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Preface

This short book presents mathematical models for various electric machines,
including brushless doubly-fed reluctance machines and brushless doubly-fed in-
duction machines. These less conventional machines have recently attracted sig-
nificant research interest. Other models include ordinary doubly-fed induction
machines, cascaded doubly-fed induction machines, wound-field synchronous
machines, three-phase machines with single-phase excitation, non-symmetric in-
duction machines, and hybrid motors. The presentation complements another
book from the author where the models of simpler machines are developed. Con-
cepts from winding function theory are given to enable the modeling of more
advanced configurations. A contribution of the work is the derivation of multi-
ple state-space models in a common framework. Complex variable models are
introduced in cases where considerable simplifications can be achieved. The
equivalence between different types of machines is demonstrated. Another con-
tribution of the work is the presentation of models for arbitrary three-phase
to two-phase transformations, showing the impact of the choices made on the
resulting models.
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Chapter 1

Introduction

1.1 Objective

This chapter introduces basic principles of modeling of electric machines, includ-

ing transformations that are useful for three-phase machines.

1.2 General model of an electric machine

The electrical equations of a machine with n windings are
o

dt

where 1), is the total flux linkage in winding k, vy is the voltage applied to the

= vy — Ryig, fork=1,---,n, (1.1)

winding, and iy, is the current flowing in the winding. The signs of the voltages
and currents are chosen such that vgi, > 0 if power is absorbed by the winding.

The total flux linkages in the windings are assumed to be of the form
Uk = Ymi(0) + Y Lij(0) ij, (1.2)
j=1

where 1y, () originates from the permanent magnets in the machine (if any),
0 is the angular position of the rotor, Lgx(6) is the self-inductance of winding
k, and Ly;(6) is the mutual inductance between winding & and winding j (with
Li; = Lj).

Combining (1.1) and (1.2)

d¢k awmk dZJ . aLk_}(e) .
W = w+ ZLkJ -, T 15 W, (13)

where
do
dt
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is the angular velocity of rotation of the rotor. The electrical equations of the

machine are then

di; . O i(0) " OLy;(0) .
Zij(g)E:Uk*Rklk*TW* sz .
j=1 J=1 (1.5)

Based on principles of energy conservation, the motoring torque can be computed
to be [6]

™ = Z 3 Z Z i (1.6)
k=1 k=1 j=1
The model can also be written in matrix form as
di o 0vw(®)  OL(B).
L(e)dt = v—Ri— 0 YT g v
70Un(0) 1 ,0L(0) .
_ T Lo
R L TR
where L(6) is a matrix with elements Lj;(6) and ,,(¢), v, and i are vectors

(1.7)

with elements ), (), vk, and 4, respectively. R is a diagonal matrix with
elements Ry, on the diagonal. All vectors, including 9v,,(0)/90, are assumed to

be column vectors.

1.3 Three-phase to two-phase transformations

Three-phase to two-phase transformations are useful to represent three-phase
machines as equivalent two-phase machines. A generic 3 — 2 transformation is
defined by
Vg VA 1 -1/2 -1/2
v = Ms_o | vg |, with Ms_s =Cy 0 V3/2 —/3/2
Up Ve 1/V2 12 1/V2
(1.8)

In (1.8), va, vp, and ve are three-phase variables, v, and v, are equivalent
two-phase variables, and vy, is the homopolar variable added to make the trans-
formation invertible. The coefficient Cy determines the type of transformation
that is used. Choices made in the literature are typically Cyy = 1, 1/2/3, and
2/3. The inverse of the 3 — 2 transformation, or 2 — 3 transformation, is given
by
VA Vg 9 1 0 1/vV2
vp | = My w |, with MY = oo | -2 V3/2  1/V2
Ve vp, VI —1/2 —V3/2 1/V2
(1.9)



1.3. Three-phase to two-phase transformations 3

For balanced three-phase voltages

va = Vprcos(0s), vp = Vi cos(Bs — 21/3), ve = Vpp cos(0s + 2m/3),

(1.10)
the two-phase voltages satisfy
Vg = Cy Vi cos(bs), vy = CpVpsin(fs), v, =0, (1.11)
where
Cy = ;Cv. (1.12)
Power in the three-phase and two-phase variables is defined through
P =wv4ig + vpip +vcic, Py= v, + vpip + vpip. (1.13)
It turns out that
Py = CpP, with Cp = gca. (1.14)

The coefficients Cp and C); are given in the following table for the three
typical choices of Cy [6]. For each choice, one coefficient is equal to 1. The
labels used in the table are chosen to reflect the property, but are not standard

in the literature.

| | Equal vector | Equal power | Equal magnitude |
Cy 1 V2/3 2/3
Cp 3/2 1 2/3
Cuy 3/2 3/2 1

Note that the homopolar variable can be multiplied by a separate coefficient
in the 3 — 2 transformation and divided by the same coefficient in the 2 — 3
transformation. The change has no impact on the results of this document,
except for the power equivalence in (1.14). The homopolar variable is typically

assumed to be zero or is neglected.



Chapter 2

Winding Function Theory

2.1 Objective

The objective of this chapter is to present elements of winding function theory

and apply the results to compute inductances for various winding configurations.

2.2 Winding function

Fig. 2.1 shows the cross-section of the cylindrical stator and rotor of a machine.
The rotor is slightly smaller than the stator, and the difference between the
radius of two circles is called the airgap length. The airgap is said to be uniform.
A concentrated winding is shown on the periphery of the stator and has two turns
The conductors are represented by circles with dots and crosses representing the
direction of the current as the front and back of an arrow (the current flows into
the page for the cross and out of the page for the dot). The rotor position is

identified by the angle « of an arbitrary location with respect to the horizontal.

0.0) .
. \u
X

Figure 2.1: Concentrated winding with two turns

Fig. 2.2 shows how the so-called winding function associated with the winding
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of Fig. 2.1 is obtained. On the left, the number of conductors is counted in the

counterclockwise direction, starting from o« = —m. The count is incremented
by 1 when a cross is encountered and -1 when a dot is encountered. So, the
count becomes 2 for « = —m/2 and returns to zero when o = /2.
N ()
N 1
1
\
- T
I I I I
-t —7/2 T2l T a1l o

Figure 2.2: Winding function for a concentrated winding with two turns

On the right of the figure, the winding function N;(«) is obtained from the
function on the left by adding a constant (-1 in this case) such that the average
of N1(a) is equal to zero. For a concentrated winding with N7 turns, the winding

function becomes
N,
Ni(a) = 71 sign(cos(a)), (2.1)
where the sign function is such that

sign(z) =1 forx >0
sign(z) =0  forz =0 (2.2)
sign(z) = -1 for z < 0.
Fig. 2.3 shows a configuration with two windings having a 90° span instead
of a single winding with a 180° span. The two windings are connected in series.

The overall winding is said to have 4 poles or 2 pole pairs (as opposed to 2 poles

and 1 pole pair in Fig. 2.1). In this case,
N,
Ni(a) = 71 sign(cos(nja)), (2.3)

where N is the number of turns per pole pair and n; is the number of pole
pairs. If the windings are rotated by an angle ¢;1/n; in the counter-clockwise

direction, the function is replaced by

Ni(a) = % sign(cos(nja — p1)). (2.4)
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Figure 2.3: Concentrated winding with two pole pairs

Sinusoidally-distributed windings are obtained by carefully setting the con-
ductors so that the winding function can be approximated by a sinusoidal func-

tion. Then, the winding function is assumed to be
N
Ni(a) = 71 cos(nia — 1), (2.5)

where Vi is the number of turns per pole pair, n; is the number of pole pairs,

and (; specifies the orientation of the winding.

2.3 Computation of inductances

Winding function theory [22] states that the mutual inductance (in H) between

two windings is

Lo—c / Ny(@)No(a) da, (2.6)
where
po 7l
_borl 2.7
P (2.7)

The parameters of the equation are g, the airgap length (in m), ug, the per-
meability of free space (equal to 47 1077 H/m), r, the radius of the rotor (in
m), and [, the length of the rotor (in m). The self-inductance of a winding is
obtained as a special case where No(a) = Np(av).

The expression (2.6) is based on idealized assumptions and should not be
expected to be very accurate. The airgap is assumed to be small, and the result
is applied in the same way regardless of whether a winding is located on the stator
or on the rotor. Still, the theory is useful to understand general charateristics

of electric machines and how inductances depend on machine parameters.
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For two sinusoidally-distributed windings,

cN1Ny [™
Ly = %/ cos(nia — 1) cos(nacr — ) dav

—T

cN1Ny [T
= é 2 / cos ((n1 4+ n2)a — (p1 + @2)) do
c¢N1Ny [T
+ é 2 / cos ((n1 — na)a — (p1 — ¢2)) da. (2.8)

Note that L1 = 0 if n; # no. In other words, two windings with different
numbers of pole pairs are not coupled magnetically. On the other hand, if

ny = ng,

. T
Ly = 1 cos (o1 — ¥a) . (2.9)

(2.10)

Example of a two-phase machine with identical AB windings: let N4 =
Np =N, ps=0, and o = 7/2. Then

cN27

Laa=Lpp = . Lap =0. (2.11)

Example of a three-phase machine with identical ABC windings: let
Ny=Np=Ng=N, ps=0, pp =27/3, and oo = —271/3. Then

cN2r
Lyy = Lpp=Lcc= 1
e¢N3r
Lap = Lpc=Lca=- 3 (2.12)

In the theory of electric machines, the self-inductances are assumed to be slightly
larger than the predicted values to account for the presence of so-called leakage

fluzes.

2.4 Non-uniform airgap

In some cases, electric machines are deliberately built with a varying airgap
length. For example, Fig. 2.4 shows a rotor built so that the airgap length
reaches a maximum (or minimum) value three times along the periphery of the
rotor. The dotted circle shows the average airgap length with respect to the
stator. An angle 6 is introduced that identifies the position of the rotor through
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Figure 2.4: Machine with varying airgap

one of the locations where the airgap length is the smallest. Note that a varying
airgap length will also be used to model rotors with heterogeneous constructions,
such as in Fig. 4.1.

For the analysis of machines with non-uniform airgaps, (2.6) and (2.7) are

used, but with ¢ replaced according to
1 1

— — —(1+d cos(nr(a—10)), (2.13)

g g

where 0 < d < 1 and npg is the number of peaks of the airgap length (np = 3

in Fig. 2.4). With this change, 1/g represents the average inverse airgap length.

The case d = 0 corresponds to a uniform airgap. While it may have been

more intuitive to choose a sinusoidal variation of the airgap length, the choice

of inverse airgap length produces useful analytic results.

The mutual inductance (2.6) between two sinusoidal windings becomes

Lya = Lizp + L12,4, (2.14)
where
Ligg = CNJLNQ /7T cos(nia — 1) cos(nacx — ) dav, (2.15)
and ’
Ligg = clV1 Npd /Tr cos(niar — 1) cos(naar — pa) cos(nr(a — 0)) do.
4 ) (2.16)

The component Lqs is the same as was obtained for the uniform airgap in
(2.9), so that

cN1 Ny
Lisp = —L2" cos (1 — @) for ny =ny

(2.17)
Liap=0 for ny # na.
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The component depending on the parameter d is equal to

cNiNod 7
Lia = S5 [ fcos (01 + a4 nn)a = (91 + 2 + )

+cos ((n1 +n2 — ng)a — (1 + w2 — ngb))
+cos ((n1 — n2 + ng)a — (1 — wa + ngb))
+ cos ((ny — ng — ng)a — (p1 — pa — ngh))) da. (2.18)

The result of the integration is that

Liaq =0 unless ngp =ny +ng, ngp =ng — Ny, OF N = N1 — Na.
(2.19)

A case of interest is
CNl Ngﬂ'd

Liyg= —s cos(ngd — (p1+ ¢2)) if ngp =mny1 + na.
(2.20)

Example of a two-phase machine with identical AB windings: let Ny =
Np=N,nq=np=np, ng =2np, o4 =0, and vp = 7/2. Then

~N? ~N%rd
LAA = (,47[-—"—(} 871— COS(2TLP€)
~N? N?rd
L = o T 2T cos(2np0)
4 8
N2md
Lip = = 8” sin(2np0). (2.21)

Example of a three-phase machine with identical ABC windings: let
Ny= Np=Ng=N,ng=np=ng=np,ng=2np, ps =0, pp = 271/3, and
wc = —27/3. Noting that an angle 47 /3 is the same as —27/3,

Lo = c]\Zw N cN827rd cos(2np0)
Lpp = C]\fﬂ + CNSZWd cos(2npl + 21 /3)
Lo = C]\fﬂ + CN;Wd cos(2nph — 2m/3))
Lap = fdfﬂ + CN;Wd cos(2npf — 2m/3)
Loe — _C]\;Qﬂ' N cN827rd cos(2np0)

B eN?m  cN*znd

Loa = S + S cos(2npl + 27/3). (2.22)



Chapter 3

Doubly-Fed Induction Machines

3.1 Objective

The objective of this chapter is to derive a model of the machine shown schemat-
ically on Fig. 3.1. The machine is called a doubly-fed induction machine (DFIM)
or wound-rotor induction machine (WRIM) Both the stator and the rotor have
three-phase windings (A, B, C, and X, Y, Z, respectively). With short-circuited
rotor windings, the model also represents a three-phase cage rotor induction

machine, or squirrel-cage induction machine. The results of the chapter:

e derive the model of the machine.

e show that the machine is equivalent to a two-phase machine if an equal
power 3 — 2 transformation is used. With other 3 — 2 transformations,
the equations are the same, except for an extra coefficient appears in the

equation for the torque.
e derive a model of the machine in complex variables.

e extend the model to a rotating reference frame.

3.2 Model in phase variables

Define vectors of stator voltages, stator currents, and stator total flux linkages

UsA 15A Psa
vs=| vsp |,is=| isp |, vs=| Ysp |. (3.1)
UsC isc Ysc
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Isc

Figure 3.1: Schematic of a machine with three-phase stator and rotor windings

Rotor variables are similarly defined as

URX irRX YRrx
vp=| vry |, ir=1| iry |, Yr=| YRy |- (3.2)
VRz iRz YRz

The electrical equations describing the machine are

dips . d ,
% = vg — Rgis, % = vg — Rpig, (3.3)

where Rg is the resistance of a stator winding and Rp is the resistance of a rotor
winding.

An explicit model of the machine can be obtained by expressing the total
flux linkages as functions of the currents. Based on the geometry of the machine

on Fig. 3.1 and the results of Section 2.3, we assume that
ts > < is ) < Lgss Lsr(0) )
=L(# . , L(0) = , 3.4
<¢R ©) iR (6) Lir(0) Lrr (3.4)

Lsw Msw Mgw Lrw Mprw Mprw
Lss=| Msw Lsw Msw |, Ler=| Mrw Lrw Mgw |,
Msw Msw Lsw Mpw Mpw Lrw (3.5)

where
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and

cos(nph) cos(npl + 2w/3) cos(npb — 27w /3)
Lsp(0) = Mggr | cos(npd —271/3) cos(npb) cos(npb +2m/3)
cos(npb +2m/3) cos(npf — 27/3) cos(nph)
(3.6)

The variables of the model are:

e 0, the angle of the rotor (in rad).

e np, the number of poles pairs (np = 1 on Fig. 3.1).

e Lgw, the self-inductance of a stator winding.

e Mgy, the mutual inductance between two stator windings.
e Lpw, the self-inductance of a rotor winding.

o Mpw, the mutual inductance between two rotor windings.

e Mgpg, the mutual inductance between a stator winding and a rotor winding
when the windings are aligned (e.g., between windings A and X when

0=0).

Using (3.3) and the expressions for the inductances, explicit differential equa-~

tions describing the machine can be derived, specifically

() = ro((hin)
v ( aLgR(()e) /00 a0 ) ( z; >> SENEX)

where w = df/dt is the angular velocity of the machine. The general formula
for the torque (1.7) gives
1 ;0Lsgr(0). 1 .0L%H(0).
™= i gp int gl g is
T aLSR(e) .
( R

= =57
00

= —npMgg [sin(npd)(isairx + ispiry + iscirz)

+ Sin(np9 + 2”/3)(Z‘SAZ.RY + iSBiRZ + iSCiRX)

+sin(npl — 27/3)(isairz + ispirx + isciry)| - (3.8)
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Inversion of the inductance matrix: Fact 1 of Section 3.7 shows that the

inverse of the matrix L(#) has an explicit expression

» D)L —D(6)Lsn(0)
0= _pantty o). (39)

where D(#) is the matrix
D(0) = LssLrr — Lsr(0)LER(0). (3.10)

Further, Fact 2 of Section 3.7 shows that the determinant of D(6), which is also

the denominator of L™1(6), is equal to
det (D(6)) = (Lsw + 2Msw)(Lrw + 2Mrw) 2
<(LSW — Msw)(Law — Maw) — §M§R> RENERE)
Define

3
Ls = Lsw— Msw, Lr = Lpw — Mrw, M = 51\1{51%,
Lsy, = Lsw +2Mgw, Lryn = Lrw + 2Mpgw. (312)

Then, (3.11) becomes
det (D(0)) = LspLpn(LsLr — M?). (3.13)
Thus, for the matrix L(#) to be invertible, one needs
Lsn #0, Lpn #0, and LgLp — M? # 0. (3.14)

Leakage fluxes: assuming that the stator and the rotor windings have Ng and

Npg turns, respectively, the results of Section 2.3 give the values

e¢N2r eN2m cNZm cNZm
Lsw = 5= Msw = ——=—, Lpw = —2—, Mpyw = —2—,
4 8 4 8
~NgN
Msp = 2FT 54 =, (3.15)
resulting in
3cN2 3cN3 3cNgN
Ls = =550, Lp= "8, M = =% L, =0, Ly = 0.
(3.16)
Note that
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so that all three terms in (3.13) are zero.

