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ADAPTIVE HARMONIC STEADY-STATE DISTURBANCE REJECTION

WITH FREQUENCY TRACKING

S. Pigg and M. Bodson

ABSTRACT

The paper is concerned with the rejection of sinusoidal disturbances

of unknown frequency acting at the output of unknown plants. Disturbance

rejection is based on an adaptive harmonic steady-state (ADHSS) algorithm

combined with a magnitude/phase locked-loop (MPLL) frequency estimator.

The harmonic steady-state method assumes that the plant can be approximated

by its steady-state frequency response. For high-order plants such as those

encountered in active noise and vibration control (ANVC), this assumption

greatly reduces the number of parameters and enables online estimation of the

plant response using simple algorithms. The paper shows that when the MPLL

is integrated with the ADHSS algorithm, the two components work together in

such a way that the control input does not prevent frequency tracking by the

MPLL and so that the order of the ADHSS can be reduced. Thus, the addition

of the MPLL allows disturbances of unknown frequency to be considered

without significantly increasing the complexity of the original ADHSS. After

analyzing the reduced-order ADHSS in the ideal case, the equations describing

the complete system are considered. The theory of averaging is used to gain

insight into the steady-state behavior of the algorithm. It is found that the

system has a two-dimensional equilibrium surface such that the disturbance

is exactly cancelled. A subset of the surface is proved to be locally stable.

Extensive active noise control experiments demonstrate the performance of the

algorithm even when disturbance and plant parameters are changing.

Key Words: adaptative control, disturbance rejection, unknown plant,

frequency estimation

I. Introduction

The paper considers an adaptive algorithm for the

rejection of sinusoidal disturbances of unknown/time-

varying frequency acting on unknown/time-varying

systems, with particular focus paid to issues arising

in active noise and vibration control (ANC, AVC, or

ANVC) applications. This problem is a difficult one

for which few practical solutions exist in the literature,
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especially considering that ANVC plants are often

of high order, and sometimes with significant delay.

Time-varying plants are not very frequent, but are

occasionally encountered. For example, [10] discusses

the cancellation of high-frequency noise in headsets,

and reports that small movements in the headset

position can create significant changes in the secondary

path dynamics (i.e., the plant). In particular, due to the

short wavelength associated with high-frequencies, the

phase of the frequency response may change by more

than 90 degrees with small movements of the headset.

A new adaptive feedforward controller for the rejection

of periodic disturbances can be found in [3]. Unlike [3],

sytems of the pure feedback type are considered in this

paper.
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When the plant is known (possibly measured in

a preliminary experiment with white noise), a typical

solution in ANVC is based on the well-known filtered-

X LMS (FXLMS) algorithm. Therefore, it is natural

that methods for time-varying plants [4] [13] to provide

online plant estimation for this algorithm. While the

adaptive methods have been shown to work, they

are computationally intensive and require the injection

of a significant amount of white noise to provide

sufficient excitation. Stability of the algorithms is also

rarely addressed due to the difficulty in decoupling

the two components of the algorithm. [12] analyzes

the FXLMS algorithm with online secondary path

modeling and narrowband disturbances, and derives a

closed form expression for the mean squared error of the

cancellation error in the presence of estimation errors.

It is shown that stability requires that the phase of

the frequency response of the secondary path must be

within 90◦ of the estimated path’s frequency response.

A more recent and original approach can be

found in [6]. The algorithm extends the known

frequency/unknown system algorithm of [5] by adding

frequency estimation. The algorithm has been shown to

work under certain random variations in the unknown

parameters. We have found in simulations that a large

amount of measurement noise was sometimes needed

to insure stability. [6] is based on a steady-state

approximation of the plant’s response to sinusoidal

signals. This paper follows a similar approach, but uses

different control and frequency estimation algorithms.

An adaptive harmonic steady-state (ADHSS) algorithm

for disturbances of known frequency [8] is used with

a magnitude/phase locked loop approach for frequency

estimation [11]. In [1], the MPLL algorithm is used

for the rejection of disturbnces consisting of two

unknown frequency components when the system’s

plant is known. After investigating a reduced-order

ADHSS, the overall system consisting of the reduced-

order ADHSS and the MPLL is considered. Equilibrium

points of the system are found that ensure perfect

rejection of the disturbance in ideal conditions, and

local stability is guaranteed under certain conditions.

