, we assume linear expressions for the flux

linkages as functions of the currents
�

ψS
ψR

	
= L(θ)

�
iS
iR

	
, L(θ) =

�
LSS(θ) LSR(θ)
LTSR(θ) LRR

	
. (7.5)

The three stator windings are identical, except for shifts of 120◦. From (7.1),

LSS(θ) has the form

LSS(θ) =




L0 + L1 cos(2nPθ) M0 + L1 cos(2nPθ − 2π/3)
M0 + L1 cos(2nPθ − 2π/3) L0 + L1 cos(2nPθ + 2π/3)
M0 + L1 cos(2nPθ + 2π/3) M0 + L1 cos(2nPθ)

M0 + L1 cos(2nPθ + 2π/3)
M0 + L1 cos(2nPθ)

L0 + L1 cos(2nPθ − 2π/3)


 . (7.6)

Based on the geometry of the machine, the other inductance matrices are as-

sumed to have the form

LRR =




LF MR 0
MR LD 0
0 0 LQ


 (7.7)

and

LSR(θ) =




MSF cos(nPθ) MSD cos(nPθ)
MSF cos(nPθ − 2π/3) MSD cos(nPθ − 2π/3)
MSF cos(nPθ + 2π/3) MSD cos(nPθ + 2π/3)

MSQ cos(nPθ + π/2)
MSQ cos(nPθ − π/6)
MSQ cos(nPθ − 5π/6)


 . (7.8)
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In the model,

• LF , LD, LQ are the self-inductances of rotor windings F , D, and Q, re-

spectively.

• MR is the mutual inductance between rotor winding F and rotor winding

D.

• MSF , MSD, and MSQ are the mutual inductances between a stator winding

and the rotor windings F , D, and Q, respectively, when the windings are

aligned (e.g., MSF is the mutual inductance between windings A and F

when θ = 0).

Considering that the damper windings are short-circuited, the electrical

equations of the three-phase synchronous machine are

L(θ)
d

dt




iA
iB
iC
iF
iD
iQ




=




vA − RSiA
vB − RSiB
vC − RSiC
vF − RF iF
−RDiD
−RQiQ



− ω

∂L(θ)

∂θ




iA
iB
iC
iF
iD
iQ




, (7.9)

where L(θ) is given by (7.5), and LSS(θ), LRR, and LSR(θ) by (7.6), (7.7), and

(7.8), respectively. The partial derivative is given by

∂L(θ)

∂θ
=

�
∂LSS(θ)/∂θ ∂LSR(θ)/∂θ
∂LTSR(θ)/∂θ 0

	
, (7.10)

with

∂LSS(θ)

∂θ
= −2nPL1




sin(2nPθ) sin(2nPθ − 2π/3)
sin(2nPθ − 2π/3) sin(2nPθ + 2π/3)
sin(2nPθ + 2π/3) sin(2nPθ)

sin(2nPθ + 2π/3)
sin(2nPθ)

sin(2nPθ − 2π/3)


 , (7.11)

and

∂LSR(θ)

∂θ
= −nP




MSF sin(nPθ) MSD sin(nPθ)
MSF sin(nPθ − 2π/3) MSD sin(nPθ − 2π/3)
MSF sin(nPθ + 2π/3) MSD sin(nPθ + 2π/3)

MSQ sin(nPθ + π/2)
MSQ sin(nPθ − π/6)
MSQ sin(nPθ − 5π/6)


 . (7.12)
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The general formula for the torque of an electric machine (1.7) gives

τM =
1

2
iTS

∂LSS(θ)

∂θ
iS + iTS

∂LSR(θ)

∂θ
iR

= −nPL1
�
sin(2nPθ)i

2
SA + sin(2nPθ + 2π/3)i2SB + sin(2nPθ − 2π/3)i2SC




−2nPL1 (sin(2nPθ − 2π/3)iSAiSB + sin(2nPθ + 2π/3)iSAiSC

+sin(2nPθ)iSBiSC)

−nP (MSF iF +MSDiD) (sin(nPθ)iSA + sin(nPθ − 2π/3)iSB

+sin(nPθ + 2π/3)iSC)

−nPMSQiQ (sin(nPθ + π/2)iSA + sin(nPθ − π/6)iSB

+sin(nPθ − 5π/6)iSC) . (7.13)

7.5 Model in DQ variables

Consider the matrix defining a three-phase DQ transformation, which is the

combination of a 3-2 transformation (1.8) and a DQ transformation for the two-

phase variables, leaving the homopolar variables the same [6],

M3−dq(θ) =




cos(nPθ) sin(nPθ) 0
− sin(nPθ) cos(nPθ) 0

0 0 1


 M3−2. (7.14)

The result is

M3−dq(θ) = CV




cos(nPθ) cos(nPθ − 2π/3) cos(nPθ + 2π/3)
− sin(nPθ) − sin(nPθ − 2π/3) − sin(nPθ + 2π/3)

1/
√
2 1/

√
2 1/

√
2


 .

(7.15)

New variables are defined using



ψd
ψq
ψh


 = M3−dq(θ)




ψA
ψB
ψC


 ,




vd
vq
vh


 = M3−dq(θ)




vA
vB
vC


 ,




id
iq
ih


 = M3−dq(θ)




iA
iB
iC


 . (7.16)

With the DQ transformation, the total flux linkages become



ψd
ψq
ψh


 = M3−dq(θ)LSS(θ)M

−1
3−dq(θ)




id
iq
ih


+M3−dq(θ)LSR(θ)




iF
iD
iQ







ψF
ψD
ψQ


 = LTSR(θ)M

−1
3−dq(θ)




id
iq
ih


+ LRR




iF
iD
iQ


 . (7.17)
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Computing the products (see Section 7.6), one finds that




ψd
ψq
ψh
ψF
ψD
ψQ




=




Ld 0 0 MF MD 0
0 Lq 0 0 0 MQ

0 0 Lh 0 0 0
MF C−1

P 0 0 LF MR 0
MD C−1

P 0 0 MR LD 0
0 MQC

−1
P 0 0 0 LQ







id
iq
ih
iF
iD
iQ




,
(7.18)

where CP is the coefficient of power associated with the 3 − 2 transformation

and

Ld = L0 −M0 +
3

2
L1, Lq = L0 −M0 −

3

2
L1, Lh = L0 + 2M0,

MF =
3CVMSF

2
, MD =

3CVMSD

2
, MQ =

3CVMSQ

2
. (7.19)

Note that the inductance matrix is symmetric if and only if CP = 1, i.e., if an

equal power transformation is used. On the other hand, MF = MSF , MD =

MSD, MQ = MSQ, C−1
P = 3/2 if the equal magnitude transformation is used

(CV = 2/3). Both options are used in the power systems literature [3], [17].