In practice, addfitional leakage fluxes result in Lgp, Lgp, and LgLp — M?
having positive values. With these leakage fluxes, (3.14) is satisfied. The so-
called leakage factor

- M?
LsLg’

o=1 0<o<1, (3.18)

is small but nonzero. The mutual inductance
M =+/1—0+/LsLp (3.19)

is slightly smaller than the maximal value v/LgLg.
Numerical example: consider a DFIM with Lg = 1.6 mH, Lr = 19 mH, and
M =5.2 mH. Then, 0 = 0.11 and

=V1—0 =094 (3.20)

In other words, the leakage fluxes cause a reduction of the mutual inductance

from the maximal value by about 6%.

3.3 Two-phase equivalent machine

The three-phase machine can be transformed into an equivalent two-phase ma-
chine by using the three-phase to two-phase transformation (1.8). The model
(3.4) becomes

Vsa isa i R
Vs | = MsoLssMsy | isy | + Ms_oLsp(0)Ms2y | ig, |,
Ysn ish irn /) (3.21)

where ip,, gy, and igy, are the two-phase rotor currents corresponding to igx,

iry, and irz. Computing the products!, one finds that

Vsa Ls 0 0 iSa
Vsp = 0 Lg 0 isp
Ysn 0 0 Lg ish
cos(npf) —sin(npd) 0 iRe
+M | sin(npf) cos(npd) O iny |, (3.22)
0 0 0 IRh

1A symbolic mathematical software, such as Matlab’s Symbolic Math Toolbox, is useful for
such purpose (see Section 3.6).
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where Lg, Lsy, and M were defined in (3.12). In a similar manner, the following

equations can be obtained for the rotor fluxes

YR Lr 0 0 iRz
dry | = | 0 Lr 0 iny
YR 0 0 Lgn iRh
cos(npf) sin(npd) 0 iSa
+M | —sin(nph) cos(npd) 0 iss |- (3.23)
0 0 0 ish

Due to the fact that the three-phase to two-phase transformation is linear

and does not depend on time, the transformed variables satisfy

d [ Vsa Usa — fls isa

a Ysp = vsy — Rs isp
Psn vsh — Rs isn

d [ Vre Vpe — Br iR

Z | Y | = | vrv = Briry |- (3.24)
Yrn VRh — RR iR

Therefore, the two-phase model is given by

15q Vsq — Rs isq
d ) vsp — R iy
— | Ly(0 . = ; 3.25
dt 2( ) 1Rz URy — RR 1Rz ( )
iRy URy — RR iRy
with
Lg 0 M cos(npl) —M sin(npb)
Lo(0) — 0 Lg M sin(npf) M cos(npb)
2 n M cos(npl) M sin(npf) Ly 0 '
—M sin(npf) M cos(npb) 0 Lg
(3.26)
and
digp, .
LShd—i} = wvsp — Rs isn
digp .
Lth—T VRh — BR iRn. (3.27)

Equations (3.25) and (3.26) are the same for all choices of Cy in (1.8) and
are the same as the equations describing a two-phase machine with windings a,
b, z and y [6]. An explicit form of (3.25) is

1Sq Vsq — Rs 154 1Sa

d | is Il vy — Rg igp ILy(0) | isp
E i - 2 ( ) — Rni —w . 5

f Rz URy R URx o0 1R

TRy Vpy — RR iRy IRy

(3.28)
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with
0 0 —sin(npf) — cos(nph)
0Ly(0) oM 0 0 cos(npf)  —sin(nph)
00 — F —sin(npf)  cosnpb) 0 0
—cos(npf) —sin(npf) 0 0
(3.29)
In the transformed variables, the torque (3.8) becomes
o 1 OLsp(0) -, [ e
™ = ( 1Sq 1Sb 1Sh ) (A1{532>T %() AC{JJZ TRy
iR
= np M C;l (—isq iy sin(nph) —ig, ig, cos(nph)
+igy iy cos(npl) —igy igy, sin(nph)), (3.30)

where Cp is the coefficient of power associated with the 3 — 2 transformation.

Note that the torque is also equal to

i5q
_ . C . 0L, (0 j
Tjuchl (ZSa 1Sb YRz 'Ry )T 59() ZZI; (331)
iRy

In other words, the torque is the same as the torque of the transformed two-
phase machine multiplied by the coefficient Cp'. The coefficient Cp originates
from the relationship between three-phase and two-phase powers in (1.14).

The homopolar variables satisfy stable first-order differential equations that
are independent of the equations for the two-phase variables and the variables
do not affect the torque. In general, the homopolar variables can be neglected
for control development.

One can verify that

1
1 _
Ly7(0) = LgLp — M?
Lp 0 —M cos(npl) M sin(npb)
0 Lp —M sin(npt)) —M cos(npb)
—M cos(npfl) —M sin(npb) Lg 0 ’
M sin(npf) —M cos(npb) 0 Lg

(3.32)

by computing that Ly(f) Ly*(#) = I, where I is the identity matrix. Therefore,
the conditions for the transformed system (3.27), (3.28) to be well-defined are
the same as those for the three-phase system (3.14).
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3.4 Complex model of a DFIM

A compact representation of the two-phase model can be obtained by grouping
pairs of variables into complex variables. Specifically, let
Vs = Vsa + jUsh, U5 = isa T Jish,

‘ ‘ (3.33)

UR = URz + JURy; 1R = {Rs + JiRy-

The left-hand side of (3.25) is transformed to the complex domain by computing

Z‘Sa
1 57 00 d g
(o 01 J>E L0V |
IRy
iSa
. i ( Lg jLsg Meinr? j]\/fejm’o) 15
Todt Me=inret j]WeijnPo Lgr jLg IRy
1Ry

_d Lg Meinr? 75

For the right-hand side of (3.25),

Vsq — Rs 154

1 J 00 va_RS igb _ 55—R575
001 _] URE_RRiM - 5R_RR7R '

. 3.35
Vpy — RR iRy (3:35)
Therefore, the complex model is given by
i Lg M eine? g . vg — Rg g
dt M e—inet Ly R a R — Rrr )~
(3.36)

When using complex variables, the transpose of the inductance matrix is
equal to its complex conjugate. Such a matrix is called Hermitian, and the
property replaces the symmetry property that applies in the real domain. The
torque (3.30) becomes

v =npM Cp'Im (75 (713 ejnl’o)*) , (3.37)

where Im denotes the imaginary part and * the complex conjugate.

The overall complex model (3.36), (3.37) is the same as the two-phase model,
but is more compact. Derivations using the model are often simplified [2], [5],
[7], [12], [14].
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m
Three-phase to coiiplex transformation: the complex variables can be com-

puted directly from the three-phase variables. Indeed, (1.8) implies that

Vg + jup, = Cy (?)A + eI Byp + eij%/%c) . (3.38)
Therefore
55 =C Z:T Vg, Zg =C Z:T ig,
oo oo (3.39)
vg = Cy ng vg, 1g=Cy ng iR,
where 21 is the complex vector
2y = (1 /3 ea2m/3 ), (3.40)
From (1.9), the inverse of the three-phase to complex transformation is
1 0 ~ 1
2 2
Vs = 3= ~-1/2 V32 ( iﬁg?; > +%US}L .
Vi —1/2 —3)2 § v 1 (3.41)
Note that
V2 UsA + Use t Usc
—Vgp = 3.42
30y " 3 (3.42)

so that the offset in (3.41) is the average of the three-phase voltages. Neglecting

vgp, the inverse of the three-phase to complex transformation is

1

vs = —— Re (vg z;j):ﬁ

3y (Vs 25 + Vg z3) . (3.43)

3.5 Complex model of a DFIM in a rotating
reference frame

The complex model can be expressed in a rotating reference frame by letting

Tg = e Ug, 15 = e g, (3.44)
. ) 3.44
Tp = e Up, Tp=e 7" g,

where 0g and 6 are angles to be defined. The angles correspond to angular
frequencies

dbs b

Ws =5 WR= (3.45)


Marc Bodson

/

Marc Bodson

m


20 Chapter 3. Doubly-Fed Induction Machines

Inserting the new variables in (3.36),

d , ) )

E (LS elfs s+ M ¢l Ontnreo) ER) = ¢ (55 — Rg 75)

d , ) )

E (AL/[ €J(0sinpe) 75 + LR €J9R ER) = €J0R (ER - RR 7R) . (346)

The equations are simplified for the choice
0r =05 — npb, wg = wg — Npw. (3.47)

Then, multiplying the first equation by e~ and the second equation by e 7%,

the complex model becomes

<LS Nf)i(ig) _ <55—R555—ij(LSiS+N[5R) >
dt B ’

M LR iR FR—RR iR—j(wg—npw)(]V[ iS+LR ER)
(3.48)
with the torque
v =npM Cp'lm (15 75) . (3.49)

When 6 = 0, the model is said to be expressed in the stator frame of reference or
in stationary coordinates. If g is such that the variables are constant in steady-

state, the model is said to be expressed in synchronous or DQ coordinates.

3.6 Symbolic code

The code below produces the results of (3.22), (3.23), (3.30), and (3.54).

h

% Symbolic code for DFIM

h

syms lss lsw msw lrr lrw mrw lsr msr np th m3t2 cv 12ss ...
12sr 12rr is2 isa isb ish ir2 irx iry irh tm 1slrt real

h

% Original model

h

a=2*pi/3;

lss=[1lsw msw msw;msw lSw msSw;msw msw 1lsw];

lrr=[lrv mrwv mrw;mrw lrw mrw;mrw mrw lrw];

lsr=msr*[cos(np*th) cos(np*th+a) cos(np*th-a);

cos (np*th-a) cos(np*th) cos(np*th+a);
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cos (np*th+a) cos(np*th-a) cos(np*th)];

h

% 2-phase equivalent inductance matrices

h

m3to2=cv*[1 -1/2 -1/2;0 sqrt(3)/2 -sqrt(3)/2;1/sqrt(2)
1/sqrt(2) 1/sqrt(2)]1;

12ss=simplify (m3to2*1lss*inv(m3to2))

12sr=simplify(m3to2*lsr*inv(m3to2))

12rr=simplify (m3to2*lrr*inv(m3to2))

h

% 2-phase equivalent torque

h

is2=[isa;isb;ish];ir2=[irx;iry;irh];

tm=simplify(is2’*inv(m3to2) ’*diff (1sr,th)*inv(m3to2)*ir2)

h

% Proof of Fact 2

h

lsrlsrt=simplify(lsr*lsr’)

3.7 Auxiliary results

Definition: a 3 x 3 circulant matrix is a matrix of the form

Q o

(3.50)

o Q

M=

(ol
o
Q o0

Circulant matrices My, My are such that M; + My, M1 Ms, and (]Wl)fl are also
circulant matrices. The product of two such matrices commutes, i.e., MMy =
My M.

Fact 1: the inverse of the matrix L(f) in (3.4) is given by (3.9).

Proof of Fact 1: the result is obtained by checking block-by-block that
L(9) L7Y(0) is the identity matrix. Partition the matrix as four blocks of equal

size, with

_ M, M.
s 6 = (3 38 ) (351)
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Given (3.9),
M; = LssD(0) ' Lrr — Lsr(0)D(0) " LEx(0)
My = —LgsD(0)'Lsgr(0) + Lsr(0 )D( ) Lss
Ms = Lip(0)D(0) 'Lrr — LrrD(0) " LER(0)
My = —LLn(0)D(0)'Lsr(0) + LrrD(0) ' Lss.

(3.52)

Given (3.5) and (3.6), all the matrices appearing in the above expressions are

circulant matrices. Using the commutation property

M, = (LssLrr — Lsr(0)LER(0)D(0)™ =1
My = —(LssLsr(0+ Lsr(0)Lss)D(0)™" =

Ms = (L&g(8)Lrr — LrrLsp(9))D(0)™" =

My = (—L§z(0)Lsr(9) + LRRLSS)D(QY1 =1,

which proves the result.

Fact 2: (3.11) is satisfied.
Proof of Fact 2: from (3.6),

5 1 —1/2 -1/2
Lsr(0)LER(0) = §M§R ( -1/2 1 -1/2 )
-1/2 -1/2 1

With (3.5), it follows that

. f 99
LssLrr — Lsr(0)Lsp(®) = 9 f 9 |,
9 9 f
where
302,
f = LswLgrw +2MswMprw — '
3MZ,
g = LswMgrw + Msw Lrw + Msw Mpw + .
In general,
f 99 , ,
det | g f g | =/+25"=3f5" = (f—9)*(f +29)
g 9 f

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)
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Therefore,
det (LssLrr — Lsr(0)L§R(0))

= (LSWLRW + MgwMpw — LswMpw — Msw Lew —

(LswLrw + 4MgwMpw + 2LswMpw + 2Mgsw Lrw)

9M§R)2

9 2
= (LSW + 2AL{SW)(LRW + 2A1{RW) ((LSW — ]\/fgw)(LRW — ]\/wa) — ZA[§R> .

(3.58)



Chapter 4

Brushless Doubly-Fed
Reluctance Machines

4.1 Objective

The objective of this chapter is to study brushless doubly-fed reluctance machines
(BDFRM). The results of the chapter:

e derive a model of the BDFRM.

e show that the machine is equivalent to a doubly-fed induction machine.

4.2 Model in phase variables

Fig. 4.1 shows a schematic representation of a brushless doubly-fed reluctance
machine [4], [24]. The rotor is such that the reluctance reaches a maximum
and a minimum np times along the periphery of the rotor (with ng = 3 on
the figure). Although quite different in construction compared to Fig. 2.4, the
reluctance variation of Fig. 4.1 is assumed to be modeled as the airgap length
variation of Section 2.4.

The stator has a set of three-phase windings called the power windings (with
np = 1 on the figure), and another set of three-phase windings called the control
windings (with ng = 2 on the figure). Other values of np and n¢ are possible,
but one needs np # ne and ng = np + ne to obtain useful results. The choice
ng = np — ng or ng = ne — np (whichever is positive) is also possible, but is
not considered here.

The power and control windings are labelled PA, PB, PC, and CA, CB, CC,
respectively. The angle of the PA winding is assumed to be zero, while the angle
of the first CA winding is ¢/nc. The angle of the rotor is defined so that the

25
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reluctance of the flux paths for winding PA is minimum at angles § = 0°, 120°,
and —120°.

o
Dl

BN
=

Figure 4.1: Schematic representation of a brushless doubly-fed reluctance ma-
chine

As usual for windings with multiple pole pairs, the two elements of the CA,
CB, and CC windings are placed in series to constitute three windings. The

machine then has a total of 6 windings, with currents and voltages

ipA icA UpA VoA
tp = 'PB y o= icp |, vp= UpB y Vo = VoB
ipc oo vpc Voo (4 ].)

The 6 x 6 inductance matrix is of the form
L Lpc(6
N
Using (2.14), (2.17), and (2.20) with ny = ny = np and ng # 2np, one finds
that only the L9 terms remain in Lpp. Specifically, for Np the number of
turns per pole pair of the power winding,
Lpw Mpw Mpw
Lpp=| Mpw Lpw Mpw |, (4.3)
Mpw Mpw Lpw
where
cN2r
4

2
Mpy = f]\g’”. (4.4)

Lpw =



4.2. Model in phase variables 27

In practice, the value of Lpy is slightly larger than —2Mpy, due to the leakage

flux.