Finally, multiple active noise control experiments

with variations in plant and disturbance parameters

demonstrate the performance of the algorithm under

challenging conditions.

II. Problem Statement

Consider the feedback system shown in Fig. 1. The

output of the plant

y(t) = P (s)[u(t)] + p(t) (1)

is fed back in order to determine the control signal u(t)
needed to reject the sinusoidal disturbance p(t). The

notation P (s)[(·)] represents the time-domain output

of the system with transfer function P (s). P (s) is

assumed to be a bounded-input-bounded-output stable

linear time-invariant system, but is otherwise unknown.

Although the plant is fixed in the analysis, experiments

have shown that the use of adaptation allows the plant

to vary significantly over time [8]. The compensator C
is generally a nonlinear and time-varying control law

consisting of a parameter identification scheme and a

disturbance cancellation algorithm.

Fig. 1: Feedback control system.

The disturbance is written as

p(t) = m∗ cos(α∗
1
(t)) (2)

where

α∗
1
(t) = α∗

1
(0) +

∫ t

0

ω∗
1
dτ (3)

and ω∗1 is the true frequency of the disturbance. m∗ is

an unknown magnitude. The control signal is written as

u(t) = θc cos(ω1t) + θs sin(ω1t) = wT1 (t)θ (4)

where

θ =

(
θc
θs

)
, w1 =

(
cos(α1(t))
sin(α1(t))

)
(5)

and

α1(t) =

∫ t

0

ω1(τ)dτ (6)

ω1 is an estimate of the disturbance.frequency. In [8], an

HSS algorithm was used for determining an appropriate

control vector θ when the plant P (s) is unknown and the

disturbance frequency is known exactly, i.e. ω1 = ω∗1. In

this paper, it is shown how the HSS algorithm of [8] can

be simplified and extended for consideration of the case

where ω∗
1

is not known.

c© 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
Prepared using asjcauth.cls



S. Pigg and M. Bodson: ADHSS disturbance rejection with frequency tracking 3

III. Adaptive algorithm for known frequency

3.1. ADHSS algorithm

We first review the adaptive harmonic steady-state

algorithm (ADHSS) of [8] for the rejection of sinusoidal

disturbances of known frequency affecting unknown

plants. The disturbance was expressed in terms of its

cos and sin components as

p(t) = wT1 (t)π (7)

with

π =

(
pc
ps

)
(8)

where pc and ps are unknown parameters. Note that this

expression is equivalent to (2) for

(
pc
ps

)
= m∗

(
cos(α∗1(0))
− sin(α∗

1
(0))

)
(9)

ω1 = ω∗1 (10)

For fixed parameters, the steady-state output of the plant

was written

yss(t) = wT1 (t) (Gθ + π) (11)

where

G =

(
PR PI
−PI PR

)
(12)

and PR, PI are the real and imaginary parts of

the plant’s frequency response evaluated at ω1, i.e.,

P (jω1) � PR + jPI . It was shown that (11) can be

rewritten as

yss(t) =WT (t, θ)x∗ (13)

where

W (t, θ) =

(
θc θs 1 0
θs −θc 0 1

)T
w1(t) (14)

is a so-called regressor matrix and

x∗ =
(
PR PI pc ps

)T
(15)

is a vector of unknown parameters. From the linear

expression (13), a gradient algorithm given by

ẋ = −gW (t, θ)
(
WT (t, θ)x− y

)
(16)

was used to obtain an estimate x of the unknown vector

x∗. The control input was determined from the estimate

x using

θ(x) = −

(
x1 x2
−x2 x1

)−1(
x3
x4

)
(17)

3.2. Properties of the ADHSS system

Justification for the steady-state approximation and

further stability properties were obtained in [8] through

application of averaging theory. A significant result of

the application of averaging theory is the fact that the

nonzero eigenvalues of the linearized averaged system

around an equilibrium point lie in the open left-half

plane if and only if

x1x
∗

1 + x2x
∗

2 > 0 (18)

For the reverse sign, the eigenvalues lie in the open

right half plane. The stability condition means that the

difference of phase between the estimated plant model

and the true plant dynamics must be less than 90◦.