Differentiating the total flux linkages with respect to time and computing

the products

d

dt




ψd
ψq
ψh


 = M3−dq(θ)

d

dt




ψA
ψB
ψC


+ ω

∂M3−dq(θ)

∂θ




ψA
ψB
ψC




= M3−dq(θ)




vA − RSiA
vB − RSiB
vC −RSiC


+ ω

∂M3−dq(θ)

∂θ
M−1
3−dq(θ)




ψd
ψq
ψh




=




vd − RSid
vq − RSiq
vh −RSih


+ nPω




ψq
−ψd
0


 . (7.20)

The derivatives of the rotor fluxes are determined by (7.3) and (7.4) with vD =

vQ = 0, i.e.,

d

dt




ψF
ψD
ψQ


 =




vF − RF iF
−RDiD
−RQiQ


 . (7.21)

Note that the variables can be reordered to show a decoupling between the
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DQ axes. Specifically,




ψd
ψF
ψD
ψq
ψQ
ψh




=




Ld MF MD 0 0 0
MF C−1

P LF MR 0 0 0
MD C−1

P MR LD 0 0 0
0 0 0 Lq MQ 0
0 0 0 MQ C−1

P LQ 0
0 0 0 0 0 Lh







id
iF
iD
iq
iQ
ih




.
(7.22)

Given that the inductance matrix is constant in the DQ variables,the system is

described by




Ld MF MD

MF C−1
P LF MR

MD C−1
P MR LD


 d

dt




id
iF
iD


 =




vd − RSid + nPω (Lqiq +MQiQ)
vF −RF iF
−RDiD




�
Lq MQ

MQ C−1
P LQ

	
d

dt

�
iq
iQ

	
=

�
vq − RSiq − nPω (Ldid +MF iF +MDiD)

−RQiQ

	

Lh
dih
dt

= vh − RSih. (7.23)

The torque can be obtained by converting (7.13) in the DQ variables, or

τM =
1

2

�
id iq ih


 �
M−1
3−dq(θ)


T ∂LSS(θ)

∂θ
M−1
3−dq(θ)




id
iq
ih




+
�
id iq ih


 �
M−1
3−dq(θ)


T ∂LSR(θ)

∂θ




iF
iD
iQ


 . (7.24)

After simplifications

τM = nP C−1
P (MF iF iq + (Ld − Lq) idiq + (MDiqiD −MQidiQ)) .

(7.25)

The torque has three components:

• the first term, nPC
−1
P MF iF iq, is a reaction torque similar to the torque Kiq

produced by a permanent magnet synchronous motor [6]. In this case, the

magnitude of the torque constant nPC
−1
P MF iF can be adjusted through

the magnitude of the field current.
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• the second term, nPC
−1
P (Ld − Lq) idiq, is a reluctance torque related to the

saliency of the rotor. The same torque is found in reluctance or hybrid

motors.

• the third term, nPC
−1
P (MDiqiD −MQidiQ) is an induction torque, similar

to the torque found in two-phase induction motors with a reference frame

attached to the rotor (with such motors, it is assumed that MD = MQ).

The torque increases the damping of the motor and reduces speed fluctu-

ations. It can also be used to start a synchronous motor from zero speed.

Note that the power absorbed through the electrical equations

PE = −nPω (Lqiq +MQiQ) id + nPω (Ldid +MF iF +MDiD) iq
(7.26)

is equal to the mechanical power PM = τM ω if the equal power transformation

is used. For other transformations, PE = CPPM .

7.6 Symbolic code

The code below produces the results of (7.15), (7.18), (7.20), and (7.25).

%

% Symbolic code for WFSM

%

syms lss l0 l1 m0 np th lrr lf mr ld lq lsr msf msd msq ...

m3to2 cv mdq m3dq lssdq lsrdq lrsdq psidq psid psiq psih ...

edq om idq id iq ih ir ifc iD iQ tm real

%

% Original model

%

a=2*pi/3;

lss=[l0+l1*cos(2*np*th) m0+l1*cos(2*np*th-a) m0+l1*cos(2*np*th+a);

m0+l1*cos(2*np*th-a) l0+l1*cos(2*np*th+a) m0+l1*cos(2*np*th) ;

m0+l1*cos(2*np*th+a) m0+l1*cos(2*np*th) l0+l1*cos(2*np*th-a)];

lrr=[lf mr 0;mr ld 0;0 0 lq];

lsr=[msf*cos(np*th) msd*cos(np*th) msq*cos(np*th+pi/2); ...

msf*cos(np*th-a) msd*cos(np*th-a) msq*cos(np*th-a+pi/2);

msf*cos(np*th+a) msd*cos(np*th+a) msq*cos(np*th+a+pi/2)];

%
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% DQ model

%

m3to2=cv*[1 -1/2 -1/2;0 sqrt(3)/2 -sqrt(3)/2;1/sqrt(2) ...

1/sqrt(2) 1/sqrt(2)];

mdq=[cos(np*th) sin(np*th) 0;-sin(np*th) cos(np*th) 0;0 0 1];

m3dq=simplify(mdq*m3to2)

lssdq=simplify(m3dq*lss*inv(m3dq))

lsrdq=simplify(m3dq*lsr)

lrsdq=simplify(lsr’*inv(m3dq))

psidq=[psid;psiq;psih];

edq=simplify(om*diff(m3dq,th)*inv(m3dq)*psidq)

idq=[id;iq;ih];ir=[ifc;iD;iQ];

tm=(1/2)*idq’*inv(m3dq)’*diff(lss,th)*inv(m3dq)*idq;

tm=simplify(tm+idq’*inv(m3dq)’*diff(lsr,th)*ir)



Chapter 8

Y and ∆- Connected Doubly-Fed

Induction Machines

8.1 Objective

The objective of this chapter is to obtain models of Y and ∆-connected doubly-

fed induction machines, and to show that the models of the machines are equiv-

alent to each other.

8.2 Model for a Y−connected machine
Often, the windings of three-phase machines are connected in a Y (or star)

configuration, as shown in Fig. 8.1. With this connection, the line currents are

equal to the winding currents

i1 = iSA, i2 = iSB, i3 = iSC , (8.1)

and iSA + iSB + iSC = 0. In the 3-2 transformation, iSh = 0, and (3.27) implies

that vSh = 0.