Similarly, for No the number of turns per pole pair of the control winding,

Low Mcew Meow
Lec=| Mcew Lew Mew |, (4.5)
Mew Mew  Low

where

(4.6)

Using (2.14), (2.17), and (2.20) again, but this time with ny = np # ny = ne,
one finds that the Lip terms are zero in Lpc(#). With ny + ng = npg,

cos(ngfd — ¢) cos(ngf — ¢ — 21/3)
Lpc(f) = Mpc | cos(ngl — ¢ —2mw/3) cos(ngl — ¢ + 27/3)
cos(nrf — o +2m/3) cos(ngl — @)
cos(ngf — ¢ + 2m/3)
cos(ngf — @) , 4.7)
cos(ngd — ¢ —27/3)

where
cNpNemd
Mpe = % (4.8)
The electrical equations of the machine are
dyp . de .
el Rpip, ek Reic, (4.9)

where Rp is the resistance of a power winding, R¢ is the resistance of a control

winding, and the total flux linkages satisfy

( ng ) — L(0) ( Z ) . (4.10)

The torque is given by the general form (1.7), or

1, 0 o\ OL(O) [
= gl i) =5 (vi)
ig(%gig(e)ic. (4.11)
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4.3 Equivalence between a BDFRM and a
DFIM

The inductances (4.2), (4.3), (4.5), and (4.7) are the same as those of doubly-
fed induction machine (see (3.4), (3.5), and (3.6)). The subscripts S, R of the
DFIM are replaced by P, C, np is replaced by ng, and the angle 6 is replaced
by 0 —¢/ng. The offset ¢/npg is insignificant and can easily be compensated for
in a control system.

There is a notable difference in terms of the parameter values to be expected.
Using (3.12), we have that

N3
Lp = Lpw— Mpy = -
N2
Le = Low —Mow = "2
3 3cNpNemd
M = SMpc= % (4.12)

It follows that

M= g\/Lch. (4.13)

Even for the extreme value of d = 1 and without leakage flux, the mutual
inductance is 1/2 the value for a DFIM. The leakage factor (3.18) is
M? d?
1 —

—1— = _
7 Lolo 4

(4.14)

For 0 = 0.75 for d = 1, compared to o = 0 for the DFIM without leakage (see
(3.17)). The BDFRM appears as a doubly-fed induction machine with a large
leakage factor that is not due to leakage, but to the construction of the machine.

Considering the homopolar variables in (3.12), we have that
Lpy, =0, Ley, =0. (4.15)

In the absence of leakage flux, the homopolar inductances are zero, as for the
DFIM.



Chapter 5

Cascaded Doubly-Fed Induction
Machines

5.1 Objective

The objective of this chapter is to study cascaded doubly-fed induction machines
(CDFIM). The results of the chapter:

e derive a model of the CDFIM.

e compute an equivalent two-phase model in the form of a complex variable

model.

e extend the model to a general model in a rotating reference frame.

5.2 Model of a cascaded doubly-fed induction
machine

A cascaded doubly-fed induction machine (CDFIM) is obtained by connecting
two doubly-fed induction machines electrically and mechanically [13]. One ma-
chine is called the power machine and the other is called the control machine.
The two machines are connected front to back mechanically. Electrically, the
rotors are connected in parallel, but with the second and third phases crossed.
The concept is shown on Fig. 5.1.

Using the results of Section 3.2 while adjusting the notation, the power ma-
chine is modeled as

d . . .
7 (Lppip + Lpr(0)irp) = ve — Rpip, (5.1)

29
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Control Power
[ L1
Stator Stator
[ Rotor Rotor [

Stator

X

Figure 5.1: Cascaded doubly-fed induction machine

with

d

I (Lpr(0)ip + Lrrpirp) = vrp — Rrpigp. (5.2)

The submatrices are given by

Lpw Mpw Mpw Lrwp Mpwp Mrwp
Lpp = Mpw Lpw Mpw |, Lrrp=| Mrwp Lrwp Mrwp |,
Mpw Mpw Lpw Mrwp Mgrwp Lrwp
(5.3)
and
cos(nph) cos(npb +27/3) cos(npd — 27/3)
Lpr(0) = Mpr | cos(npf —27/3) cos(nph) cos(npf + 27 /3)

cos(npb +2m/3) cos(npl —27/3) cos(nph)
(5.4)

In the model of the control machine, an angle ¢p is added to the rotor angle
6 to account for the fact that the rotor of the control machine may not be aligned
with its stator in the same way as for the power machine. This angle depends
on how the machines are coupled. If the stators are aligned, 0op is the angle of
the X winding of the control machine relative to the angle of the X winding of

the power machine. Accordingly,

d . . .
= (Lecic + Loro(0 + 0cp)ire) = vo — Reic (5.5)
and
d . . . .
o (Léro(0 + Ocp)ic + Lrreine) = vre — Rrcire. (5.6)
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The stator/rotor coupling matrix for the control machine is denoted Logo(6) to
keep the label Log(#) for a different purpose.

In (5.6), the submatrices are given by

Loew Mcew Mew Lrwe Mgwe Mgwe
Lee = Mew Lew Meow |, Lrre = | Mrwe Lrwe Mpwe |,
Mew Mew Lew Mpwe Mrwe Lrwe
(5.7)
and
cos(nat) cos(ngb +2m/3) cos(ngd — 27/3)
Lero(0) = Mer | cos(ne —2w/3)  cos(ngt) cos(ngt + 2m/3)
cos(ngb +2m/3) cos(ncl —2m/3) cos(neh)
(5.8)
Given the rotor electrical connection,
vre = Spc VRP, irRc = —SBC iRP, (5.9)

where Spe is a matrix representing the swapping of the phases B and C, i.e.,

100
Sge=100 1 (5.10)
010
Note that
Spc = Spo = Sge (5.11)

The model of the control machine can be expressed in terms of the rotor

variables using (5.9). Equation (5.5) becomes

d . . .
E (Lcclc + LCR(Q)ZRP) =ve — Rete, (5.12)

where

Ler(0) = —Lero(8 + 0cp) Spe- (5.13)
Multiplying (5.6) by Sp¢ gives

d . _ .
o (SpeLéro(0+ 0cp)ic — SpéLrreSBoinp)

= Spé (Spcvrp + RreSpoirp) - (5.14)



32 Chapter 5. Cascaded Doubly-Fed Induction Machines

The special form of Lrre in (5.7) implies that swapping the last two rows as
well as the last two columns leaves the matrix unchanged. Using (5.11), (5.13),

and the fact that Rgc is a scalar,

d

(]_;L (—LgR(e)Zc — LRRCiRP) = URrp + RRciRp. (515)

Subtracting (5.15) from (5.2) and defining
ir = irp, Rr = Rrp+ Rrc, Lrr = Lrrp + Lrre, (5.16)

the following equation is obtained

d . . . .
T (Lpr(®)ip + LEg(0)ic + Lrrir) = —Rrir. (5.17)

Overall model: (5.1), (5.12), and (5.17) give the overall model of the machine

d ip vp — Rpip
—_— L(e) ic = Vo — Rcic s (5.18)
dt . )

iR —Rpgir

where

Lpp 0 LPR(Q)
= 0  Lee Lon®) |. (5.19)
Lpr(0) Lig(®)  Lrr

According to (1.7), the torque is given by

1 oL [
o= 2(id i ) O
iR
2OLpR(0) . 7 OLen(d).
= zg%mﬂga—’;m. (5.20)

The torque is the sum of the torque 7pyp produced by the power machine and

the torque 77 produced by the control machine

™ = TMP + TMC, (5.21)
where
70Lpr(0) . 70Lcr(0) .
TMP = ZE%UZR, T™MC — ZE%UZR. (522)

The power and control torques are not independent however, since they are

coupled through the current ig.
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5.3 Complex model of a CDFIM

Power machine: with small adjustments of notation, a complex model of
the power machine can be obtained using the results of Section 3.4. As in
(3.39), complex variables for the power machine are related to the original vectors
through

a‘]p = OV Z; vp, Tp = CV Z? ip,
_ . _ r (5.23)
vrp = Cv 23 vrp, 1rPp=Cv 23 igrp,
where
2z = ( 1 ef2n/3 g—i2n/3 ) (5.24)
The complex model (3.36) gives
d ~ N - ~
a (Lplp + Mp eerP%Rp> =vp — Rpip, (525)
and
d —jnpb> ~ ~ ~
E (j\/fp e ip =+ LRPZRP) — URp — RRP IRP- (526)
The parameters are
3
Lp = Lpw — Mpw, Lrp = Lrwp — Mrwp, Mp = §MPR~
(5.27)
From (3.37), the torque of the power machine is
Tmp = npMp CEl Im (Ep (7Rp 6jnP0>*) s (5.28)

where Cp is the coefficient of power of the 3 — 2 transformation, Im denotes the
imaginary part, and * denotes the complex conjugate.
Control machine: for the control machine, a slightly different transformation

is used for the stator, so that

o =Cy 25T e % ve, o= Cy 23Te 3% g,

_ . ~ - (5.29)
vre = Cv 23 Vre, trc = Cv 23 irc,
where ¢ is a constant angle to be determined. Note that
U = Cy 21 7% vg, (5.30)

so that

Cy 23 vo = U5 e79%. (5.31)
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Therefore, the following substitutions should be made in the complex DFIM

model for the control machine
Vo — ?}/é« eijw, i —>?&« eijt‘o, 0 — 0+ 0cp. (532)

The variables vgc and 7g¢ are unchanged.

The resulting complex model for the control machine is then

% (LC ?Ev eI + Mg 6jnc(9+90p)flch) = ﬂé« e7iv — Re 7& 67”;7
(5.33)
with
d —jme(0+0cr) . it = 5 =
T (Mg e77meOt0er) 3, 79 4 Lrcipe) = Ure — Rrc Tne,
(5.34)
and
Tve = neMe C;l Im (% e ¥ (TRC ej”(’(”o(”’))*) . (5.35)
The parameters are
3
Lc = Lew — Mcw, Lre = Lrwe — Mrwe, Mo = §MC’R-
(5.36)
Let
o =m—nclcp, (5.37)
so that (5.33) multiplied by /¥ becomes
d o~ ~
a (LC’ fl\zv — ]V[C 6]”09 ZRC’) = ?}zv - RC ’7\,’5, (538)
and (5.34) becomes
d 0 - - - ~
E (7]\1{0 e Inch 1o+ LRCZRC) = Vrc — Rre "re- (5.39)

Rotor connection: the electrical connection between the machines is described

by (5.9). Expressed in the complex domain, the equations become
Urc = Upp, tRC = —igp- (5.40)

Due to the rotor currents being the same, the two rotor equations merge into
a single differential equation. Indeed, taking the complex conjugates of (5.38)
and (5.39), and using (5.40), one finds that

d - )~ ~ ~
E (LC 1w + Me e Inct ZRP) =v¢ — Re e, (5.41)
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and

d Jn, ~ ~ ~ oy
E (—]V[C e’ cf 10— LRCvZRp) = Vrp + Rrc 1rp. (542)

Subtracting (5.42) from (5.26) gives

d ~ ; ~
¥ (Mp e"%p + Lypirp + Mc "% + Lcirp)

= *RRP ’iiRp — RRC’{RP. (543)

Simplifying the notation with (5.16) and 7 = igp,

d . . - _

— (Mp e 7"%p + Mc €"%ic + Lgig) = —Rp Tn. (5.44)
With (5.37) and (5.40), the torque (5.35) of the control machine becomes

— —q ~ 2 *
T™™MC — 7’LC}VIC Cpl Im (76 e ¥ (ZRC' 6Jn0(9+€0p)) )

nC]V[C’ 01;1 Im (TE (?Ik?P ejng@)*)
= —noMe Cp'lm (ic (inp €77)"). .15

Overall model: collecting (5.25), (5.41), and (5.44) with 7gr = 7gp, and Ty =
Tmp + e with (5.28) and (5.45), the overall complex model of the CDFIM is

d Lp 0 ]\/f[p ejnp0 713
E 0 Lo Me e~Inct i
// Mp e—inrd Me einct Lgr R

vp — Rpip

= vo — Reie

—Rrir
™ = npj\/[p CI;I Im (Tp (73 eerpQ)*)
—neMe C5' Im (Zc (i e*ﬂ'"c9)*) . (5.46)

5.4 Complex model of a CDFIM in a rotating
coordinate frame
Similarly to the DFIM in Section 3.4, the model can be expressed in a rotating
reference frame by letting
Tp = e Tp, Tp=e 7P Ip,
To =% P, 10 = e g, (5.47)

Tp = e % U, g =e R g,
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where 0p, 0¢, and 0y are angles to be defined. Again, a different definition is
applied for the variables of the control machine, so that the variables ¢ and 7¢
are the complex conjugates of what the definition would normally specify.

The angular frequencies corresponding to the angles of the reference frames

are denoted

dfp dfc dOr
=r _ —= — — = wp. 5.48
P T T (5.48)
Using (5.47), the first equation of (5.46) becomes
E (Lp e]Sp 7}3 + j\/fp EJnPQ €J9R 73) = e]Sp Ep - Rp e]Sp 7p.

(5.49)

Differentiating the products on the left-hand side, and multiplying both sides
by e*]'gp7

d _ ) _ (n oy d _
7 (Lpap) +jwp Lpip+ el (0t on op)a (Mp r)

+j (npw + wg) MPIHR=P) N7, —Tp — Rp Tp. (5.50)
The result is simplified for the special choice
Or =0p —npb, (5.51)
which implies that
WR = Wp — NpW. (5.52)
Then, (5.50) becomes

d _ _ _ _ . - -
E (Lp Zp+]\/i[p ZR) =Vp — Rp ip— JwWp (LP ZP+A/IP ZR).

(5.53)
For the second equation of (5.46),
d ) ) . . )
a (LC’ A ic + M¢ e~Inct itk 73) = ¢ M0 o — Re e~0c 2c.
(5.54)
Differentiating the products and multiplying by e?%c,
d - . - (—nc0+0p+0c) O -
— (Lc 1c) — Jwe Lo e — (Mc 1R
dt(L ic) — jwe Lo T¢ + e?'\7rev TR Cdt(]k/z)
—j (now — wg) el(=nct+0r+90) N o7, =Te — Re 7o (5.55)

The result is simplified for

90 = nce — 937 (5.56)
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which implies that
We = Now — WR. (5.57)

With (5.56), (5.55) becomes

d . _ _
— (L te + Mc tr) =V¢ — Re e + jwe (Lo e + Mce ) .

o (5.58)
For the third equation of (5.46)
% (Mp &P~ 75 4 Mo /e070¢) 54, 4 L 77 75) = —Rp %7 7.
(5.59)
Differentiating the products and multiplying by e 7%z,
eJ'("P*"P@*HR)% (Mp 7p) + j (wp — npw) e@r=mr0=08) (N[, 7,)
+€j(n0070079m% (Mc 7c) + j (now — we) /e?=0¢=0) (M 3¢
+% (Lrr) + jwr (Lr ir) = —RR g (5.60)

With the choices made on the reference frames (i.e., (5.51), (5.52), (5.56), and
(5.57)), equation (5.60) becomes

d
a7 (Mpip+ Mcic+ Lrir) = —Rrir — jwr (Mp ip + Mc ic + Lg Ir) .
(5.61)

The torque in (5.46) with (5.47), (5.51), and (5.56) becomes
v =npMp Cp' Im (ip 7)) — ne Mo Cp' Im (10 73) - (5.62)

Overall model: combining (5.53), (5.58), (5.61), and (5.62), the complex model

in the rotating reference frame is

Lp 0 Mp d p
0 Le Mg — | 7
Mp Mo Lp ) %\ 5,
Tp — Rpip — jwp (Lp ip + Mp ig)
Ve — Re ie + jwe (Lo e + Mo ig)
7RR ER — ij (]\/i[p ip + ]\/ﬁ[C 70 + LR 7R)

npMp Cp' Im (ip 73) — neMc Cp' Im (ic 75) - (5.63)

™

For the model to hold, the reference frames for the rotor and for the stator of the

control machine must be tied to the reference frame of the stator of the power
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machine, with

Or = 0p —npb, GC:nCG—HR:—9p+(np+nc) 0,

WR =Wp — Npw, We =nNcw —wr = —wp + (np+ ne) w. (5.64)

The complex model of the CDFIM can be found in [13]. A small difference is
that the definition of the control winding variables was adjusted here to remove

complex conjugates in the electrical model.

5.5 Steady-state operation

The condition on the angular rates indicates that the steady-state speed associ-

ated with power and control frequencies wp and w¢ is given by

o p e (5.65)
np +ne

Operation may require a control system to bring or keep the machine close to
the steady-state speed. A special case corresponds we = 0 (DC currents in the
control windings). Then,

wp

e (5.66)
np + ng

is called the natural speed, or the synchronous speed of the CDFIM.

The CDFIM can also be operated in asynchronous mode [16]. The simple
induction mode corresponds to ic = 0 and the cascade induction mode corre-
sponds to vc = 0. The synchronous speed in asynchronous mode is wp/np, with
the actual speed of rotation determined by the load torque (as in a squirrel-cage

induction machine). Then, (5.65) determines w¢ rather than w.



Chapter 6

Brushless Doubly-Fed Induction
Machines

6.1 Objective

The objective of this chapter is to study brushless doubly-fed induction machines
(BDFIM). The results of this chapter:

e apply winding function theory to fractional pitch windings.
e derive a model of the single-loop BDFIM.

e compute an equivalent two-phase model in the form of a complex variable
model and show that the BDFIM is equivalent to a CDFIM. The BDFIM
model is also shown to become equivalent to a DFIM model when the rotor

resistance is neglected.
e extend the model to a general model in a rotating reference frame.
e extend the model to a BDFIM with nested loops and derive a reduced-

order model similar to the single-loop model.