The condition is the same as for the filtered-X LMS

algorithm, but the difference is that the instability for

phase difference greater than 90◦ is only local, and the

nonlinear dynamics ensure that trajectories originating

close to the unstable equilibrium points eventually

converge to the stable subset of the equilibrium surface

[8].

3.3. Effect of a frequency error

Unfortunately, the adaptive algorithm does not

tolerate well a frequency error. To explain this

characteristic, reconsider the disturbance as given by

(2). ω1 and α1 continue to be the frequency and

phase estimates used by the adaptive algorithm, and its

equations remain unchanged. Note that the disturbance

can be written as

p(t) = m∗ cos(α1(t) + (α
∗

1(t)− α1(t)))

= wT
1
(t)π(t) (19)

where

π(t) =

(
pc(t)
ps(t)

)
= m∗

(
cos(α(t)− α∗1(t))
sin(α1(t)− α∗

1
(t))

)

(20)

Thus, (7) and (11) remain valid, but with the vector

π and its components pc and ps becoming functions

of time. For small frequency error, the disturbance

vector π slowly rotates in the two-dimensional space.

This creates a drift of x with time causing a bursting

of the control signal u(t) and of the error e(t). This

demonstrates the necessity of obtaining an accurate

estimate of the disturbance frequency.
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IV. Use of frequency estimation

4.1. Magnitude/phase-locked loop frequency

estimator

First assume that the control signal is equal to

zero. Then, the output y(t) is equal to the disturbance,

which is assumed to be of the form (2). The algorithm

reconstructs estimates m(t), α1(t) and ω1(t) that yield

an estimate of the output of the plant

ŷ(t) = m(t) cos(α1(t)) (21)

Defining the signal estimation error

e(t) = y(t)− ŷ(t) (22)

and the vector
(

ec(t)
es(t)

)
= 2

(
cos(α1(t))
− sin(α1(t))

)
e(t) (23)

the rest of the MPLL algorithm is given in the Laplace

domain by

m(s) =
gm
s
ec(s)

ω1(s) =
gω
s
es(s)

α1(s) =
ks+ 1

s
ω1(s) (24)

where gm, gω, and k are positive constants [2]. Note that

(6) is now replaced by

α1(t) = kω1(t) +

∫ t

0

ω1(τ)dτ (25)

Other equations remain the same and, except for a bias,

the phase estimate α1 is the integral of the frequency

estimate in steady-state. The benefit of a nonzero k
will become obvious later. In [11], it was shown that a

linearized approximation of 24 is stable for all positive

values of the design parameters k, gω gm.

4.2. Interaction of MPLL with ADHSS algorithm

With a control input of the from (4), (23) becomes

AV E

[(
ec
es

)]
=

(
m∗ cos (α1 − α∗

1
)−m

m∗ sin (α∗1 − α1)

)

+

(
x∗1θc + x∗2θs
x∗
2
θc − x∗

1
θs

)
(26)

As such, the linearized system is described by the same

characteristic polynomials and is stable under the same

conditions. Further, as long as the control signal is

at the MPLL frequency, it is rejected by the MPLL.

Nevertheless, there is a catch, in that the equilibrium

state is shifted and m and α1 satisfy different nonlinear

equations

m−m∗ cos (α1 − α∗1) = x∗1θc + x∗2θs

m∗ sin (α1 − α∗
1
) = x∗

1
θs − x∗

2
θc (27)

Note that m(t) is an estimate of the magnitude of

y(t) and, due to the control signal, not an estimate of

m∗.Therefore, a new necessary and sufficient condition

for the existence of an equilibrium of the MPLL is that
∣∣∣∣
x∗
2
θc − x∗

1
θs

m∗

∣∣∣∣ < 1 (28)

In other words, the effect of the control signal on

the output must not be greater than the disturbance

magnitude for phase-lock to be possible.