For the voltages, one has

vSA = v1 − v0, vSB = v2 − v0, vSC = v3 − v0, (8.2)

where v0 is the voltage at the neutral point (as shown on Fig. 8.1). Since vSh = 0

vSA + vSB + vSC = v1 + v2 + v3 − 3v0 = 0. (8.3)

Therefore

v0 =
v1 + v2 + v3

3
. (8.4)

71
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1
0

2

3

+

+

+-

-

-

v
i

SB
SA i1

i

SCi

SB

vSA
vSC

i2

i3

Figure 8.1: Y−connected machine

In other words, the neutral voltage is equal to the average of the line voltages.

If the sum of the line voltages is zero, the winding voltages are equal to the

line voltages and the neutral voltage is zero. If the sum of the line voltages is

nonzero, the neutral voltage becomes the average of the line voltages, and the

winding voltages are shifted by that amount. An important point to observe is

that the currents and the torque are the same if all the voltages are offset by

the same amount. Also, the two-phase equivalent voltages va and vb remain the

same if some voltage is added to (or subtracted from) the voltages vSA, vSB, and

vSC.

8.3 Model for a ∆-connected machine

Another typical connection is the ∆ (or delta) connection shown on Fig. 8.2.

With this connection, one has vSA+ vSB + vSC = 0, which implies that vSh = 0.

Then, (3.27) implies that iSh = 0, or converges exponentially to zero if initial

conditions are different from zero.

From the figure

i1 = iSA − iSC , i2 = iSB − iSA, i3 = iSC − iSB. (8.5)

Using iSA + iSB + iSC = 0,

i1 − i2 = 2iSA − iSB − iSC = 3iSA − (iSA + iSB + iSC) = 3iSA.
(8.6)

Repeating for the other variables, one finds that

iSA =
i1 − i2

3
, iSB =

i2 − i3
3

, iSC =
i3 − i1

3
, (8.7)
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Figure 8.2: ∆-connected machine

or



iSA
iSB
iSC


 = M∆




i1
i2
i3


 , where M∆ =

1

3




1 −1 0
0 1 −1
−1 0 1


 .

(8.8)

For the voltages

vSA = v1 − v2, vSB = v2 − v3, vSC = v3 − v1. (8.9)

Note that

vSA − vSC = 2v1 − v2 − v3 = 3v1 − (v1 + v2 + v3). (8.10)

Define

v0 =
v1 + v2 + v3

3
. (8.11)

Then

vSA − vSC = 3(v1 − v0). (8.12)

As opposed to Section 8.2, the voltage v0 is not the voltage of some physical

location, but it is defined by the same equation. Repeating for the other vari-

ables,

vSA − vSC
3

= v1 − v0,
vSB − vSA

3
= v2 − v0,

vSC − vSB
3

= v3 − v0,

(8.13)

or

MT
∆




vSA
vSB
vSC


 =




v1 − v0
v2 − v0
v3 − v0


 . (8.14)
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With (3.3), the results imply that

d

dt

�
MT
∆ψS



=




(vSA − vSC)/3− (RS/3)(iSA − iSC)
(vSB − vSA)/3− (RS/3)(iSB − iSA)
(vSC − vSB)/3− (RS/3)(iSC − iSB)




=




v1 − v0 − (RS/3)i1
v2 − v0 − (RS/3)i2
v3 − v0 − (RS/3)i3


 . (8.15)

Using the DFIM model (3.4)-(3.6) and computing the products (see Section 8.5),

MT
∆ψS = MT

∆LSSM∆




i1
i2
i3


+MT

∆LSR(θ)




iRX
iRY
iRZ




=
1

9




2(LSW −MSW ) MSW − LSW MSW − LSW
MSW − LSW 2(LSW −MSW ) MSW − LSW
MSW − LSW MSW − LSW 2(LSW −MSW )






i1
i2
i3




+
MSR√

3


cos(nPθ − π/6) cos(nPθ + π/2) cos(nPθ − 5π/6)
cos(nPθ − 5π/6) cos(nPθ − π/6) cos(nPθ + π/2)
cos(nPθ + π/2) cos(nPθ − 5π/6) cos(nPθ − π/6)






iRX
iRY
iRZ


 .

(8.16)

Given that i1 + i2 + i3 = 0,

1

9




LSW + 2MSW LSW + 2MSW LSW + 2MSW

LSW + 2MSW LSW + 2MSW LSW + 2MSW

LSW + 2MSW LSW + 2MSW LSW + 2MSW






i1
i2
i3


 = 0.

(8.17)

Adding this term to the right-hand side of the previous equation gives




(ψSA − ψSC)/3
(ψSB − ψSA)/3
(ψSC − ψSB)/3


 =




LSW/3 MSW/3 MSW/3
MSW/3 LSW/3 MSW/3
MSW/3 MSW/3 LSW/3






i1
i2
i3




+
MSR√

3




cos(nPθ − π/6) cos(nPθ + π/2) cos(nPθ − 5π/6)
cos(nPθ − 5π/6) cos(nPθ − π/6) cos(nPθ + π/2)
cos(nPθ + π/2) cos(nPθ − 5π/6) cos(nPθ − π/6)






iRX
iRY
iRZ


 .

(8.18)

On the side of the rotor,

d

dt




ψRX
ψRY
ψRZ


 =




vRX −RRiRX
vRY − RRiRY
vRZ − RRiRZ


 , (8.19)
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and




ψRX
ψRY
ψRZ


 = LTSR(θ)M∆




i1
i2
i3


+ LRR




iRX
iRY
iRZ




=
MSR√

3




cos(nPθ − π/6) cos(nPθ − 5π/6) cos(nPθ + π/2)
cos(nPθ + π/2) cos(nPθ − π/6) cos(nPθ − 5π/6)
cos(nPθ − 5π/6) cos(nPθ + π/2) cos(nPθ − π/6)






i1
i2
i3




+LRR




iRX
iRY
iRZ


 . (8.20)

(8.15), (8.18), (8.19) and (8.20) constitute the electrical model of the machine

with a ∆-connected stator.

8.4 Equivalence between Y and ∆- connected

machines

Y Y vs. ∆Y : the equations describing a machine with a ∆-connected stator and

Y -connected rotor are the same as those describing a machine with Y -connected

stator and Y -connected rotor if the following substitutions are made.

Parameters of the Parameters of the equivalent Y -connected
Y -connected machine machine if the stator is reconnected in ∆

RS, LSW , MSW RS/3, LSW/3, MSW/3
RR, LRW , MRW RR, LRW , MRW

MSR MSR/
√
3

nPθ nPθ − π/6

For the additional parameters derived from the winding parameters, the follow-

ing conversions apply.