6.2 Winding function theory for fractional
pitch windings

Before developing the model of a brushless doubly-fed induction machine, addi-

tional results are obtained using winding function theory.

Self-inductance of a fractional pitch winding: Fig. 6.1 shows a winding

with one pole pair but spanning an angle 26, less than 7, which was the case in

39
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Figure 6.1: Fractional pitch winding

Fig. 2.1. The winding is referred to as a fractional pitch winding. Although one
turn is shown, the number of turns will be taken to be equal to V.

Fig. 6.2 shows the winding function associated with Fig. 6.1. The result is
similar to Fig. 2.2, except that the function is not symmetric with respect to

the horizontal axis. The average of the function on the left is N;6, /7.

N, (o
N, (@)
A N, (n-6, )/TE\
-T T
1 1 1 1
T T T T
-t -0, 0, = o T o
-N,0,/n

Figure 6.2: Winding function associated with Fig. 6.1

Self-inductance of a fractional pitch winding: using (2.6), the self-inductance
of the winding is given by

Ly = c/ NE(a) da

o <291 ¢ fl)z 2 91><9—;>2>

2cN?
- Cﬂl 6y (x — 6,). (6.1)

Mutual inductance between two fractional pitch windings without

overlap: assume that another fractional pitch winding is added that does not
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overlap with the first winding. The case is shown on Fig. 6.3 (note that the cen-

terlines of the windings are shown at 0° and 90°, but the angles are arbitrary).

Figure 6.3: Fractional pitch windings without overlap
Using (2.6), the mutual inductance is composed of three terms

) ) —0 0
L = NN, (291 (” . 1> (—=) +26, (W - 2) (—=)

r2(r 00— ) (-2 %))

™

2eN, N.
2R 00, (6.2)

If the windings are identical

2¢N?
Ly = !

6.

@\’el

®
®

Figure 6.4: Fractional pitch windings with complete overlap
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Mutual inductance between two fractional pitch windings with com-
plete overlap: Fig. 6.4 shows two fractional pitch windings where winding 1
fits inside winding 2. Using (2.6), the mutual inductance is given by

Ly = cNiN (291 (W ;91> (W_THZ) +2(0, — 91)(_%) (ﬂ)

™

= = 91(7{'—92). (64)

Mutual inductance between a fractional pitch winding and a sinusoidally-
distributed winding: assume that a fractional pitch winding is placed on a
rotor at an angle 6, as shown on Fig. 6.5. A sinusoidally-distributed winding

with N turns and ng pole pairs is placed on the stator at an angle o /no.

Figure 6.5: Coupling between a fractional pitch winding and a sinusoidally-
distributed winding

Noting that integration can be performed over any interval of length 27
in (2.6), the mutual inductance between the fractional pitch winding and the

sinusoidally-distributed winding is equal to

2m+60—61 ]\]2
Ly = c/ Ni(a)—== cos(nacx — 3) do
-6, 2

CN1N2 (/0+01 (71'—91)
= = cos(nacx — p9) da
2 0—0; m
2n+60—01 91
+/ (—;)COS(TLQOK — ) da)
9

+61

cNLN. . a= ' NP

N 27r1nz2 ((W — 6y) [sin(ngce — <P2)]a:zt§1 — 0y [sin(nga — ‘pZ)Lx:SJlG 91)
cN1Ny , . ;

= T (sin(na0 +01) — 2a) — sin(rna(0 — 01) ~ )
N N

_ ¢ 7712 2 co8(naf — o) sin(naf)). (6.5)
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6.3 Model of a brushless doubly-fed induction
machine

Fig. 6.6 shows a schematic representation of a brushless doubly-fed induction
machine . The rotor has ng fractional pitch windings with spacing 27 /ng (ng =
3 on the figure). The span of each rotor winding is 26, which is slightly smaller
than 27 /ng. The centerline of the first winding defines the angle 6 of the rotor.

The rotor windings are short-circuited, as in a squirrel-cage induction machine.

Figure 6.6: Schematic representation of a brushless doubly-fed induction ma-
chine

The configuration of Fig. 6.6 is a simplified representation of a nested cage
brushless doubly-fed induction machine. In actual construction, the so-called
nests include additional windings placed inside the span of the rotor windings
shown on Fig. 6.6. The analysis presented here can either be extended to in-
corporate the additional windings, or used as an approximation of the machine
with nested loops.

The stator is the same as the stator of the BDFRM in Fig. 4.1, with power
and control windings. The figure shows a machine with np = 1 and n¢g = 2.
Other values of np and n¢ are possible, but one needs np # ng, and np +ne =
ng. Also, performance depends on the specific values of np, n¢, and ng. The

choice ng = np — ng¢ or ngp = ng — np (whichever is positive) is also possible,
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but is not considered here.

The power, control, and rotor windings have Np, N¢, and Ng turns per pole
pair, respectively. The angle of the PA winding is zero, while the angle of the
CA winding is ¢/nc.

The model of the machine is

P ip vp — Rpip
—- L(g) ic = Vo — Rcic s (6.6)
dt X )

1R *RRZR

where the inductance matrix is of the form
Lpp 0 LPR(Q)
L(#) = 0 Lee  Ler(9) . (6.7)
Lbgr(0) LEg(0)  Lrr
The Lpe sub-matrix is zero because np # ne and the airgap is uniform. Lpp
and Lge are given by

Lpw Mpw Mpw Lew Mcow Mow
Lpp=| Mpw Lpw Mpw |, Lcc=| Mcw Low Mow |,
Mpw Mpw  Lpw Mew Mew Lew ) (6.8)
where
cN T cNim CN s cN27r
Lpw = , Mpw = ——2=, Low = , Mew = o
4 8 4 8 (6.9)
Lggr is an ng X ng matrix given by
Lrw Mrw --- Mgw
M, L <o M,
Lrr = e " (6.10)
Mgrw Mprw -+ Lrw
where, according to (6.1) and (6.2),
2 N2 2¢N?
Luw = =28 g (1 — 0R), Mpyw = ———1 2, (6.11)
™

From (6.5), Lpgr(0) is the ng x 3 matrix

cos(npd) cos(np(0 + 27 /nR))
Lpr(0) = Mpr| cos(npd —27/3) cos(np(6 + 27/ng) — 27/3)
cos(npb +2m/3) cos(np(0 + 2w /ng) + 27/3)
cos(np(0 + 2n(ng — 1)/nr))
cos(np(0 + 27 (ng — 1)/ng) — 27/3) |, (6.12)
cos(np(f + 2n(ng — 1)/ng) + 2m/3)
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where
"NpN
Mpp = 228 Gin(npp). (6.13)
np
Similarly
cos(ngl — ) cos(na(0 + 2w /ng) — @)

Lor(0) = Mcegr | cos(ngl —2m/3 — @) cos(ng(0 + 27 /ng) — 27/3 — @)
cos(ncl +2m/3 — ) cos(ne(0 + 2n/ng) + 27/3 — @)
cos(ng(f + 2m(ng — 1)/ng) — ¢)
cos(ng(0 + 2n(ng — 1)/ng) —21/3 —p) |, (6.14)
cos(ng(0 + 2m(ng — 1)/ng) + 27/3 — )

where

NENR o (notin). (6.15)

Mcr =

According to (1.7), the torque is given by

1, . . oL [P
™ = 5(2; Zg ZE)W) ic
iR
+~OLpr(0) . +OLcp(0
= iplben®; | g Otenll);, (6.16)

Special case: for np =1, ng =2, ng = 3,
cos(npb) cos(npl +27/3) cos(npd — 271/3)
Lpr(0) = Mpgr| cos(npf — 27/3) cos(npb) cos(npb +2m/3)
cos(npb +2m/3) cos(npd — 27/3) cos(nph)
(6.17)

and
cos(ngt — @) cos(ngh —2m/3 — p)
Ler(0) = Mer | cos(ngl —2m/3 — @) cos(ngh + 27/3 — @)
cos(ngt + 2m/3 — ) cos(ncl — @)
cos(ngh +27/3 — )
cos(nct — ) . (6.18)
cos(ngh — 27/3 — )

The structure of the BDFIM model in (6.6) and (6.7) and of the CDFIM
model in (5.18) and (5.19) are the same. Further, the submatrices are the
identical when np = 1, nc = 2, and ng = 3. In other words, the BDFIM is
equivalent to a CDFIM in the special case of Fig. 6.6. The offset ¢ of the CA
winding in the BDFIM is tied to the offset Ocp in the coupling of the CDFIM
through (5.37). Using the complex model, we will show that the equivalence

extends for other values of np, ng, and ng, as long as np + ng = ng.
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6.4 Complex model of a BDFIM

Complex variables and properties: a model in complex variables is obtained

by letting
f)/p = CV Zg vp, ’i/p = CV Zg ip,
o= Cy 25T €799 ve, g = Cy 23T e79% g, (6.19)
~ T ~ T
vr = CyRr 2R VR, tr = Cv,r 2R iR,

where CYy is the coefficient of the 3-2 transformation and
23 = (1 e2/3 e a2m/3 ), (6.20)

For the control winding, the transformation involves the complex conjugate of
the variables, as for the CDFIM. A factor e=% was also inserted to account for
the offset of the winding CA in Fig. 6.6. For the rotor, a new transformation with
coeflicient Cy,p was introduced to account for a number ng of rotor windings

that may be greater than 3. The vector zp is given by

Z£ _ ( 1 ej?ﬂ'np/nR . ejmep(anl)/nR ) (621)

The number of pole pairs also appears in the formula for the rotor variables.

The complex vector z3 satisfies

2T 23=3, I I3=2:1 I 03 =0, (6.22)
T, _ T 7. _ 4T T _ ’
23 23=0, 23" Izy=23", 23 O3=0,

where I3 is the 3 x 3 identity matrix and O3 is a 3 x 3 matrix of 1’s. On the
other hand, for ng > 3,

T, _ Ty _ T T O, —
2f ZrR="npgr, 2plr=zp, zp Op =0, (6.23)
2L 2p =0, 2 =2, 2F Or=0,

where IR is the ng X ng identity matrix and Og is a matrix of 1’s with dimension

ngr X ng. The fact that 2% 2z = 0 follows from

nr—1 nr—1
hap= Y (i) = 7 (eHtmrine)t (6.24)
k=0 k=0

and the standard formula

n—1
n
. 1—a
a =

k=0

— (6.25)
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With ng > np, it follows that
1— €j47rnp
T _ _
R AR = T gtmnnfin 0

Properties of the inductance matrices: define

3cN2r
Lp = Lpw— Mpw = 8P

3eNZm
Lo = Lew = Mow = =€

Lr = Lpw — Mgy = 2cN30g.
(6.8) and (6.10) become

Lpp = Lplz+ Mpw O3
Loc = Lols+ Mcow Os

The following properties result

T T
Z3 Lpp = Lp 23
*T T

23 LCC = LC 23

T T

2R LRR = LR ZR-

Further, from (6.12) and (6.22),

z3 Lpr(0) = 21 Mpr Re (e™"%25 )
Mpg - -
T npl *x T —jnp6 «T
— 4 (77025 2f + e 702 2
_ 3Mpr jupe 1
= —— " 2.
2

On the other hand, (6.12) and (6.23) give

2 LEp(0) = 2% Mpr Re (e"25 257)

M,
PR ZT

A most important property is that, for ng = np + ne,

2% = (1 el2mmp/nr .. eﬂﬂnP(”Rfl)/nR)

= (1 enlmno)/nn .. eir(nn—no)mnn-D/nn )

jnp6 «T —jnpl x T
R (e ZRr Z3° t+e sz3)

(1 e*jQWTLc/"R e*j?ﬂ'nc(anl)/nR )
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(6.26)

(6.27)

(6.28)

(6.29)

(6.30)

(6.31)

(6.32)
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In other words, np can be replaced by —n¢ in zg. In the derivations, this change
has a similar effect as the swapping of the phases in the CDFIM.
With (6.32), (6.14) implies that

23T Ler(9) = ng Mcr Re (ej("cgf“")zg z}‘%T)
M, , )
- ;R 7T (enet=9) 5 ool 4 eino0=0) 5, T
3M, .
- _2CR e inct=¢) ;T (6.33)
On the other hand
zg LER(G) = zg Mcr Re (e]‘(”cgﬁ")z}} zg‘T)
M, . )
_ QCR ZIE (ey(ncgﬂp)z;‘% z;T—l— e*J(ncﬂfw)ZR ZBT)
R M .
_ [rICR : CR ilnct=¢) T (6.34)
Complex model: using (6.19),
CV Z;{ 0 0 vp — Rpip 5}3 — Rp?p
0 CV 7*T € —Jv 0 Vo — Rcic = @/C' — RCfZVC
0 0 CV,R Z£ —RRiR —RRTR
(6.35)
On the other hand, using (6.29), (6.30), (6.31), (6.33), and (6.34),
Cy Zg 0 LPP 0 LPR(G) ip
0 Cyzule , Lee — Lor() ic
0 0 CVR ZR LPR LCR(G) Lgr iR
Lp CV 23 0
_ 0 Le Cy 23T 9%

(TLR]\/i[pR/2) e—inp? CV,R Zg (TLRAL{CR/2) einct CV,R Z;T A

(3]\1{1313/2) ejnp9 CV Z};

in, Z‘P
(3Mcr/2) e=met Cy 2% ic
LR CV,R Zg iR
Lp 0 ]\/ﬁ[p ejnpﬂ Tp
_ 0 Le M e=inc? e |, (6.36)
Mp 0 ML eine? Ly Tr
where
3Mpr Cy + ngMpr Cyr
Mp = —_— Mp= — ——
P 2 CV,R7 P 2 CV
3M, C / M, C
Mo = or OV g~ NRMCR “V.R (6.37)

2 Cyr
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Overall, the complex model is

d Lp 0 ]\/f[p ejnp0 713
— 0 Lo Me e—inc? i
WA\ My et ML eincd Ly n
vp — Rpip
| % - Reie | (6.38)
—Rpgig

Special choice of 3-2 transformation for the rotor variables: note that
the transpose of the inductance matrix is equal to the complex conjugate of the

matrix if and only if Mp = Mp and M}, = M. The condition occurs when

3 2717JR
2CV_2

Con=1/—-Cy. (6.40)
n=yo

(6.39) can be interpreted to mean that the power coefficients Cp and Cpp as-

Cir (6.39)

or

sociated with the stator and rotor variables (generalized to ng) are the same.
Observe that Cy,r = Cy if np = 3.
With (6.39), the parameters satisfy

V3 V3ng cNpN,
Mp = 2”RMPR - Q”RC T’;P B sin(npop)
V3n v cN¢ N,
Mo = ?;"RMCR - 32”3 ¢ ncc B sin(ncOp). (6.41)
The electrical equations become
J Lp 0 Mp eine? p
E 0 L¢o Mo e—inct fZVC
v Mp e—inrd Me einct Lgr R
?}/p — Rpflvp
= | v¢— Rcic |. (6.42)
—Rpig

An interesting result is that the inductance matrix is Hermitian and independent
of Cy if (6.39) is satisfied.

Torque computation: following the initial steps of (6.30) and using (6.19),
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the first term of the torque (6.16) is

P9 T Py

Mpgr . N ) ol - .
= 5 Jnp (63”"023‘2 2 2% ip — e InrYT 4 P ZR)
Mpr . ; - el ~
= ——  gnp (e‘jnpg’i*P in—e jnpl ip i}/)

2 CV CV,R

. np]V[pR g ~ inpO\*
= G Con Con Im (Zp (i €m27) ) (6.43)

OLpr(0 a9 (M N ;
T PR( ) .7 ( ;R (e]rLPQZ;; Z£+67]7Lp923 ZET)> 7;R

Similarly with (6.33) and (6.19), the second term of the torque (6.16) is

7 O0Lcr(0) . 7 0 (Mcr
T T '9hp \ 2
M, . )
= —2CR jne (e](”cg’“")ig 25 25 ig — 673("007“’)7% 23 2k iR)
M, ) ~ ; ~
- R Jjnc (ejncg c iy — e ~inct 2 ZR)

2Cy Cyr

— 7M i’y iy —jncf\*
= "Gy Ovn Im (zc (ig e77"%) ) (6.44)

(ej(ncﬁ*%’)zg Z}*%T + e*J(”c9*9’)z3 z£)> in

With (6.37), the torque is

™ — Tlpj\/fp C;l Im (AZip (AZ'R ejnpﬂ)*)

—neMe €3t T (e (in ")), (6.45)

where Cp = 3C%/2 is the coefficient of power of the 3 — 2 transformation used
for the power and control windings.