Parameters of the Parameters of the equivalent Y -connected
Y -connected machine machine if the stator is reconnected in ∆

RS, LS RS/3, LS/3
RR, LR RR, LR

M M/
√
3

nPθ nPθ − π/6

Y Y vs. ∆∆: if the stator and rotor windings of a Y -connected machine are re-

connected in ∆, the matrix LSR transforms to MT
∆LSR(θ)M∆ = LSR(θ)/3. LRR

transforms to MT
∆LRRM∆ = LRR/3. The machine becomes equivalent to the
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Y -connected machine if the following adjustments are made to the parameters.

Parameters of the Parameters of the equivalent Y -connected machine
Y -connected machine if the stator and rotor are reconnected in ∆

RS, LS RS/3, LS/3
RR, LR RR/3, LR/3

M M/3
nPθ nPθ

8.5 Symbolic code

The code below produces the results of (8.16) and the LSR(θ) matrix for the

∆−∆ connection.

%

% Symbolic code for DFIM delta connection

%

syms lss lsw msw lrr lrw mrw lsr msr np th ...

lssdy lsrdy aux checkzero lsrdd real

%

% Original model

%

a=2*pi/3;

lss=[lsw msw msw;msw lsw msw;msw msw lsw];

lrr=[lrw mrw mrw;mrw lrw mrw;mrw mrw lrw];

lsr=msr*[cos(np*th) cos(np*th+a) cos(np*th-a); ...

cos(np*th-a) cos(np*th) cos(np*th+a);

cos(np*th+a) cos(np*th-a) cos(np*th)];

%

% lsr for delta-Y conversion

%

md=[1/3 -1/3 0;0 1/3 -1/3;-1/3 0 1/3];

lssdy=simplify(md’*lss*md)

lsrdy=simplify(md’*lsr)

aux=(msr/sqrt(3))*[cos(np*th-pi/6) cos(np*th+pi/2)

cos(np*th-5*pi/6);

cos(np*th-5*pi/6) cos(np*th-pi/6) cos(np*th+pi/2);

cos(np*th+pi/2) cos(np*th-5*pi/6) cos(np*th-pi/6)];

checkzero=simplify(lsrdy-aux)

%
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% lsr for delta-delta conversion

%

lsrdd=simplify(md’*lsr*md)

checkzero=simplify(lsrdd-lsr/3)



Chapter 9

Three-Phase Induction Machines

with a Two-Phase Rotor

9.1 Objective

The objective of this chapter is to derive a model for the machine shown schemat-

ically on Fig. 9.1. The stator has three windings that are identical to each other.

The rotor has two windings, also identical to each other. The results of this

chapter:

• derive a model of the machine.

• show that the machine is equivalent to a two-phase machine if an equal

power transformation is used. Otherwise, an extra coefficient appears in

the torque equation and the inductance matrix becomes non-symmetric.

9.2 Model in phase variables

Define vectors of stator voltages, stator currents, and stator total flux linkages

vS =




vSA
vSB
vSC


 , iS =




iSA
iSB
iSC


 , ψS =




ψSA
ψSB
ψSC


 . (9.1)

Rotor variables are defined as

vR =

�
vRD
vRQ

	
, iR =

�
iRD
iRQ

	
, ψR =

�
ψRD
ψRQ

	
. (9.2)

The electrical equations describing the machine are

dψS
dt

= vS − RSiS,
dψR
dt

= vR − RDiR, (9.3)

79
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Figure 9.1: Schematic of a machine with a three-phase stator and a two-phase
rotor

where RS is the resistance of a stator winding and RD is the resistance of a rotor

winding.

An explicit model of the machine can be obtained by expressing the total

flux linkages as functions of the currents. Based on the geometry of the machine

in Fig. 9.1, we assume that
�

ψS
ψR

	
= L(θ)

�
iS
iR

	
, L(θ) =

�
LSS LSR(θ)
LTSR(θ) LRR

	
, (9.4)

where

LSS =




LSW MSW MSW

MSW LSW MSW

MSW MSW LSW


 , LRR =

�
LD 0
0 LD

	
, (9.5)

and

LSR(θ) = MD




cos(nPθ) cos(nPθ + π/2)
cos(nPθ − 2π/3) cos(nPθ − π/6)
cos(nPθ + 2π/3) cos(nPθ − 5π/6)


 . (9.6)

The variables of the model are:

• θ, the angle of the rotor.

• nP , the number of poles pairs (nP = 1 on Fig. 9.1).
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• LSW , the self-inductance of a stator winding.

• MSW , the mutual inductance between two stator windings.

• LD, the self-inductance of a rotor winding.

• MD, the mutual inductance between a stator winding and a rotor winding

when the windings are aligned (e.g., between windings A and D when

θ = 0).

Using (9.3) and (9.4), the electrical equations of the machine consist of

d

dt

�
iS
iR

	
= L−1(θ)

��
vS − RSiS
vR −RDiR

	

−ω

�
0 ∂LSR(θ)/∂θ

∂LTSR(θ)/∂θ 0

	�
iS
iR

		
, (9.7)

where ω = dθ/dt is the speed of the machine. Only LSR(θ) contributes to the

torque, so that the general formula for the torque of the machine (1.7) gives

τM = iTS
∂LSR(θ)

∂θ
iR

= −nPMD

((sin(nPθ)iSA + sin(nPθ − 2π/3)iSB + sin(nPθ + 2π/3)iSC) iRD)

+ (sin(nPθ + π/2)iSA + sin(nPθ − π/6)iSB + sin(nPθ − 5π/6)iSC) iRQ) .

(9.8)

9.3 Two-phase equivalent machine

The three-phase machine can be transformed into an equivalent two-phase ma-

chine using a three-phase to two-phase transformation (1.8). The rotor variables

do not need to be transformed, since the rotor is two-phase. With the transfor-

mation, the stator fluxes become



ψSa
ψSb
ψSh


 = M3−2LSSM

−1
3−2




iSa
iSb
iSh


+M3−2LSR(θ)

�
iRD
iRQ

	
.

(9.9)

Computing the products (see Section 9.4), one finds that



ψSa
ψSb
ψSh


 =




LS 0 0
0 LS 0
0 0 LSh






iSa
iSb
iSh




+M




cos(nPθ) − sin(nPθ)
sin(nPθ) cos(nPθ)

0 0



�

iRD
iRQ

	
, (9.10)
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where

LS = LSW −MSW , LSh = LSW + 2MSW , M =
3CV
2

MD.
(9.11)

In a similar manner, the following equations can obtained for the rotor fluxes

�
ψRD
ψRQ

	
= LRR

�
iRD
iRQ

	
+ LTSR(θ)M

−1
3−2




iSa
iSb
iSh




=

�
LD 0
0 LD

	�
iRD
iRQ

	

+M C−1
P

�
cos(nPθ) sin(nPθ) 0
− sin(nPθ) cos(nPθ) 0

	


iSa
iSb
iSh


 .