Overall model: assuming that (6.39) is satisfied, the complex model of the
BDFIM is

d Lp 0 ]\/ﬁ[p ej?:lpo 713
— 0 Lo Me e—inc? i
A\ \ Mp e=ined N eincd Ly T
vp — Rpip
= | vc— Reic
—Rpgip

v =npMp C;l Im (Tp (TR ej”Pg)*)

—neMe C3' Im (Zc (i e*ﬂ'"c9)*) . (6.46)
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6.5 BDFIM simulation using the complex
model

Simulation and control of the BDFIM can be implemented in the complex do-
main. Fig. 6.7 shows a block diagram implementing the model in Simulink. The
variables vp, ve, ip, ic, and ir are 3-dimensional vectors representing the corre-
sponding variables. The BDFIM ODE block computes the derivatives dip, dic,

and dir that are specified by the model. om, th, and tau represent w, 6, and 7.

con ‘
con vp »(1)
vt ‘ vp
vt
ve dip > R
ve ‘—» s |Cp)
om Intip
om 4 de o 1 NED)
s -
th BDFIM ic
th Intic
> ip dir | 1§ »(4)
ir
ic Intir
tau g ED)
ir tau
BDFIM
ODE

Figure 6.7: Simulink block representing the electrical equations of the BDFIM

A feature was added to enable the simulation with an open stator for a
variable called con equal to 0. In that case, vp is the stator voltage induced on
the power windings. For con = 1, the voltage applied to the power windings is
vt and vp = vt.

The code inside the BDFIM ODE block implements the complex-variable
equations of the previous section and is given below using parameters from [23].

Control design and implementation using complex variables is discussed in [15].

function [vp,dip,dic,dir,tau] = BDFIM(con,vt,vc,om,th,ip,ic,ir)
% BDFIM electrical model

% Parameters
Rp=2.3;Lp=0.3498;Mp=3.1e-3;Rc=4;Lc=0.3637;Mc=2.2e-3;
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Rr=1.2967e-4;Lr=4.4521e-5;npp=2;npc=4;phi=0;
% Three-phase to complex transformation
m3toc=sqrt(2/3)*[1 -1/2+1i*sqrt(3)/2 -1/2-1i*sqrt(3)/2];
cm3toc=conj(m3toc) ;ephi=exp(1i*phi);
vtx=m3toc*vt;ipx=m3toc*ip;irx=m3toc*ir;
vcx=cm3toc*vckephi’;icx=cm3toc*ic*ephi’;
% Complex model
nppom=npp*om; enppth=exp (1i*npp*th) ;
npcom=npc*om; enpcth=exp (1i*npc*th) ;
if con==0 7, Open stator
L=[Lc Mc*enpcth’;Mc*enpcth Lr];
di=L\ [vcx-Rc*icx+li*npcom*Mc*enpcth’*irx;. ..
-Rr*irx-1i*npcom*Mc*enpcth*icx] ;
dipx=0+0i;dicx=di(1);dirx=di(2);
vpx=Mp*enppth*dirx+1li*nppom*Mp*enppth*irx;
else
VpX=VtX;
L=[Lp O Mp*enppth;0 Lc Mc*enpcth’;Mp*enppth’ Mc*enpcth Lr];
di=L\ [vpx-Rp*ipx-1i*nppom*Mp*enppth*irx;. ..
vcx-Rexicx+lixnpcom*xMc*enpcth’ *irx;. ..
-Rr*irx+1i*nppom*Mp*enppth’*ipx-1i*npcom*Mc*enpcth*icx] ;
dipx=di(1);dicx=di(2);dirx=di(3);
end
tau=npp*Mp*imag (ipx*conj(irx*enppth)). ..
-npc*Mc*imag(icx*conj(irx*enpcth’));
% Complex to three-phase transformation
dip=real (m3toc’*dipx) ;dic=real (cm3toc’*ephixdicx);

dir=real (m3toc’*dirx) ;vp=real (m3toc’*vpx) ;

6.6 Equivalence between a BDFIM and a
CDFIM

The complex models of the BDFIM in (6.46) and of the CDFIM in (5.46) are
the same. Therefore, the two machines are equivalent under the assumptions
made. Note that the offset ¢ of the CA winding in the BDFIM is tied to the
offset O¢p in the coupling of the CDFIM through (5.37).

Parts of the derivation of the complex BDFIM model can be found in [1]. The
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input/output model was obtained through a direct transformation to complex
variables, without consideration for the homopolar variables. In the case of
the rotor, the homopolar variables become a vector of ng — 2 states that do
not contribute to the torque. A more complete analysis of these variables is
performed in [19].

6.7 Approximation of the BDFIM as a DFIM

Consider the multiplication of the electrical equations of (6.46) by a 2 x 3 matrix
as follows

I 0 —Mp/Lgem??
0 I —Mg/Lre et

d Lp 0 j\f[p €jnP9 AZ]D
o 0 Lo Mg einc? e
t Mp e=ine? Me einct L o
_ 4 Lp—M2/Lrg  —MpMg/Lg €™ ;P
Tt ~MpMc/Lp e Lo—MZ/Lp 0 70
R
5}3 - Rp’ilp
_ I 0 —AIP/LREJ”PQ ~ S
- ( 0 I —Mg/Lg e inct vc — Rete ] . (6.47)

—Rrir

If Rgr can be neglected, the equations become

i Lp*AL{I%/LR 7]\5[13]\5[()/1/13 eInr? ip

dt —~MpMc/Lg e=imY Lo — ME/Lg )

o ?)/p — Rpflvp

= < e — Reic ) . (6.48)
These equations are the same as those for the DFIM in (3.36) if the power and

control variables become the stator and rotor variables of the DFIM, and the

following substitutions are made.

| DFIM parameters | From the BDFIM parameters |

Lg Lp— ]WI%/LR
Ly Lo — M’%/LR
Rgs Rp
Rp Ro
M —MpM¢/Lg
np ngr

Note that the mutual inductance of the DFIM is negative, but a positive value
can be obtained by switching the sign of the complex control voltage and current,
or by shifting the angle 6 by an offset 7/ng.
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Numerical example: consider the BDFIM model of [23] with Lp = 0.3498 H,
Lo = 03637 H) Mp = 3.1 mH, My = 2.2 mH, and Ly = 4.4521 10~° mH.
The equivalent DFIM parameters of the approximation are Lg = 0.1339 H,
Lr =0.255 H, and M = —0.1532 H. Compared to the DFIM example on p. 15,
o =0.313 and

M
VLsLp

=v1—0=0.829. (6.49)

The reduction of M compared to the maximum value is greater for the BDFIM,
because the magnetic coupling of the windings is smaller than for sinusoidally-
distributed windings. The outcome is an apparent leakage, even when there is
no leakage flux. A similar issue was encountered for the BDFRM in (4.14), but
the reduction is smaller in this case.

Caution: as the equations of the BDFIM and DFIM are the same, the two
models are equivalent. The DFIM approximation is sometimes referred to as the
reduced T-model, in reference to the equivalent circuit [21]. Because the rotor
resistance is small in a BDFIM, the approximation can be very useful. However,
discrepancies can be observed in certain cases [9]. In particular, one should
be cautious that the approximation is invalid if the rotor frequency approaches

zero, i.e., for w ~ wp/np.

6.8 Complex model of a BDFIM in a rotating
frame of reference

As in (5.47), define
Tp=e % 0p, Tp=e I Tp,
Vo = eifc vo, o= elfc o, (650)
Tp=e 7' 0, g =e 11 g,

where Op is arbitrary and

QR = 9p — Tlpe, 90 = nce — QR. (651)
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Since the model is the same as the CDFIM in Section 5.3, the BDFIM in the

rotating frame of reference is obtained from the results of Section 5.4 as

Lp 0 Mp d ip
0 Le Mg E c
Mp M Lpg "\ R

Up — Rpip — jwp (Lp Tp + Mp ig)
U — Ro e + jwe (Lo 7o + Mc R)
—RRrtr — jwr (]V[p 1p+ Mc ¢+ Lg ER)
™ = npMp C;l Im (ip 73) — nceMc 01;1 Im (¢ 73) - (6.52)

6.9 Model of a BDFIM with nested loops

In the BDFIM with nested loops, additional short-circuited rotor windings are
placed inside the original windings of Fig. 6.6. The resulting rotor is shown
schematically on Fig. 6.8. On the figure, there are three nests (ng = 3) and
each nest has three loops (L = 3).

Figure 6.8: BDFIM with nested loops

The current vector ig is replaced by

ipr = | 'R1 |, (6.53)
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where ip1, - ,ir, are vectors of dimension np associated with the L loops.

The inductance matrix (6.7) becomes

Lpp 0 Lpri(0)
L(0) = 0 Lee  Lere(9) |, (6.54)
L;RL(Q) LgRL(e) Lrre
where
Lpre(0) = ( Lpra(6) -+ Lpro(0))
Lerp(0) = ( Lera(0) -+ Lero(6))
Lrrar -+ Lgrrir
Lrrr = : : . (6.55)
Lrprir -+ LgrrLL

The matrices Lpp and Loe are the same as for the single loop case, i.e., (6.8).
The matrices Lpr1(#), ..., Lpr(0), Lcra(f), ..., Lern(0), and Lrgi1, - .. ,
Lrrrr can be computed separately for each loop using the same formulas as
for Lpgr(0), Lor(6), and Lgg in (6.12), (6.14), and (6.10), respectively. The
“off-diagonal” matrices Lgp i have a similar structure as the matrices Lrg i,
that is

Lrwjr Mpwjir - Mprwk
Mpw it Lrwie - Mgw,

Lppge= | o0 TR vk (6.56)
Mrwjke Mrwgr -+ Lrwgk

The parameter Lgy ) is the mutual inductance between two loops of differ-
ent size in the same nest. Using the formula for two fractional windings with
complete overlap (6.4),
2¢N; N,
Lawge = ——2=F 0;(x —0,), if j <k
T
2¢N; N,
= kg (r—0;), if > k. (6.57)

™

The parameter Mgy j;, is the mutual inductance between two loops of different
size in separate nests. Using the formula for two fractional windings without
overlap (6.2),

QCNJ'N keﬂk

™

Mpwje = — (6.58)

Note that LRR,jk = LgR,jk = LRR,kj~
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The transformation to complex variables (6.36) is extended in a straightfor-

ward manner to

Cv 2 0 0 0 0 ip
0 Oy 23T eiv 0 0 0 ic
0 0 Curzp 0 0 |L@)| im
0 0 0 0 Cvr 2 iRL
Lp 0 Mpy, einpl ip
= 0 Lo Mcr, e—Jinct o 7
j\/[II;L e*jnp@ ]V[gL ejncg LRL »{RL

where the previous scalar parameters become vectors and matrices

Mp, = (Mpy -+ Mpy)

Mcr, = ( Mgy -+ Mcy )
Lrii -+ Lpip

Lrr = S :
Lrir -+ Lgprr

Similar parameter definitions apply as for the single loop case.
The BDFIM model becomes

J Lp 0 Mpy, effLP9 p
— 0 Le Mer eInct i
AN\ ME, e ME, et Ly, TR
a‘]p — R p’iip
= ?}/C — Rcfi/c
—RRriir

T™™M = Np CI;I Im (?p (]\/f[pL TRL ejnpt‘))*)
—Neo C;l Im (70 (]\/ICL IRL eijnd))*) s
with the diagonal rotor resistance matrix

Rpi -+ 0O
Rpp = oo
0 - Rpy

(6.59)

(6.60)

(6.61)

(6.62)

The model of the BDFIM with multiple loops has a higher order than the single

loop model and is not equivalent to a CDFIM anymore.

Numerical example: consider the BDFIM model of [20]. The inductances of

the complex model can be computed using the Matlab code below.
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%

% BDFIM design parameters

%

r=0.1745/2;1=0.1899;g=6.35e-4;
np=2;nc=4;nr=np+nc;Np=80;Nc=80;Nr1=1;Nr2=1;Nr3=1;
thri=pi*1/36;thr2=pi*3/36;thr3=pi*5/36;

%

% Compute inductance parameters

%

c=4e-T*xpixrxl/g;

Lpw=c*Np~2#*pi/4,Mpw=-c*Np~2%*pi/8

Lew=c*Nc"2*pi/4,Mcw=-c*Nc"2*pi/8

Lrwl1=2*c*Nr1~2*thri*(pi-thrl) /pi+Lrls,Mrwll=-2%c*Nrl~2xthri1~2/pi
Lrw12=2*c*Nr1*Nr2*thri* (pi-thr2) /pi,Mrwl2=-2*c*Nr1*Nr2*thri*thr2/pi
Lrw13=2*c*Nr1*Nr3*thri* (pi-thr3) /pi,Mrwl3=-2*c*Nr1*Nr3*thrixthr3/pi
Lrw22=2*c*Nr2"2*thr2* (pi-thr2) /pi+Lr2s,Mrw22=-2%c*Nr2"2*thr2°2/pi
Lrw23=2*c*Nr2+Nr3*thr2* (pi-thr3) /pi,Mrw23=-2*c*Nr2*Nr3*thr2*thr3/pi
Lrw33=2*c*Nr3~2*thr3*(pi-thr3) /pi+Lr3s,Mrw33=-2%c*Nr3~2*xthr3~2/pi
Mpr=(c*Np/np) * [Nri*sin(np*thrl) Nr2*sin(np*thr2) Nr3*sin(np*thr3)]
Mcr=(c*Nc/nc)* [Nri*sin(nc*thrl) Nr2*sin(nc*thr2) Nr3*sin(nc*thr3)]
%

% Compute complex model parameters

%

Lp=Lpw-Mpw, Lc=Lcw-Mcw

Lrl=[Lrwll-Mrwll Lrwl2-Mrwl2 Lrwl3-Mrwl3;

Lrwl2-Mrwl12 Lrw22-Mrw22 Lrw23-Mrw23;

Lrw13-Mrwl3 Lrw23-Mrw23 Lrw33-Mrw33]

Mpl=(sqrt (3*nr)/2) *Mpr,Mcl=(sqrt (3*nr) /2) *Mcr

The results are:

Lp = 0.2472

Lc = 0.2472

Lrl = 1.0e-04 *
0.0572  0.0572  0.0572
0.0572  0.1717  0.1717
0.0572  0.1717  0.2861

Mpl = 0.0005  0.0014  0.0021

Mcl

0.0005 0.0012 0.0014
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The parameters are similar to those reported in [20], but not identical be-
cause the stator windings were assumed to be sinusoidally-distributed instead
of concentrated in [20]. Some other fine details were also neglected. On the
other hand, all the inductance parameters were computed using simple analyti-
cal formulas. It is interesting to note that, with the assumption of sinusoidally-
distributed stator windings and fractional-pitch rotor windings, pure sinusoidal
steady-state operation is possible, and the computations do not require to dis-

card any harmonic components..

6.10 Reduced-order model of a BDFIM with
nested loops

It is common to derive a reduced-order model that has the same structure as the
single-loop BDFIM. A technique proposed in [20] proceeds as follows. Observe
that the matrix Lg;, must be symmetric positive semi-definite. Therefore, its

eigenvalues are all real and positive, and the matrix can be decomposed as
Lpr =U Dgy UT, (6.63)

where Dpgy, is a diagonal matrix containing the eigenvalues of Lgy, and U is a

matrix of orthogonal eigenvectors satisfying
vt=ut. (6.64)

Multiplying the last row of the model by U” and replacing 7z;, by UU ixz,

the model becomes

P Lp 0 (MpLU) eng ip
E (; » LCQL , (]\/K[CLU) e Jnc Zc;
(Mp U)" e=inrt (Mo U)T einct UTLp U UT Tre
5}3 - RP’ZVP
= Uc — Reie

— (UTRRLU) UT Tt
™ =np Cp' Im (ZP (MPLUUT ThL ejnpe)*)
—nc C(I;1 Im (TC’ (]V[CLUUT IRL e*j”cg)*) ] (665)

Assume that the eigenvalues have been ordered from the smallest to the largest
in the matrix Dgy, and that the largest eigenvalue is much larger than the other
eigenvalues. The model order reduction technique consists in retaining only the

last rotor variable in the vector UT 7g;. Letting

e'=(0 -+ 0 1), (6.66)
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the model (6.46) is obtained where

j\/fp = A/IPL U x, ]V[C = ]V[CL Uz
LR = Z’T (UTLRLU) Tr = Z’TDLLI
RR = Z’T (UTRRLU> Z. (667)

Note that Lg is the largest eigenvalue of Lgy.
Numerical example: the code below shows a Matlab implementation of the

procedure (parameters from [20] are used, with some adjustments).

h

% Reduction of BDFIM model from three loops to one loop
h

Lr1=[0.72 0.576 0.576;0.576 1.878 1.727;0.576 1.727 3.037]*1le-5;
Rrl=[1.056 0 0;0 1.209 0;0 0 1.361]*le-4;

Mpl=[0.5793 1.6693 2.5533]*1e-3;

Mcl=[0.5555 1.4137 1.6072]*1e-3;

[v,d]=eig(Lrl);

x=[0;0;1];

Lr=x’*d*x

Mp=Mplx*v*x

Mc=Mclx*v*x

Rr=x’* (v’ *Rrl*v) *x

The code produces:

Lr = 4.4525e-05
Mp = 0.0031
Mc = 0.0022
Rr = 1.2969e-04



Chapter 7

Three-Phase Synchronous
Machines

7.1 Objective

The objective of this chapter is to model a three-phase synchronous machine with
field and damper windings, as shown schematically on Fig. 7.1 for a machine

with one pole pair. The results of the chapter:

e derive a model of the machine in phase variables.

e deduce a DQ model for the machine.