(9.12)

Due to the fact that the three-phase to two-phase transformation is linear

and independent of time, the transformed stator variables satisfy electrical equa-

tions similar to the three-phase variables, and with identical stator resistances.

Specifically

d

dt




ψSa
ψSb
ψSh


 =




vSa − RSiSa
vSb − RSiSb
vSh − RSiSh


 . (9.13)

Therefore, the two-phase variables satisfy

d

dt


L2(θ)




iSa
iSb
iRD
iRQ





 =




vSa −RS iSa
vSb − RS iSb
vRD − RD iRD
vRQ −RD iRQ


 , (9.14)

with L2(θ) given by

L2(θ) =




LS 0
0 LS

M C−1
P cos(nPθ) M C−1

P sin(nPθ)
−M C−1

P sin(nPθ) M C−1
P cos(nPθ)

M cos(nPθ) −M sin(nPθ)
M sin(nPθ) M cos(nPθ)

LD 0
0 LD


 . (9.15)

The torque is equal to

τM =
�
iSa iSb iSh


 �
M−1
3−2


T ∂LSR(θ)

∂θ
iR

= nPM C−1
P (− sin(nPθ)iRDiSa − cos(nPθ)iRQiSa

cos(nPθ)iRDiSb − sin(nPθ)iRQiSb). (9.16)
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Equations (9.14), (9.15), and (9.16) are the same as the equations defining a two-

phase machine with windings a, b, D, and Q when CP = 1, i.e., for the equal

power 3-2 transformation. For other transformations, the equations are similar,

but an extra factor C−1
P must be included in the torque and in the inductance

matrix, which ceases to be symmetric.

For the homopolar variables

LSh
diSh
dt

= vSh − RSiSh. (9.17)

The variables with the subscript h (called homopolar variables) satisfy the equa-

tion of a stable first-order system that is independent of the equations for the

two-phase variables. The homopolar variables do not affect the torque and are

independent of the main two-phase variables.

9.4 Symbolic code

The code below produces the results of (9.10), (9.12), and (9.16).

%

% Symbolic code for DFIM with 3-ph stator and 2-ph rotor

%

syms lss lsw msw lrr ld lsr md np th m3to2 cv ...

l2ss l2sr l2rs is2 isa isb ish ir ird irq tm real

%

% Original model

%

a=2*pi/3;b=pi/2;

lss=[lsw msw msw;msw lsw msw;msw msw lsw];

lrr=[ld 0;0 ld];

lsr=md*[cos(np*th) cos(np*th+b) ; cos(np*th-a) cos(np*th-a+b);

cos(np*th+a) cos(np*th+a+b)];

%

% 2-phase equivalent model

%

m3to2=cv*[1 -1/2 -1/2;0 sqrt(3)/2 -sqrt(3)/2;1/sqrt(2) ...

1/sqrt(2) 1/sqrt(2)];

l2ss=simplify(m3to2*lss*inv(m3to2))

l2sr=simplify(m3to2*lsr)

l2rs=simplify(lsr’*inv(m3to2))
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is2=[isa;isb;ish];ir=[ird;irq];

tm=simplify(is2’*inv(m3to2)’*diff(lsr,th)*ir)



Chapter 10

Three-Phase Induction Machines

with Single-Phase Excitation

10.1 Objective

The objective of this chapter is to consider several problems where a single-phase

supply is applied to three-phase machines. The results show that:

• a three-phase rotor with line-to-line excitation is equivalent to a single-

phase rotor.

• the voltage induced on the stator applying a constant line-to-line rotor

current at non-zero speed or applying a sinusoidal current at standstill

can be used to determine the mutual inductance parameter of a doubly-

fed induction machine.

• a three-phase rotor with line-to-2 line excitation is equivalent to a two-

phase rotor with one phase excited and the other phase short-circuited.

10.2 Single-phase line-to-line excitation on a

three-phase rotor

Consider the model of a machine with a three-phase rotor derived in Section 3.2.

Assume that single-phase excitation is applied to the rotor from winding Y to

winding Z, with winding X left open. Let vRQ and iRQ be the voltage and the

current applied to the rotor in this manner. Then

vRY − vRZ = vRQ, iRX = 0, iRY = −iRZ = iRQ. (10.1)
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The expressions for the stator fluxes (3.4)-(3.6) give (see Section 10.5),

ψS = LSSiS + LSR(θ)




0
1
−1


 iRQ

= LSSiS +MD




cos(nPθ + π/2)
cos(nPθ − π/6)
cos(nPθ − 5π/6)


 iRQ, (10.2)

where MD =
√
3MSR. On the side of the rotor, let

ψRQ = ψRY − ψRZ, (10.3)

so that

ψRQ =
�
0 1 −1



LTSR(θ)iS +

�
0 1 −1



LRR




0
1
−1


 iRQ

= MD

�
cos(nPθ + π/2) cos(nPθ − π/6) cos(nPθ − 5π/6)



iS

+ LDiRQ, (10.4)

where LD = 2(LRW −MRW ). Also

dψRQ
dt

=
�
0 1 −1




vR − RR




0
1
−1


 iRQ




= vRQ − RDiRQ, (10.5)

where RD = 2RR.

The characteristics are the same as those of the machine with a two-phase

rotor of Section 9.2, where the D winding is open (iRD = 0) and the Q winding

is connected to a supply. The total rotor flux linkages are

ψRD = ψRX , ψRQ = ψRY − ψRZ, (10.6)

but the differential equation for ψRD can be omitted since there is no associated

current in the D axis (iRD = 0). Parameters are converted using

RD = 2RR, LD = 2(LRW −MRW ) = 2LR, MD =
√
3MSR =

2√
3
M.

(10.7)

As expected, the line-to-line resistance and the line-to-line inductance are 2

times the winding resistance and the winding inductance, respectively
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10.3 Open-stator response with line-to-line

rotor excitation

With an open stator, the stator currents are zero and (10.5) gives

ψS = MD




cos(nPθ + π/2)
cos(nPθ − π/6)
cos(nPθ − 5π/6)


 iRQ. (10.8)

Therefore

ψSA − ψSB =
√
3MD cos(nPθ + 2π/3)iRQ

= 2M cos(nPθ + 2π/3)iRQ. (10.9)

The line-to-line voltage is

vAB = vSA − vSB =
dψSA
dt

− dψSB
dt

= 2M cos(nPθ + 2π/3)
diRQ
dt

− 2nPωM sin(nPθ + 2π/3)iRQ.