7.2 Machine structure

The stator has a set of three-phase windings (A, B, and C'). The rotor also has
three windings, but they are organized differently. One winding (F) is called the
field winding, and typically has a constant voltage applied to it. The resulting
magnetic field is similar to the field produced by the permanent magnet (PM)
in PM synchronous motors if the current is constant. In dynamic situations,
however, the field and stator currents can interact in ways that are absent in
PM machines. The direction used to define the position of the rotor is chosen to
be aligned with the field winding. Two other windings (D and ) are present
on the rotor: the first is placed along the same axis as the field winding, and
the second is placed at a 90° angle. Both windings are typically short-circuited
and produce a torque similar to squirrel-cage induction machines. The windings
increase the damping of oscillations around the synchronous speed and are called

damper windings.

61
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Figure 7.1: Schematic of a three-phase synchronous machine with field and
damper windings

7.3 Inductances with salient rotor

The derivation of the model proceeds by expressing the flux linkages as functions
of the currents, based on the geometry of the machine. The expressions are com-
plicated by the fact that the rotor has salient poles (a schematic representation
is shown on Fig. 7.2). The angle that will be used for the DQ transformation
is the angle 6 that defines the direction of the field winding. It will be assumed
that the D-axis is also the direction of lowest reluctance. Figs. 7.1 and 7.2 show
a machine with one pole pair. For multiple pole pairs, ¢ is replaced by npf.
The salient pole machine is modeled as a non-uniform airgap machine, as
described in Section 2.4, where ng = 2np and np is the number of pole pairs.

In (2.22), inductances were obtained
Laa = Lo+ Ly cos(2nph) Lap = My+ Ly cos(2npd — 27/3)
Lpp = Lo+ Licos(2npl + 27/3)  Lpc = My + Ly cos(2np0)
Loo = Lo+ Lycos(2npl — 27/3)) Lea = Mg + Ly cos(2npd + 27/3).
(7.1)

Lo, L1, and M, are parameters that depend on the winding characteristics.
Without leakage flux, (2.22) gave My = —Lo/2. Practically, Ly is assumed to
be slightly larger than —2Mj,. One must also have Ly < Ly.
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Figure 7.2: Rotor with salient poles (np = 1)

The inductance functions L4 and Lap are shown on Fig. 7.3 for My ~
—Lg/2. As expected, the self-inductance of winding A reaches a maximum
value when the rotor is aligned with winding A (0°), and reaches a minimum for
90° (electrical). Interestingly, the mutual inductance peaks for npf = 60°, 150°,
240°, and 330°.

Lyl
L L AA
Ly |
LO-L LT

30 60°  90° 120" 150°

Lo/2+L,T ' ' np0
Lo/ | /\(
Lo/2-L, { L B

Figure 7.3: Self-inductance L 44 and mutual inductance L4 as functions of the
rotor angle
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7.4 Model in phase variables

Define vectors of stator voltages, stator currents, and stator total flux linkages

VA iA Ya
Vg = vUB 5 7;5 = iB 5 1/)5 = 1/}3 . (72)
Ve ic Yo

Rotor variables are defined similarly with

vp iF Yp
VRp = Up s iR = iD s \I/R = 1/)D . (7.3)

Vg iQ Vg

The electrical equations describing the machine are
Rp 0 O
d d
% = vg — Ryis, % —og—| 0 Rp 0 |ig, (7.4)
" ” 0 0 Rg

where Rg is the resistance of a stator winding, and Rp, Rp, and Rg are the
resistances of the F', D, and ) windings, respectively.
For the analysis of the machine, we assume linear expressions for the flux

linkages as functions of the currents

()=o) wo= (250 ") o9

The three stator windings are identical, except for shifts of 120°. From (7.1),
Lss(0) has the form
Lo + L cos(2np0) Moy + Ly cos(2npf — 27/3)
Lss(0) = Mo + Ly cos(2npf — 27/3) Lo+ Ly cos(2npb + 27/3)
Moy + Ly cos(2npf + 27/3) My + Ly cos(2np0)
Moy + Ly cos(2npf + 27/3)
Moy + Ly cos(2npb) . (7.6)
Lo+ Ly cos(2npt — 27/3)
Based on the geometry of the machine, the other inductance matrices are as-

sumed to have the form

Lrp Mgr O
Lrr=| Mg Lp 0 (7.7)
0 0 ILg
and
Mg cos(npf) Msp cos(npf)
Lsr(0) = Mgp cos(np — 2m/3) Mgp cos(npf — 27/3)
Mgp cos(np +2m/3) Mgp cos(npd + 27/3)
Mg cos(npb + 1/2)
Mgqcos(np —7/6) | . (7.8)

Mgq cos(npt — 57 /6)
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In the model,

e Lp, Lp, Ly are the self-inductances of rotor windings F', D, and @), re-

spectively.

e Mp is the mutual inductance between rotor winding F' and rotor winding
D.

e Msp, Msp, and Mgq are the mutual inductances between a stator winding
and the rotor windings F', D, and @, respectively, when the windings are
aligned (e.g., Mgp is the mutual inductance between windings A and F’
when 6 = 0).

Considering that the damper windings are short-circuited, the electrical

equations of the three-phase synchronous machine are

iA vaA — RSiA iA

iB v — RSiB iB

d ic _ Vo — Rgic 8L(9) ic
L(G)% ir | = | or—Rpir |~ w—ae ir | (7.9)

iD —Rpip iD

iQ —Rqiq iQ

where L(0) is given by (7.5), and Lgs(0), Lrr, and Lggr(#) by (7.6), (7.7), and
(7.8), respectively. The partial derivative is given by

OL(0) <8Lss(9)/89 aLSR(e)/ae>

90~ \ oL, (6)/06 0 (7.10)

with

sin(2np0) sin(2npf — 27/3)

= —2npL; | sin(2npf —27/3) sin(2npd + 27/3)
sin(2npf + 27/3) sin(2np0)

sin(2npf + 27/3)
sin(2np0)

sin(2npf — 27/3)

0Lgs(9)
00

, (7.11)

and

Mg sin(npf) Mgp sin(npf)
= —np | Mgrsin(npl —27/3) Mgpsin(npl — 27/3)
Mgpsin(npb +2m7/3) Mgpsin(npf + 27/3)
Mggsin(npb +1/2)
Mggsin(np —7/6) | . (7.12)
Mgqsin(npt — 5m/6)

OLgr(0)
00
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The general formula for the torque of an electric machine (1.7) gives

o _ 140Lss(0).  OLsa(0),
M 2599 ST 9 R

= —npLy (sin(2nph)id 4 + sin(2npb + 27/3)i%p + sin(2npd — 21 /3)i%c)
—2nply (sin(2np9 — 27/3)7;5141‘53 + sin(2np9 + 27‘(/3)7;5147:50

+sin(2nph)ispisc)

—np (Mgrip + Mspip) (sin(npf)isa + sin(npf — 27/3)isp

+sin(npd + 27/3)isc)

—npMsqiq (sin(npd + 7/2)iga + sin(np — 7/6)isp

+sin(npl — 57/6)isc) - (7.13)

7.5 Model in DQ variables

Consider the matrix defining a three-phase DQ transformation, which is the
combination of a 3-2 transformation (1.8) and a DQ transformation for the two-
phase variables, leaving the homopolar variables the same [6],
cos(npf) sin(nph) 0
M;s_g4(0) = | —sin(npf) cos(npf) 0 | Ms_o. (7.14)
0 0 1
The result is
cos(npf)  cos(npl —27/3)  cos(npl + 27/3)
Ms_q,(0) = Cy —sin(nph) —sin(nph —27/3) —sin(npd + 27/3)

1/V?2 1/V2 1/V2

(7.15)
New variables are defined using
Ya Ya Vg VA
Vg | =Ms-aq(0) | ¥ |, | vq | =Ms5-00(0) | vB |,
Yn e Uh e
14 LA
iq | = Ms_qe(0) | i5 |. (7.16)
ih ZAC
With the DQ transformation, the total flux linkages become
q/jd 7;d 7;F
Vg | = Ms gy(0)Lss(0) Mz, (0) | g | + Ms_4y(0)Lsr(6) | ip
(s in iq
wF Zd ZF
Up | = Lép(O)M;0) | ig | +Lrr| ip |- (7.17)

(e} i iQ
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Computing the products (see Section 7.6), one finds that

Ya La 0 0 Mp Mp O i
Uy 0 L, 0 0 0 Mg iy
v | 0 0 L, 0 0 0 in
v | | MrpCOp? 0 0 Lrp Mgp O L
Up Mp Cpt 0 0 Mg Lp O ip (7.18)
e 0 ]V[QCISI 0 0 0 Lo iQ

where Cp is the coefficient of power associated with the 3 — 2 transformation
and

3 3
Li = Lo=Mo+ 3L, Ly=Lo—Mo— 3Ly, Ln=Lo+2M,
3Cy Mgp _3CvMsp . 3CyMgg

Mp = 220SE 0y
F y AVID 27@ 2

. (7.19)

Note that the inductance matrix is symmetric if and only if Cp = 1, i.e., if an
equal power transformation is used. On the other hand, Mr = Mgp, Mp =
Msp, Mg = Mgq, C;l = 3/2 if the equal magnitude transformation is used
(Cv =2/3). Both options are used in the power systems literature [3], [17].

Differentiating the total flux linkages with respect to time and computing
the products

d a d YA M (0 ha
Z | Ve | = MaalO)7 | v |+ w?’a—gq() .
" wh s ¢C wc
va — flsta OMs_g,(0 Ya
= M3 4(0) | ve— Rsip |+ W—ggq( )]\/fz;ldq(ﬁ) U,
ve = RSiC wh
Vg — Rgid wq
= vy — Rgiy +npw | —g | . (7.20)
Up — Rgih 0

The derivatives of the rotor fluxes are determined by (7.3) and (7.4) with vp =
vg =0, i.e.,

a [ vr vp — Rpip
= o | = | ~Eoio . (7.21)
(0o} —Rqiq

Note that the variables can be reordered to show a decoupling between the
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DQ axes. Specifically,

g Ly Mg Mp

0 0 0 iq

Vr Mp Cpt Lp Mg 0 0 0 ir

vp | | MpCpt Mp Lp 0 0 0 ip

vy | 0 0 0 L, Mg 0 i |-

Yo 0 0 0 MogCp' Lg O iQ (722)
1/)h 0 0 0 0 0 Lh ih

Given that the inductance matrix is constant in the DQ variables,the system is
described by

Li My Mp iq
MpCp' Lp Mg | —| ir | =
Mp Gt My Lp )\ i
vg — Rgig +npw (Lqiq + AL{QiQ)
vp — Rpip
—Rpip

Lq Mg i iq _
Mg C;l Lg dt \ ig -
Vg — Rgiq — npw (Ld7d + Mpip + j\/fDiD)
—Rgig
dih

L}LE = Uy — Rsih. (723)

The torque can be obtained by converting (7.13) in the DQ variables, or

1 o r OLss(6) a
™ = §(zd iy zh)(Mgqu(G)) gbe Mgqu(ﬁ) iy
th
L _ oLsn(0) [ F
+ (g g i) (Myhy(0)" %() ip |- (7.24)
iQ

After simplifications

TV = Np 01;1 (AL{FZFZ(I + (Ld — Lq) Zdlq + (AL{DZ.qZ‘D — ]\/f[QZdZQ)) .
(7.25)

The torque has three components:

e the first term, an’;lMFZ'Fz'q7 is a reaction torque similar to the torque K7,
produced by a permanent magnet synchronous motor [6]. In this case, the
magnitude of the torque constant anIZl]\/fFiF can be adjusted through
the magnitude of the field current.
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e the second term, npCp' (Lg — L) iqig, is a reluctance torque related to the
saliency of the rotor. The same torque is found in reluctance or hybrid

motors.

e the third term, anISI (Mpigip — Mgigig) is an induction torque, similar
to the torque found in two-phase induction motors with a reference frame
attached to the rotor (with such motors, it is assumed that Mp = My).
The torque increases the damping of the motor and reduces speed fluctu-

ations. It can also be used to start a synchronous motor from zero speed.
Note that the power absorbed through the electrical equations

P = —npw (Lqiq + ]V[QiQ) tq + npw (Ldid + Mpip + j\/fDiD) iq
(7.26)

is equal to the mechanical power Py; = 1)y w if the equal power transformation

is used. For other transformations, Pr = CpPy,;.

7.6 Symbolic code

The code below produces the results of (7.15), (7.18), (7.20), and (7.25).

%

% Symbolic code for WFSM

%

syms 1lss 10 11 mO np th lrr 1f mr 1d 1lq lsr msf msd msq ...
m3to2 cv mdq m3dq lssdq lsrdq lrsdq psidq psid psiq psih ...
edq om idq id iq ih ir ifc iD iQ tm real

%

% Original model

%

a=2*pi/3;

1ss=[10+11%*cos(2*np*th) mO+1l1l*cos(2*np*th-a) mO+1ll*cos(2*np*th+a);
mO+11*cos(2*np*th-a) 10+11*cos(2*np*th+a) mO+ll*cos(2*np*th) ;
m0+11*cos (2*np*th+a) mO+1lixcos(2*np*th) 10+1l*cos(2*np*th-a)l;

lrr=[1f mr O;mr 1d 0;0 O 1q];

1sr=[msf*cos(np*th) msd*cos(np*th) msqg*cos(np*th+pi/2);
msf*cos(np*th-a) msd*cos(np*th-a) msg*cos(np*th-a+pi/2);

msf*cos(np*th+a) msd*cos(np*th+a) msqg*cos(np*th+a+pi/2)];
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% DQ model

%

m3to2=cv*[1 -1/2 -1/2;0 sqrt(3)/2 -sqrt(3)/2;1/sqrt(2)
1/sqrt(2) 1/sqrt(2)];

mdg=[cos (np*th) sin(np*th) O;-sin(np*th) cos(np*th) 0;0 0 1];

m3dg=simplify(mdg*m3to2)

1ssdg=simplify(m3dg*lss*inv(m3dq))

1lsrdg=simplify(m3dq*1lsr)

lrsdg=simplify(lsr’*inv(m3dq))

psidg=[psid;psiq;psih];

edg=simplify(om*diff (m3dq,th)*inv(m3dq)*psidq)

idg=[id;iq;ih];ir=[ifc;iD;iQ];

tm=(1/2) *idq’ *inv(m3dq) ’**diff (1ss, th) *inv(m3dq) *idq;

tm=simplify(tm+idq’*inv(m3dq) ’*diff (1sr,th)*ir)



Chapter 8

Y and A- Connected Doubly-Fed
Induction Machines

8.1 Objective

The objective of this chapter is to obtain models of Y and A-connected doubly-
fed induction machines, and to show that the models of the machines are equiv-
alent to each other.

8.2 Model for a Y —connected machine

Often, the windings of three-phase machines are connected in a Y (or star)
configuration, as shown in Fig. 8.1. With this connection, the line currents are

equal to the winding currents
i1 =isa, i2 =138, i3 = isc, (8.1)

and igq +isp + isc = 0. In the 3-2 transformation, ig;, = 0, and (3.27) implies
that Vsp = 0.

For the voltages, one has
UgA = U] — Vg, Usp = Vs — Vg, Usc = U3 — Vg, (8.2)

where vy is the voltage at the neutral point (as shown on Fig. 8.1). Since vg, =0

VgA + VsB + Vgc = V1 + vy + v3 — 3vg = 0. (8.3)
Therefore
v = % (8.4)
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Figure 8.1: Y —connected machine

In other words, the neutral voltage is equal to the average of the line voltages.
If the sum of the line voltages is zero, the winding voltages are equal to the
line voltages and the neutral voltage is zero. If the sum of the line voltages is
nonzero, the neutral voltage becomes the average of the line voltages, and the
winding voltages are shifted by that amount. An important point to observe is
that the currents and the torque are the same if all the voltages are offset by
the same amount. Also, the two-phase equivalent voltages v, and v, remain the

same if some voltage is added to (or subtracted from) the voltages vga, vsp, and

vsc-

8.3 Model for a A-connected machine

Another typical connection is the A (or delta) connection shown on Fig. 8.2.
With this connection, one has vgs + vsp + vsc = 0, which implies that vg, = 0.
Then, (3.27) implies that ig;, = 0, or converges exponentially to zero if initial
conditions are different from zero.