(10.10)

The result can be used to measure M as follows:

1. The machine rotates at constant speed ω with a DC current IDC applied

line-to-line to the rotor. The induced line-to-line stator voltage is a sinusoid

of frequency ωS = nPω and peak magnitude

Vpk = 2ωSM IDC. (10.11)

2. The machine is at standstill with a sinusoidal rotor current of frequency

ωS and peak magnitude Ipk

iRQ = Ipk sin(ωSt). (10.12)

Then,

vAB = 2ωSM cos(nPθ + 2π/3)Ipk sin(ωSt). (10.13)

3. Note that

vBC = 2ωSM cos(nPθ)Ipk sin(ωSt)

vCA = 2ωSM cos(nPθ − 2π/3)Ipk sin(ωSt). (10.14)
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If the rotor is moved so that the largest voltage is observed between two

lines of the stator (so that nPθ + 2π/3 = 0), the peak magnitude of the

line-to-line voltage is

Vpk = 2ωSM Ipk. (10.15)

If the rotor is turned until vBC = 0 (obtained for nPθ = π/2), the peak

magnitude of the line-to-line voltage vAB is

Vpk = 2ωSM |cos(7π/6)| Ipk =
√
3ωSM Ipk. (10.16)

Vpk is the same as the peak voltage for vCA. The second procedure may be

preferable because it is more precise to align the rotor using a zero crossing

than using a maximum.

10.4 Single-phase line-to-2 line excitation on a

three-phase rotor

Assume that single-phase excitation is applied to the rotor from winding X to

windings Y and Z tied together. Let vRD and iRD be the voltage and the current

applied to the rotor in this manner. Then

vRX − vRY = vRD, vRY = vRZ, iRX = −(iRY + iRZ) = iRD.
(10.17)

Let

iRQ = (iRY − iRZ) /
√
3. (10.18)

Then,

iRY =
−iRD +

√
3iRQ

2
, iRZ =

−iRD −
√
3iRQ

2
. (10.19)

Overall



iRX
iRY
iRZ


 = ML2L

�
iRD
iRQ

	
, where ML2L =




1 0

−1/2
√
3/2

−1/2 −
√
3/2


 .

(10.20)

The expressions for the stator fluxes (3.4)-(3.6) become

ψS = LSSiS + LSR(θ)ML2L

�
iRD
iRQ

	

= LSSiS +MD




cos(nPθ) cos(nPθ + π/2)
cos(nPθ − 2π/3) cos(nPθ − π/6)
cos(nPθ + 2π/3) cos(nPθ − 5π/6)



�

iRD
iRQ

	
.

(10.21)
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where MD = (3/2)MSR = M . On the side of the rotor, let

�
ψRD
ψRQ

	
= MT

L2L




ψRX
ψRY
ψRZ


 , (10.22)

so that
�

ψRD
ψRQ

	
= MT

L2LL
T
SR(θ)iS +MT

L2LLRRML2L

�
iRD
iRQ

	

= MD

�
cos(nPθ) cos(nPθ − 2π/3) cos(nPθ + 2π/3)

cos(nPθ + π/2) cos(nPθ − π/6) cos(nPθ − 5π/6)

	
iS

+

�
LD 0
0 LQ

	�
iRD
iRQ

	
, (10.23)

where LD = LQ = (3/2)(LRW −MRW ) = (3/2)LR. Also,

d

dt

�
ψRD
ψRQ

	
= MT

L2L (vR − RRiR)

=

�
vRD
0

	
− RRM

T
L2LML2L

�
iRD
iRQ

	

=

�
vRD − RDiRD
−RQiRQ

	
, (10.24)

where RD = RQ = (3/2)RR.

The characteristics are the same as those of the machine with a two-phase

rotor in Section 9.2, with the D winding connected to the supply and the Q

winding short-circuited (vRQ = vRY −vRZ = 0). Parameters are converted using

RD = (3/2)RR, LD = (3/2)(LRW −MRW ) = (3/2)LR, and MD = (3/2)MSR =

M . As expected, the line-to-2 line resistance and the line-to-2 line inductance are

1.5 times the winding resistance and the winding inductance. The parameterMD

is smaller than in the line-to-line connection. Thus, the stator voltage induced

for a given rotor current is smaller for the line-to-2 line connection than for the

line-to-line connection. Note that the transformation using ML2L is similar to

the equal vector 3−2 transformation, but it represents here a physical connection

of the machine, as opposed to an algebraic definition.

10.5 Symbolic code

The code below produces the results of (10.2), (10.4), (10.21), and (10.23).

%

% Symbolic code for DFIM with single-phase excitation
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%

syms lsr msr np th lrr lrw mrw lsrll lrrll lsrl2l lrrl2l real

%

% Original model

%

a=2*pi/3;

lsr=msr*[cos(np*th) cos(np*th+a) cos(np*th-a); ...

cos(np*th-a) cos(np*th) cos(np*th+a);

cos(np*th+a) cos(np*th-a) cos(np*th)];

lrr=[lrw mrw mrw;mrw lrw mrw;mrw mrw lrw];

%

% Line-to-line excitation

%

lsrll=simplify(lsr*[0;1;-1])

lrrll=simplify([0 1 -1]*lrr*[0;1;-1])

%

% Line-to-2 line excitation

%

ml2l=[1 0;-1/2 sqrt(3)/2;-1/2 -sqrt(3)/2];

lsrl2l=simplify(lsr*ml2l)

lrrl2l=simplify(ml2l’*lrr*ml2l)



Chapter 11

Non-Symmetric 2-Phase

Induction Machines

11.1 Objective

The objective of this chapter is to obtain a model for the two-phase induction

machine shown in Fig. 11.1, where the rotor windings are assumed to be iden-

tical, but the stator windings are different from each other. The configuration

arises with capacitor-start single-phase induction motors, or with generators

using these machines [18]. The results of the chapter:

• give a model of the machine in phase variables.

• derive a simpler model in stator coordinates.

• show that a special configuration of a three-phase machine is equivalent

to a non-symmetric two-phase machine.

11.2 Model in phase variables

Define vectors of stator voltages, stator currents, and stator total flux linkages

vS =

�
vSA
vSB

	
, iS =

�
iSA
iSB

	
, ψS =

�
ψSA
ψSB

	
. (11.1)

Rotor variables are defined as

vR =

�
vRX
vRY

	
, iR =

�
iRX
iRY

	
, ψR =

�
ψRX
ψRY

	
. (11.2)

The electrical equations describing the machine are

dψS
dt

= vS −
�

RA 0
0 RB

	
iS,

dψR
dt

= vR −RRiR, (11.3)

91



92 Chapter 11. Non-Symmetric 2-Phase Induction Machines
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Figure 11.1: Two-phase induction motor

where RA, RB are the resistances of the stator windings, and RR is the resistance

of the rotor windings.