From the figure
i1 =154 — isc, i2 = isB — 54, 13 = i5¢ — i5B- (8.5)
Using isA+ tsp +isc = O7

iy — g = 2iga — igp — isc = 3isa — (iga + isB + isc) = 3iga.
(8.6)

Repeating for the other variables, one finds that

. i1 — 12 . ig — 13 . i3 — 11
154 = 3 , 1SB = 3 , 1SC = 3 )

(8.7)
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or
isA i1 1 1 -1 0
isg | = Ma| i |, where Ma = 3 0o 1 -11.
isc i3 -1 0 1 (8.8)
For the voltages
UsA = U1 — Vg, UsB = Uz — U3, Us¢ = VU3 — V1. (8.9)
Note that
vsA — Vso = 201 — vy — v3 = 3v1 — (V1 + Vg + v3). (8.10)
Define
gy~ 2t 611)
3
Then

Uga — Vs = 3(v1 — vp). (8.12)
As opposed to Section 8.2, the voltage vy is not the voltage of some physical

location, but it is defined by the same equation. Repeating for the other vari-
ables,

UsA — Usc

Usp — UsA Usc — VUsB
3 V1 — Vo, f = V3 — Vo, f = U3 — Vo,
(8.13)
or
UsA U1 — Yo
T
Mir | vseg | = | va—1o (8.14)
Usc Uz — Vo
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With (3.3), the results imply that

d (vsa —vsc)/3 — (Rs/3)(isa — isc)
p (Mfvs) = (vsp — vsa)/3 — (Rs/3)(isp — isa)
) (vsc —vsp)/3 — (Rs/3)(isc — isB)
v —vg — (Rs/3)ix
= vg —vg — (Rg/3)ia | . (8.15)
V3 — Vg — (RS/?))Zg

Using the DFIM model (3.4)-(3.6) and computing the products (see Section 8.5),

il Z‘Rx
MAvs = MALssMa | iz | + MALsgr(0) | iy

i3 Z.RZ
2(Lsw — Msw) Msw — Lsw Msw — Lsw i1
=3 Msw — Lsw 2(Lsw — Msw) Msw — Lsw i2
Msw — Lsw Mgsw — Lsw 2(Lsw — Msw) i3
Msr
V3
cos(npfl —w/6) cos(npf +7/2)  cos(npd — 57w /6) iRx
cos(npb — 5w /6) cos(npf —w/6) cos(npd + 7/2) iry |-
cos(npf + w/2)  cos(npf —57/6) cos(npd —7/6) iRz
(8.16)
Given that iy + is + i3 = 0,
Lsw + 2Mgsw Lsw + 2Msw Lsw + 2Mgsw 2
- Lsw + 2Mgsw Lsw + 2Msw Lsw + 2Mgsw 19 =0.
Lsw + 2Mgsw Lsw + 2Msw Lsw + 2Mgsw i3 (817)

Adding this term to the right-hand side of the previous equation gives

(sa —hsc)/3 Lsw/3 Msw/3 Msw/3 i1
(Ysp—tsa)/3 | = | Msw/3 Lsw/3 Msw/3 ia
(¥sc —¥sB)/3 Msw/3 Msw/3 Lsw/3 i
M cos(npfl —w/6) cos(npf +m/2)  cos(npd — 57 /6) iRx
+ =2 cos(np —57/6) cos(npl —7/6)  cos(npl + 7/2) iry |-
V3 cos(npf +w/2)  cos(npf —57/6) cos(npd —7/6) iRz
(8.18)
On the side of the rotor,
d [ ¥rx vpx — RRigx
7 | Yrv | = | vry — Briry ], (8.19)

YRz vrz — RRiRrz
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and
Yrx i iRx
Yry | = LEg(@)Ma | d2 | +Lrr | iry
YRz i3 iRz
Men cos(npf —7/6) cos(np — 5w/6) cos(npl + w/2) i1
=—= cos(npf+7m/2) cos(npt —m/6) cos(npl —571/6) ia
V3 cos(npf — 51/6) cos(npl +7/2) cos(npd —7/6) i3
iRX
Lrr | iny (8.20)
ipz

(8.15), (8.18), (8.19) and (8.20) constitute the electrical model of the machine

with a A-connected stator.

8.4 Equivalence between Y and A- connected
machines

YY vs. AY: the equations describing a machine with a A-connected stator and
Y -connected rotor are the same as those describing a machine with Y-connected

stator and Y-connected rotor if the following substitutions are made.

Parameters of the Parameters of the equivalent Y-connected
Y -connected machine | machine if the stator is reconnected in A
Rs, Lsw, Mgy Rs/3, Lsw/3, Msw/3
Rp, Lrw, Mrw Rp, Lrw, Mrw
Msp Msr/V'3
npb npl — /6

ing conversions apply.

For the additional parameters derived from the winding parameters, the follow-

Parameters of the
Y -connected machine

Parameters of the equivalent Y-connected
machine if the stator is reconnected in A

Rg, Lg Rs/3, Ls/3

Rg, Lg Rr, Lp
M M/\/3
npb npl — /6

YY vs. AA: if the stator and rotor windings of a Y-connected machine are re-
connected in A, the matrix Lgg transforms to MXLsr(0)Ma = Lsr(0)/3. Lrr
transforms to MXLrrMa = Lgrgr/3. The machine becomes equivalent to the
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Y -connected machine if the following adjustments are made to the parameters.

Parameters of the Parameters of the equivalent Y-connected machine
Y-connected machine if the stator and rotor are reconnected in A
Rg, Lg Rs/3, Lg/3
Rg, Lg Rr/3, Lr/3
M M/3
npﬂ ﬂ,pe

8.5 Symbolic code

The code below produces the results of (8.16) and the Lgg(f) matrix for the

A — A connection.

%

% Symbolic code for DFIM delta connection

h

syms lss lsw msw lrr lrw mrw lsr msr np th ...
lssdy lsrdy aux checkzero lsrdd real

%

% Original model

h

a=2xpi/3;

lss=[1lsw msw msw;msw lsSw mMSW;msw msw lsw];

lrr=[lrv mrv mrw;mrwv lrw mrw;mrw mrw lrw];

lsr=msr*[cos(np*th) cos(np*th+a) cos(np*th-a);
cos (np*th-a) cos(np*th) cos(np*th+a);
cos(np*th+a) cos(np*th-a) cos(np*th)];

%

% lsr for delta-Y conversion

h

md=[1/3 -1/3 0;0 1/3 -1/3;-1/3 0 1/31];

lssdy=simplify(md’*1lss*md)

lsrdy=simplify(md’*1lsr)

aux=(msr/sqrt (3))*[cos (np*th-pi/6) cos(np*th+pi/2)
cos (np*th-5*pi/6) ;
cos (np*th-5%pi/6) cos(np*th-pi/6) cos(np*th+pi/2);
cos(np*th+pi/2) cos(np*th-5*pi/6) cos(np*th-pi/6)];

checkzero=simplify(lsrdy-aux)

h
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% lsr for delta-delta conversion
h

1srdd=simplify(md’*1lsr*md)
checkzero=simplify(lsrdd-1sr/3)

7



Chapter 9

Three-Phase Induction Machines
with a Two-Phase Rotor

9.1 Objective

The objective of this chapter is to derive a model for the machine shown schemat-
ically on Fig. 9.1. The stator has three windings that are identical to each other.
The rotor has two windings, also identical to each other. The results of this

chapter:
e derive a model of the machine.

e show that the machine is equivalent to a two-phase machine if an equal
power transformation is used. Otherwise, an extra coefficient appears in

the torque equation and the inductance matrix becomes non-symmetric.

9.2 Model in phase variables

Define vectors of stator voltages, stator currents, and stator total flux linkages

UsA isA hsa
vs= | vsp |,is=| isB |, ¥vs=| ¥sB |. (9.1)
UsC isc Ysc

Rotor variables are defined as

URD . LRD YRD
= cip=|[ . , = . 9.2
" (”RQ) " (lRQ> v (V’RQ> 92
The electrical equations describing the machine are

. d A
W = Vs — Rsls, % = VR — RDZR, (9.3)

79



80 Chapter 9. Three-Phase Induction Machines with a Two-Phase Rotor

Figure 9.1: Schematic of a machine with a three-phase stator and a two-phase
rotor

where Rg is the resistance of a stator winding and Rp is the resistance of a rotor
winding.

An explicit model of the machine can be obtained by expressing the total
flux linkages as functions of the currents. Based on the geometry of the machine

in Fig. 9.1, we assume that

CARCICAN TG P Y

where
Lsw Msw Msw Lp 0
Lss=| Msw Lsw Msw |, Lrr= ( 0 Lp ) ; (9.5)
Msw  Msw Lsw
and
cos(npd) cos(npl + w/2)
Lsr(0) = Mp | cos(npf —27w/3) cos(npf — 7 /6) . (9.6)

cos(npb + 2m/3) cos(npf — 57/6)
The variables of the model are:
e 0, the angle of the rotor.

e np, the number of poles pairs (np = 1 on Fig. 9.1).
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e Lgw, the self-inductance of a stator winding.
o Mgy, the mutual inductance between two stator windings.
e Lp, the self-inductance of a rotor winding.

e Mp, the mutual inductance between a stator winding and a rotor winding
when the windings are aligned (e.g., between windings A and D when

0 =0).

Using (9.3) and (9.4), the electrical equations of the machine consist of
d 7;5 1 Vs — Rgig
— = L0 ;
dt(m) ()<(UR—RDZR

v ( aLgR?e) /06 Phanios ) ( zz )) . (07

where w = df/dt is the speed of the machine. Only Lgr(#) contributes to the

torque, so that the general formula for the torque of the machine (1.7) gives
70Lsgr(0) .
™ = Z?%UZR
= 7TLPAL/[D
((sin(npﬁ)igA + sin(np9 — 27‘(/3)7;53 + sin(npﬂ + 27T/3)igc) 7;RD)
+ (sin(npf + 7/2)iga + sin(nph — 7/6)isp + sin(npd — 57/6)isc) irg) -

(9.8)

9.3 Two-phase equivalent machine

The three-phase machine can be transformed into an equivalent two-phase ma-
chine using a three-phase to two-phase transformation (1.8). The rotor variables
do not need to be transformed, since the rotor is two-phase. With the transfor-

mation, the stator fluxes become

¢Sa iSa iRD
VYsp | = Ms_oLgsMyy | igy | + Ms_aLgsr(6) ( i ) .
Ysn ish @ (9.9)

Computing the products (see Section 9.4), one finds that

Ysa Ls 0 0 iSa
hsp = 0 Lg 0 1Sp
Ysn 0 0 Lgy ish

cos(npfl) —sin(npb) ;
+M | sin(npf) cos(npd) < D > , (9.10)
0 0 "RQ
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where

3C
Ls = Lsw — Msw, Lsp = Lew + 2Msw, M = =X Mp,.
2 (9.11)

In a similar manner, the following equations can obtained for the rotor fluxes

v i i5a
RD \ _ RD . e
( Urq > = L ( iro ) + Lsr(0)M; -, zsb
Sh
_(Lip 0 iRD
a 0 LD iRQ
cos(npd) sin(npd) 0 ) ;Sa
i s |-
—sin(npd) cos(npfd) 0 o 012

Due to the fact that the three-phase to two-phase transformation is linear

+M Cpt (

and independent of time, the transformed stator variables satisfy electrical equa-

tions similar to the three-phase variables, and with identical stator resistances.

Specifically
d [ Vsa vsa — Rsisa
2| Vs | = | v Rsisy | (9.13)
T\ Vs vsn — Rsisn

Therefore, the two-phase variables satisfy

iSq Usqe — s 154
d i.5% vsp — R sy
L RO - : , 9.14
dt 2(0) IRD vrp — Bp irp (9.14)
iRQ URQ — RD iRQ
with Ly(6) given by
Lg 0
0 Lg

L2(0) M Cp' cos(npl) M Cp' sin(np)

—M Cp' sin(npf) M Cp' cos(npf)
M cos(npf) —M sin(npl)
M sin(npf) M cos(npb)

Lo 0 (9.15)
0 Lp
The torque is equal to
. . . _ dLsr(0) .
™ = (isa sy isn ) (Mg,lg)T %()ZR

npM Cp' (—sin(npf)igpis, — cos(npb)ipgisa

COS(npe)iRDigb - sin(npe)iRQiSb). (916)
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Equations (9.14), (9.15), and (9.16) are the same as the equations defining a two-
phase machine with windings a, b, D, and @) when Cp = 1, i.e., for the equal
power 3-2 transformation. For other transformations, the equations are similar,
but an extra factor C’;l must be included in the torque and in the inductance
matrix, which ceases to be symmetric.

For the homopolar variables
—— = Ushp — RsiSh. (9.17)

The variables with the subscript h (called homopolar variables) satisfy the equa-
tion of a stable first-order system that is independent of the equations for the
two-phase variables. The homopolar variables do not affect the torque and are

independent of the main two-phase variables.

9.4 Symbolic code
The code below produces the results of (9.10), (9.12), and (9.16).

"

% Symbolic code for DFIM with 3-ph stator and 2-ph rotor

%

syms lss lsw msw lrr 1d 1lsr md np th m3to2 cv ...
12ss 12sr 12rs is2 isa isb ish ir ird irq tm real

)

% Original model

%

a=2*pi/3;b=pi/2;

lss=[lsw msw msw;msw lsSw mMSW;msw msw lsw];

lrr=[1d 0;0 1d];

1sr=md* [cos (np*th) cos(np*th+b) ; cos(np*th-a) cos(np*th-a+b);
cos(np*th+a) cos(np*th+a+b)];

)

% 2-phase equivalent model

h

m3to2=cv*[1 -1/2 -1/2;0 sqrt(3)/2 -sqrt(3)/2;1/sqrt(2)
1/sqrt(2) 1/sqrt(2)];

12ss=simplify(m3to2*lss*inv(m3to2))

12sr=simplify(m3to2+*lsr)

12rs=simplify(lsr’*inv(m3to02))
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is2=[isa;isb;ish];ir=[ird;irq];
tm=simplify(is2’*inv(m3to2) ’*diff (1sr,th)*ir)



Chapter 10

Three-Phase Induction Machines
with Single-Phase Excitation

10.1 Objective

The objective of this chapter is to consider several problems where a single-phase

supply is applied to three-phase machines. The results show that:

e a three-phase rotor with line-to-line excitation is equivalent to a single-

phase rotor.

e the voltage induced on the stator applying a constant line-to-line rotor
current at non-zero speed or applying a sinusoidal current at standstill
can be used to determine the mutual inductance parameter of a doubly-

fed induction machine.
e a three-phase rotor with line-to-2 line excitation is equivalent to a two-

phase rotor with one phase excited and the other phase short-circuited.

10.2 Single-phase line-to-line excitation on a
three-phase rotor

Consider the model of a machine with a three-phase rotor derived in Section 3.2.
Assume that single-phase excitation is applied to the rotor from winding Y to
winding Z, with winding X left open. Let vrg and irg be the voltage and the

current applied to the rotor in this manner. Then

URY — URzZ = VRQ, irx = 0, iry = —lrz = iRrQ- (10.1)

85
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The expressions for the stator fluxes (3.4)-(3.6) give (see Section 10.5),

0
g = Lggis+ Lsr(0) 1 |igg
—1
cos(npl + 7/2)
= Lggig+ Mp COS(TLpe — 71'/6) iRQ, (102)
cos(nptl — 57 /6)

where Mp = v/3Mgg. On the side of the rotor, let

YrQ = Yry — YRz, (10.3)
so that
0
Yro=1(0 1 —1)L{z0is+ (0 1 =1 )Lgr| 1 |ing
—1
= Mp ( cos(npd +/2) cos(npl —7/6) cos(npf —57/6) )is
+ Lpirg, (10.4)

where Lp = 2(Lpw — Mpw). Also

drg
dt

= (01 -1)|wvr—Rr| 1 |irg
~1

= UVRQ — RDiRQ, (105)

where Rp = 2Rpg.
The characteristics are the same as those of the machine with a two-phase
rotor of Section 9.2, where the D winding is open (igp = 0) and the @ winding

is connected to a supply. The total rotor flux linkages are

Yrp = YRX, YRQ = VRY — VRZ! (10.6)

but the differential equation for 1) grp can be omitted since there is no associated

current in the D axis (igp = 0). Parameters are converted using

2
Rp =2Rp, Lp = 2(Lpw — Mpw) = 2Lg, Mp = v/3Msp = 75M.
(10.7)

As expected, the line-to-line resistance and the line-to-line inductance are 2

times the winding resistance and the winding inductance, respectively
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10.3 Open-stator response with line-to-line

rotor excitation

With an open stator, the stator currents are zero and (10.5) gives

cos(npl + 7/2)
s = Mp | cos(npb —7/6) iRQ-
cos(npf — 5m/6)

Therefore

VYsa —sg = V3Mpcos(npl + 21/3)irg
= 2M cos(npb + 27/3)igg.

The line-to-line voltage is

dpsa  dipsp
dt dt
din

VAB — USA —UsB =

(10.8)

(10.9)

= 2M cos(nph + 27r/3)7‘? — 2npwM sin(npl + 21 /3)igo.