Based on the geometry of the motor, we assume that the total flux linkages

have the form
�

ψS
ψR

	
= L(θ)

�
iS
iR

	
, (11.4)

where

L(θ) =

�
LSS LSR(θ)

LTSR(θ) LRR

	
, (11.5)

and

LSS =

�
LA 0
0 LB

	
, LRR =

�
LR 0
0 LR

	

LSR(θ) =

�
MA cos(nPθ) −MA sin(nPθ)
MB sin(nPθ) MB cos(nPθ)

	
. (11.6)

The self-inductances of the stator and rotor windings are denoted LA, LB, and

LR, respectively. The mutual inductances between stator and rotor windings,

when aligned, are denoted MA and MB. It is assumed that there is no mutual

inductance between stator windings A and B, as well as between rotor windings

X and Y .

The electrical equations of the machine are

d

dt


L(θ)




iSA
iSB
iRX
iRY





 =




vSA − RAiSA
vSB − RBiSB
vRX − RRiRX
vRY −RRiRY


 . (11.7)
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An explicit model is

d

dt




iSA
iSB
iRX
iRY


 = L−1(θ)







vSA − RAiSA
vSB − RBiSB
vRX − RRiRX
vRY −RRiRY




+ nPω




MA (iRX sin(nPθ) + iRY cos(nPθ))
MB (−iRX cos(nPθ) + iRY sin(nPθ))
MAiSA sin(nPθ)−MBiSB cos(nPθ)
MAiSA cos(nPθ) +MBiSB sin(nPθ)





 .

(11.8)

The general formula for the torque of an electric machine (1.7) gives

τM =
�
iSA iSB


 ∂LSR(θ)
∂θ

�
iRX
iRY

	

= −nPMAiSA (iRX sin(nPθ) + iRY cos(nPθ))

+nPMBiSB (iRX cos(nPθ)− iRY sin(nPθ)) . (11.9)

11.3 Model in stator coordinates

The rotor currents may be expressed in a coordinate frame attached to the

stator, so that
�

iRA
iRB

	
= UT (θ)

�
iRX
iRY

	
, (11.10)

where

UT (θ) =

�
cos(nPθ) − sin(nPθ)
sin(nPθ) cos(nPθ)

	
. (11.11)

Then, (11.4)-(11.6) give

ψSA = LAiSA +MAiRA

ψSB = LBiSB +MBiRB (11.12)

and

LA
d

dt
iSA +MA

d

dt
iRA = vSA − RA iSA

LB
d

dt
iSB +MB

d

dt
iRB = vSB − RB iSB. (11.13)

On the rotor side
�

ψRA
ψRB

	
= UT (θ)

�
ψRX
ψRY

	

= UT (θ)LTSR(θ)

�
iSA
iSB

	
+ UT (θ)LRR

�
iRX
iRY

	
, (11.14)
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which gives

ψRA = MAiSA + LRiRA

ψRB = MBiSB + LRiRB. (11.15)

For the time derivative

d

dt

�
ψRA
ψRB

	
= UT (θ)

d

dt

�
ψRX
ψRY

	
+

d

dt

�
UT (θ)


� ψRX
ψRY

	

= UT (θ)

�
vRX
vRY

	
−RRU

T (θ)

�
iRX
iRY

	

+nPω

�
0 −1
1 0

	
UT (θ)

�
ψRX
ψRY

	

=

�
vRA −RRiRA − nPωψRB
vRB −RRiRB + nPωψRA

	
. (11.16)

Combining (11.15) and (11.16)

d

dt
ψRA = MA

d

dt
iSA + LR

d

dt
iRA = vRA − RRiRA − nPω(MBiSB + LRiRB)

d

dt
ψRB = MB

d

dt
iSB + LR

d

dt
iRB = vRB − RRiRB + nPω(MAiSA + LRiRA).

(11.17)

Overall model: the electrical equations of the machine become




LA 0 MA 0
0 LB 0 MB

MA 0 LR 0
0 MB 0 LR




d

dt




iSA
iSB
iRA
iRB




=




vSA − RA iSA
vSB − RB iSB
vRA −RR iRA − nPω (MBiSB + LRiRB)
vRB − RR iRB + nPω (MAiSA + LRiRA)


 . (11.18)

The torque (11.9) becomes

τM = nP (MBiSBiRA −MAiSAiRB) . (11.19)

11.4 Three-phase machine as a non-symmetric

two-phase machine

Consider a three-phase induction machine with a stator connection as shown on

Fig. 11.2. Note that one must have access to the individual windings for this
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Figure 11.2: Three-phase machine operated as a two-phase machine

implementation, or to the neutral if the machine is Y -connected. The configu-

ration has been considered for power generation, where excitation is applied at

the terminal with voltage vSE and current iSE, and power is produced at the

terminal with voltage vSO and current iSO [11].

The connection is such that
�

vSE
vSO

	
=

�
vSA

vSB − vSC

	
,

�
iSE
iSO

	
=

�
iSA
iSB

	
, iSC = −iSB.

(11.20)

Define

vT =

�
vSE
vSO

	
, iT =

�
iSE
iSO

	
. (11.21)

With vS and iS denoting the vectors of stator voltages and currents of the three-

phase machine, one has that

vT = M1vS, iT = M2iS, (11.22)

where

M1 =

�
1 0 0
0 1 −1

	
, M2 =

�
1 0 0
0 1 0

	
. (11.23)

Given that iSC = −iSB, one also has that

iS = MT
1 iT . (11.24)

Chapter 9 showed that three-phase and two-phase rotors were equivalent.

Modeling the squirrel-cage rotor as a two-phase rotor for convenience (with

vR = 0),

d

dt

��
LSS LSR(θ)
LTSR(θ) LRR

	�
iS
iR

		
=

�
vS − RSiS
−RDiR

	
,

(11.25)
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where the inductance matrices are given by (9.5) and (9.6). Multiplying the first

line of (11.25) by M1, and using (11.22) with (11.24), the equations transform

to

d

dt

��
M1LSSM

T
1 M1LSR(θ)

LTSR(θ)M
T
1 LRR

	�
iT
iR

		
=

�
vT −M1RSM

T
1 iT

−RDiR

	
.