The result can be used to measure M as follows:

(10.10)

1. The machine rotates at constant speed w with a DC current Ipc applied

line-to-line to the rotor. The induced line-to-line stator voltage is a sinusoid

of frequency wg = npw and peak magnitude

V;,k = 2&)5]\/1[ ]DC~

(10.11)

2. The machine is at standstill with a sinusoidal rotor current of frequency

wg and peak magnitude I
irg = Ipi sin(wgt).
Then,
vap = 2wsM cos(npl + 2m/3) L, sin(wst).
3. Note that

vpe = 2wgM cos(npb)I,;sin(wst)

voa = 2wgM cos(npl — 21w /3) L sin(wst).

(10.12)

(10.13)

(10.14)
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If the rotor is moved so that the largest voltage is observed between two
lines of the stator (so that npf + 2m/3 = 0), the peak magnitude of the
line-to-line voltage is

If the rotor is turned until vge = 0 (obtained for npf = 7/2), the peak

magnitude of the line-to-line voltage vp is
Vi = 2wsM |cos(Tr/6)| L = V/3wsM L. (10.16)

Vpr is the same as the peak voltage for vc4. The second procedure may be
preferable because it is more precise to align the rotor using a zero crossing

than using a maximum.

10.4 Single-phase line-to-2 line excitation on a
three-phase rotor
Assume that single-phase excitation is applied to the rotor from winding X to

windings Y and Z tied together. Let vgp and igp be the voltage and the current

applied to the rotor in this manner. Then

URX — URY = URD, VURY = VRz, irx = —(iry +%irz) = irD-
(10.17)
Let
irg = (iry —irz) V3. (10.18)
Then,
» % i B
iy = w ing = mf\% (10.19)
Overall
IRX . 1 0
iRy = ]\/f[LQL ( ;RD > s where ]\/f[LQL = *1/2 \/5/2 .
irz fe ~1/2 —/3/2 ] (10.20)

The expressions for the stator fluxes (3.4)-(3.6) become

. 7
g = Lggis + Lsp(0)Mrar ( D >
ZRQ

cos(npt) cos(npf +/2) ( irD >

Lssis + Mp | cos(npl —27/3) cos(npf — 7/6)
cos(npf +27/3) cos(npd — 57/6) 'RQ

(10.21)
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where Mp = (3/2)Mggr = M. On the side of the rotor, let

YrD Vrx
( o ) =M | Yry |, (10.22)
' YRz

so that

( YrD ) = My LEg(0)is + My LrrMroar ( Zzg )

VRq
B < cos(nph) cos(npl —2w/3) cos(npl + 27/3) ) .
= P cos(npf 4+ 71/2)  cos(nph — 7/6) cos(npbh — 5m/6) ) °

LD 0 iRD
+< 0 Lo > ( ing > ) (10.23)
where LD = LQ = (3/2)(LRW - j\/[RW) = (3/2)LR AISO7
d .
E < :/b)ljzg > = j\/IEQL (UR — RRZR)
= ( U?)D ) — RR]WLTQLAC{LZL ( Zzg )

= ( VD — Fpirp > 7 (10.24)
—Rqirg
where Rp = Rg = (3/2)Rpg.

The characteristics are the same as those of the machine with a two-phase
rotor in Section 9.2, with the D winding connected to the supply and the @
winding short-circuited (vrg = vgy —vgz = 0). Parameters are converted using
Rp = (3/2)Rg, Lp = (3/2)(Lrw — Mrw) = (3/2)Lg, and Mp = (3/2)Mggr =
M. As expected, the line-to-2 line resistance and the line-to-2 line inductance are
1.5 times the winding resistance and the winding inductance. The parameter Mp
is smaller than in the line-to-line connection. Thus, the stator voltage induced
for a given rotor current is smaller for the line-to-2 line connection than for the
line-to-line connection. Note that the transformation using Moy is similar to
the equal vector 3—2 transformation, but it represents here a physical connection

of the machine, as opposed to an algebraic definition.

10.5 Symbolic code
The code below produces the results of (10.2), (10.4), (10.21), and (10.23).

h
% Symbolic code for DFIM with single-phase excitation
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%

syms lsr msr np th lrr lrw mrw 1srll lrrll 1srl2l 1lrrl2l real

%

% Original model

%

a=2%pi/3;

1lsr=msr*[cos(np*th) cos(np*th+a) cos(np*th-a);
cos(np*th-a) cos(np*th) cos(np*th+a);
cos(np*th+a) cos(np*th-a) cos(np*th)];

lrr=[lrv mrv mrw;mrwv lrw mrw;mrw mrw lrw];

%

% Line-to-line excitation

%

1srll=simplify(1lsr*[0;1;-1])

lrrll=simplify([0 1 -1]*1lrr*[0;1;-1])

%

% Line-to-2 line excitation

%

ml21=[1 0;-1/2 sqrt(3)/2;-1/2 -sqrt(3)/2];

1srl21l=simplify(lsr*ml21)

lrrl121=simplify (m121’*1lrr*ml21)



Chapter 11

Non-Symmetric 2-Phase
Induction Machines

11.1 Objective

The objective of this chapter is to obtain a model for the two-phase induction
machine shown in Fig. 11.1, where the rotor windings are assumed to be iden-
tical, but the stator windings are different from each other. The configuration
arises with capacitor-start single-phase induction motors, or with generators

using these machines [18]. The results of the chapter:
e give a model of the machine in phase variables.
e derive a simpler model in stator coordinates.

e show that a special configuration of a three-phase machine is equivalent

to a non-symmetric two-phase machine.

11.2 Model in phase variables

Define vectors of stator voltages, stator currents, and stator total flux linkages

_<)_()v—(j) (1L1)

Rotor variables are defined as

Gl €D IR G B € L

The electrical equations describing the machine are

di R 0 . dy .
s = vg — ( OA Ry )7,5, % =vp — Rpig, (11.3)
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Figure 11.1: Two-phase induction motor

where R4, Rp are the resistances of the stator windings, and Rpg is the resistance
of the rotor windings.

Based on the geometry of the motor, we assume that the total flux linkages

( j;; ) — L(0) ( ;i ) 7 (11.4)

1=, ). (11.5)

L 0 L 0
Lss = (OA LB>7LRR—< OR' LR)

Len(0) — Ma cos(npf) —Masin(npf)
SR n Mpgsin(npf) Mpcos(npd) |-

have the form

where

and

(11.6)

The self-inductances of the stator and rotor windings are denoted L4, Lg, and
Lg, respectively. The mutual inductances between stator and rotor windings,
when aligned, are denoted M4 and Mp. It is assumed that there is no mutual
inductance between stator windings A and B, as well as between rotor windings
X and Y.

The electrical equations of the machine are

isA Usa — Raisa
d iSB vsp — Rpisp
— | L(6 . = ; . 11.7
dt ) iRx vRrx — RRipx (117)

iRy vRy — Rpigy
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An explicit model is

isA vsA — Raisa
d | iss | _ L0) vsp — Rpisp
dt | irx vrx — RRipx
iRY vRy — RRgigy

M (irx sin(npf) + igy cos(nph))
AL{B (*Z‘RX COS(TLPQ) + iRy sin(npe))
j\/fAiSA sin(npﬂ) — j\/[BiSB COS(TLPQ)
Mpiga COS(TLPH) + Mpigp sin(npﬁ)

+ npw .
(11.8)

The general formula for the torque of an electric machine (1.7) gives

ILsr(0) ( iRX >

(isa ism )789 iny

—npMyisa (irxsin(npf) + igy cos(npd))

™

+npAL{BiSB (Z‘RX COS(TLPQ) - iRy Sin(npe)) . (119)

11.3 Model in stator coordinates

The rotor currents may be expressed in a coordinate frame attached to the

stator, so that

( zzg ) = U"(0) ( zf;;‘ ) (11.10)
where
U0 = (mtned) ooty ) (1L1)

Then, (11.4)-(11.6) give

tsa = Laisa+ Maira
Ysp = Lpgiss + Mpigs (11.12)
and
LAiiSA + N[AiiRA = vsa— Raisa
dt dt
LopLin+ MpLing = vsp— Ry isp. (11.13)
dt dt ™

On the rotor side

(i) = oo (i)

— UT(0)LE0) ( isa > +UT(0) Ln ( IRX ) . (11.14)

5B LRY
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which gives

YRaA
YrB

Muisa+ Lriga
Mpiss + Lrigs. (11.15)

For the time derivative

d d d
() - oo (U)o ()
uTo) (") — rauT(0) (7
URY tRY
w0 5 Yoo ()
( Vpa — RRiRa — Npwirp )
vpp — Rpipp +npwipa |

(11.16)
Combining (11.15) and (11.16)

ai/)RA = ]V[AalSA + LREZRA = vpa — Rrira — npw(Mpisp + Lrirp)

d . d . . ) .
E¢RB = ]WBEZSB + LREZRB = vrp — Rpirp + npw(Maisa + Lriga).

(11.17)
Overall model: the electrical equations of the machine become
LA 0 A/[A 0 Z‘SA
0 Lp 0 Mp |d| iss
My 0 Lrg O dt | ira
0 Mg 0 Lpg IRB
vsA — A isa
vsp — Rp isp
= . . . . 11.18
vpa — Rp ipa — npw (Mpisp + Lrirp) ( )
vgB — RR irp + npw (]\/i[AiSA + LRiRA)
The torque (11.9) becomes
™ — Np (A/[BigBiRA - ]V[AiSAiRB) . (1119)

11.4 Three-phase machine as a non-symmetric
two-phase machine

Consider a three-phase induction machine with a stator connection as shown on

Fig. 11.2. Note that one must have access to the individual windings for this
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iso
+o—0 )
ISE
>0
A%
SO Y
Cc - Vs +

Figure 11.2: Three-phase machine operated as a two-phase machine

implementation, or to the neutral if the machine is Y-connected. The configu-
ration has been considered for power generation, where excitation is applied at
the terminal with voltage vgg and current igg, and power is produced at the
terminal with voltage vso and current igo [11].

The connection is such that

<USE>_< Vs A ) (%‘E)_(ZSA) iSC:_iSB
V50 vsp —Vsc )\ iso isp )’ (11.20)

Define
USE . ISE
vp = Jip = . . 11.21
= () =) atan

With vs and ig denoting the vectors of stator voltages and currents of the three-

phase machine, one has that

Vr = ]\/ﬁ[1US7 iT = ]\/ﬁ[gis, (1122)
where
10 0 100
(100 s (100)
Given that isc = —igp, one also has that

is = Mip. (11.24)

Chapter 9 showed that three-phase and two-phase rotors were equivalent.

Modeling the squirrel-cage rotor as a two-phase rotor for convenience (with

% (( é%Si(@) éif%(e) ) ( Z )) - ( ?iSR_DZSiS ) ’ (11.25)

VR = 0)7
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where the inductance matrices are given by (9.5) and (9.6). Multiplying the first
line of (11.25) by M, and using (11.22) with (11.24), the equations transform
to

d (( My LssMT M, Lsr(9) > ( ir >> B ( vy — My RgMLip >
dt \\ L§p(O)M{" Lgr ir —fipir (11.26)

Computing the expressions and returning to the components of the vectors, one
finds that

iSE vse — Rs isk
d is50 vso — 2Rs iso
— | Ly(0 . = . 11.27
dt 2(0) irRD —Rp igp ’ ( )
TRQ —Rp irg
where
Lsw 0 Mp cos(npb)
Lo(0) 0 2(Lsw — Msw) V3Mpsin(nph)
2 Mpcos(npb)  /3Mp sin(np) Lp
—Mpsin(nph) /3Mp cos(npf) 0
—Mpsin(np0)
V3Mp cos(nph) (11.28)
0 .
Lp

The equations of the machine are the same as those of the non-symmetric two-
phase machine (11.5), (11.6), (11.7), if one replaces £, O, D, Q by A, B, X, Y,
Lo(6) by L(), and use the parameters

Ry = Rg, Rp=2Rs, La= Lsw, Lp=2(Lsw — Msw),
M, = Mp, My —=+3Mp, Rp = Rp, L = Lp. (11.29)

11.5 Symbolic code

The code below produces the results of (11.28).

h

% Symbolic code for a 3-phase induction machine

% operated as a 2-phase machine

h

syms lss lsw msw lrr 1d 1lsr md np th rs 12ss 12sr r2s real

%
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% Original model
yA
a=2*pi/3;b=pi/2;
1ss=[lsw msw msw;msw lsSw mMSW;msw msw lsw];
lrr=[1d 0;0 1d];
1sr=md* [cos (np*th) cos(np*th+b);
cos (np*th-a) cos(np*th-a+b);
cos(np*th+a) cos(np*th+a+b)];
%
% Transformed model
yA
mi=[1 0 0;0 1 -1];
m2=[1 0 0;0 1 0];
12ss=simplify(mi*lss*ml’),
12sr=simplify(ml*lsr),

r2s=simplify (ml*rs*ml’),

97



Chapter 12

Hybrid Motor

12.1 Objective

The objective of this chapter is to derive a model for the hybrid motor shown in

Fig. 12.1. The motor is a two-phase permanent magnet synchronous motor with

reluctance torque. The schematic is also representative of interior permanent

magnet motors (IPM). The results of the chapter:

e give a model of the machine in phase variables.

e derive a model in DQ variables.

Figure 12.1: Hybrid motor

12.2 Model in phase variables

The model of the motor is
W _

dt dt

99

d
va — RiA, ﬁ = Up — RiB.

(12.1)
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According to (1.2), assume that
Ya ) _ o)+ L) | ), (12.2)
(0] ip

where 1) is the flux linkage in a winding due to the PM when the magnet is

aligned with the winding, and

_( cos(nph)
D(9) = ( sin(np0) ) . (12.3)
Using (2.21),
[ Lo+ Licos(2npf) Lysin(2nph)
L) = < Ly sin(2np0) Lo — Licos(2npb) )’ (12.4)
for some Ly > Ly > 0.
The model can be expressed as
d iA VA — RiA 8D(9) 6L(9) iA
LO)— | . = , — e SOAY
Udt(m) (UB—RzB “WOTa T an g ’(125)
where
aD) — sin(npf)
o0 " cos(npd)
oL®) —sin(2nph) cos(2nph)
00 2npla < cos(2npf) sin(2npd) |- (12.6)

Using (1.7), the torque is
.. \0D@) 1,. . (0L [ iy,
™ = 1/)0( A B )Wﬁ-g( 1A B )W iB
= —Kigsin(npl) + Kip cos(npb)
+npLy ((—i% + i%) sin(2npd) + 2iaip cos(2nph)) , (12.7)

where K = npty.

12.3 Model in DQ variables

The DQ model is obtained using the DQ transformation
Yq ) ( Ya >
=U(# , 12.8
() =ver( (128)

U(e)_< cos(npf)  sin(npf) ) (12.9)

—sin(npfh) cos(npbd)

where
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The inverse transformation is

( ig ) — U (0) ( ij ) . (12.10)

In other words, U~1(8) = UT(9).
Differentiating (12.10), one finds

d () _ d ([ ta oUT(0) ( q
() () ()

where

—sin(npf)  cos(nph)

g = ( ~cos(np) — sin(npf) ) : (12.12)

Therefore

d d ouT(p

() = vog (U)o 52 ()

va — Ri 0 —1 Y
vor (i) (1)) (0)

_ ( va = Rig+ npwiy ) . (12.13)

Vg — Rig — npwipy

The DQ fluxes are given by

(wd) - 1/10U(9)D(9)+U(9)L(9)UT(9)(z:d)

Py lq
_ (o Ly O iq
= ( o )+ o)L ) (12.14)
where
Lao=Lo+ Ly, Ly=Lo— Ly. (12.15)

The DQ model of the hybrid motor becomes

di . .
dd_: = wvg — Rig+npwlgi,
Lq% = v, — Ri, — npwlgiq — Kw. (12.16)
After simplifications, the torque is
o oD@y 1, . . OL(9) iq
™ = 1/)0( 14 Zq )U(Q)W—i_i( 14 Zq )U(Q)WUT(Q) Z.q
= K iq + np(Ld - Lq) id iq. (1217)

The first component of the torque is due to the permanent magnet, while the

second component is the reluctance torque.
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12.4 Symbolic code
The code below produces the results of (12.13), (12.14), and (12.17).

h

% Symbolic code for the hybrid motor

h

syms u np th d 1 10 11 du dl dd udut ulut idq id iq ...

tm psiO ud delta udldqudt ifg ifc ig tm k real

h

u=[cos(np*th) sin(np*th);-sin(np*th) cos(np*th)];

d=[cos (np*th) ;sin(np*th)];

1=[10+11*cos (2*np*th) 1l1*sin(2xnp*th);llxsin(2*np+*th)
10-11*cos(2*np*th)];

du=diff (u,th);dd=diff(d,th);dl=diff(1,th);

udut=simplify(u*du’)

ulut=simplify(u*l*u’)

idg=[id;iq];

tm=simplify(psiO*idq’*u*dd+0.5%idq’ *uxdl*u’*idq)
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