(11.26)

Computing the expressions and returning to the components of the vectors, one

finds that

d

dt


L2(θ)




iSE
iSO
iRD
iRQ





 =




vSE − RS iSE
vSO − 2RS iSO
−RD iRD
−RD iRQ


 , (11.27)

where

L2(θ) =




LSW 0 MD cos(nPθ)

0 2(LSW −MSW )
√
3MD sin(nPθ)

MD cos(nPθ)
√
3MD sin(nPθ) LD

−MD sin(nPθ)
√
3MD cos(nPθ) 0

−MD sin(nPθ)√
3MD cos(nPθ)

0
LD


 . (11.28)

The equations of the machine are the same as those of the non-symmetric two-

phase machine (11.5), (11.6), (11.7), if one replaces E, O, D, Q by A, B, X, Y ,

L2(θ) by L(θ), and use the parameters

RA = RS, RB = 2RS, LA = LSW , LB = 2(LSW −MSW ),

MA = MD, MB =
√
3MD, RR = RD, LR = LD. (11.29)

11.5 Symbolic code

The code below produces the results of (11.28).

%

% Symbolic code for a 3-phase induction machine

% operated as a 2-phase machine

%

syms lss lsw msw lrr ld lsr md np th rs l2ss l2sr r2s real

%
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% Original model

%

a=2*pi/3;b=pi/2;

lss=[lsw msw msw;msw lsw msw;msw msw lsw];

lrr=[ld 0;0 ld];

lsr=md*[cos(np*th) cos(np*th+b); ...

cos(np*th-a) cos(np*th-a+b); ...

cos(np*th+a) cos(np*th+a+b)];

%

% Transformed model

%

m1=[1 0 0;0 1 -1];

m2=[1 0 0;0 1 0];

l2ss=simplify(m1*lss*m1’),

l2sr=simplify(m1*lsr),

r2s=simplify(m1*rs*m1’),



Chapter 12

Hybrid Motor

12.1 Objective

The objective of this chapter is to derive a model for the hybrid motor shown in

Fig. 12.1. The motor is a two-phase permanent magnet synchronous motor with

reluctance torque. The schematic is also representative of interior permanent

magnet motors (IPM). The results of the chapter:

• give a model of the machine in phase variables.

• derive a model in DQ variables.

θN

S

+

v

+

i

B

A

i

B

vA

Figure 12.1: Hybrid motor

12.2 Model in phase variables

The model of the motor is

dψA
dt

= vA − RiA,
dψB
dt

= vB − RiB. (12.1)

99
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According to (1.2), assume that
�

ψA
ψB

	
= ψ0D(θ) + L(θ)

�
iA
iB

	
, (12.2)

where ψ0 is the flux linkage in a winding due to the PM when the magnet is

aligned with the winding, and

D(θ) =

�
cos(nPθ)
sin(nPθ)

	
. (12.3)

Using (2.21),

L(θ) =

�
L0 + L1 cos(2nPθ) L1 sin(2nPθ)
L1 sin(2nPθ) L0 − L1 cos(2nPθ)

	
, (12.4)

for some L0 > L1 > 0.

The model can be expressed as

L(θ)
d

dt

�
iA
iB

	
=

�
vA −RiA
vB −RiB

	
− ωψ0

∂D(θ)

∂θ
− ω

∂L(θ)

∂θ

�
iA
iB

	
,
(12.5)

where

∂D(θ)

∂θ
= nP

�
− sin(nPθ)
cos(nPθ)

	

∂L(θ)

∂θ
= 2nPL1

�
− sin(2nPθ) cos(2nPθ)
cos(2nPθ) sin(2nPθ)

	
. (12.6)

Using (1.7), the torque is

τM = ψ0
�
iA iB


 ∂D(θ)

∂θ
+

1

2

�
iA iB


 ∂L(θ)
∂θ

�
iA
iB

	

= −KiA sin(nPθ) +KiB cos(nPθ)

+nPL1
��
−i2A + i2B



sin(2nPθ) + 2iAiB cos(2nPθ)



, (12.7)

where K = nPψ0.

12.3 Model in DQ variables

The DQ model is obtained using the DQ transformation
�

ψd
ψq

	
= U(θ)

�
ψA
ψB

	
, (12.8)

where

U(θ) =

�
cos(nPθ) sin(nPθ)
− sin(nPθ) cos(nPθ)

	
. (12.9)
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The inverse transformation is
�

ψA
ψB

	
= UT (θ)

�
ψd
ψq

	
. (12.10)

In other words, U−1(θ) = UT (θ).

Differentiating (12.10), one finds

d

dt

�
ψA
ψB

	
= UT (θ)

d

dt

�
ψd
ψq

	
+ ω

∂UT (θ)

∂θ

�
ψd
ψq

	
,

(12.11)

where

∂U(θ)

∂θ
= nP

�
− sin(nPθ) cos(nPθ)
− cos(nPθ) − sin(nPθ)

	
. (12.12)

Therefore

d

dt

�
ψd
ψq

	
= U(θ)

d

dt

�
ψA
ψB

	
− ωU(θ)

∂UT (θ)

∂θ

�
ψd
ψq

	

= U(θ)

�
vA − RiA
vB − RiB

	
− nPω

�
0 −1
1 0

	�
ψd
ψq

	

=

�
vd − Rid + nPωψq
vq − Riq − nPωψd

	
. (12.13)

The DQ fluxes are given by
�

ψd
ψq

	
= ψ0U(θ)D(θ) + U(θ)L(θ)UT (θ)

�
id
iq

	

=

�
ψ0
0

	
+

�
Ld 0
0 Lq

	�
id
iq

	
, (12.14)

where

Ld = L0 + L1, Lq = L0 − L1. (12.15)

The DQ model of the hybrid motor becomes

Ld
did
dt

= vd − Rid + nPωLqiq

Lq
diq
dt

= vq − Riq − nPωLdid −Kω. (12.16)

After simplifications, the torque is

τM = ψ0
�
id iq



U(θ)

∂D(θ)

∂θ
+

1

2

�
id iq



U(θ)

∂L(θ)

∂θ
UT (θ)

�
id
iq

	

= K iq + nP (Ld − Lq) id iq. (12.17)

The first component of the torque is due to the permanent magnet, while the

second component is the reluctance torque.
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12.4 Symbolic code

The code below produces the results of (12.13), (12.14), and (12.17).

%

% Symbolic code for the hybrid motor

%

syms u np th d l l0 l1 du dl dd udut ulut idq id iq ...

tm psi0 ud delta udldqudt ifg ifc ig tm k real

%

u=[cos(np*th) sin(np*th);-sin(np*th) cos(np*th)];

d=[cos(np*th);sin(np*th)];

l=[l0+l1*cos(2*np*th) l1*sin(2*np*th);l1*sin(2*np*th) ...

l0-l1*cos(2*np*th)];

du=diff(u,th);dd=diff(d,th);dl=diff(l,th);

udut=simplify(u*du’)

ulut=simplify(u*l*u’)

idq=[id;iq];

tm=simplify(psi0*idq’*u*dd+0.5*idq’*u*dl*u’*idq)
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