Also, (27) and (20) indicate that, if phase-lock

occurs,

−PIθc + PRθs + ps = 0 (29)

This equation is the second equation of Gθ + π = 0,
which guarantees perfect disturbance cancellation.The

first equation is

PRθc + PIθs + pc = 0 (30)

and does not involve ps. In other words, cancellation

of the disturbance can be achieved in a combined

algorithm regardless of x4, the estimate of ps. In

particular, the parameter x4 can be set to zero, which

is equivalent to assuming that ps = 0. In reality, ps
is not zero, but the phase of the MPLL converges

to a value such that one may make this assumption

in the ADHSS. For this reason, we now consider an

ADHSS algorithm with 3 parameters instead of 4, i.e.,

an ADHSS algorithm that assumes a known phase of

the disturbance signal.

4.3. ADHSS with known frequency and phase

The ADHSS algorithm for known phase is

obtained by dropping the parameter x4 in the previous

algorithm so that x is now a column vector with only 3
elements. The result is a simpler algorithm. The vector

of control parameters becomes

θ(x) =

(
θc(x)
θs(x)

)
= −

1

x2
1
+ x2

2

(
x1x3
x2x3

)
. (31)

The vector of unknowns is

x∗ =
(
PR PI m∗

)T
(32)
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and the regressor used for adaptation is

W (t, θ) = E(x)w1(t) (33)

where

E(x) =

(
θc(x) θs(x) 1
θs(x) −θc(x) 0

)T
(34)

Other equations of the algorithm remain the same as

Sec. 3.1. Averaging theory can be used to analyze this

system as in [8]. The averaged system corresponding to

the adaptive system is simply

ẋ = −
g

2
E(x)ET (x) (x− x∗) (35)

4.3.1. Equilibrium subset

It can be shown that the equilibrium set can be

parameterized as a function of a single variable. For

example, if x∗
1
�= 0, one can express x2 and x3 as

functions of x1 with

x2 =
x∗
2
x1

x∗
1

, x3 =
x∗
3
x1

x∗
1

(36)

In general, the set of equilibrium points is a line

connecting the origin of the three-dimensional state-

space and the nominal parameter x∗. Any equilibrium

of the averaged system is also an equilibrium of the

original system. It can also be shown that equilibrium

points as described by (36) are such that

(
θc(x)
θs(x)

)
= −

1

x∗2
1
+ x∗2

2

(
x∗1x

∗

3

x∗
2
x∗
3

)
=

(
θ∗c
θ∗s

)

(37)

In other words, an equilibrium point corresponds to a

control parameter vector equal to the nominal one, and

results in exact cancellation of the disturbance.

4.3.2. Local stability of equilibrium points

Linearizing (35) with (34) around an equilibrium

state x, the following eigenvalues can be computed

λ1 = 0, λ2 = −g
x∗
i

xi

x∗2
3

x∗2
1
+ x∗2

2

,

λ3 = −g
x∗
i

xi

(
1 +

x∗2
3

x∗2
1
+ x∗2

2

)
(38)

where i = 1, 2, or 3 (whichever corresponds to a

nonzero xi) Thus, the condition for stability of an

equilibrium point is that

sign(xi) = sign(x∗i ) (39)

which means that the equilibrium point is stable if it is

on the same side of the origin as the nominal parameter

x∗. A corresponding orthogonal set of eigenvectors is

given by

v1 =




x∗1
x∗
2

x∗3



 , v2 =




−x∗2
x∗
1

0



 ,

v3 =




x∗1x

∗

3

x∗
2
x∗
3

−x∗2
1
− x∗2

2



 (40)

Note that |λ2| < |λ3| and may be much smaller if x∗2
3
�

x∗2
1
+ x∗2

2
. In such cases, convergence of the state x3

(the estimate of the disturbance magnitude) occurs fast,

followed by a slower convergence within the x1 − x2
plane.

4.3.3. Trajectories of the averaged system

Consider the following assumption.

Assumption 1 Assume that trajectories of the original

and averaged system are such that x2
1
+ x2

2
� δ

for some δ > 0.

Using the Lyapunov function v = ‖x(t)− x∗‖2, one

finds that v̇ ≤ 0 and

‖x(t)− x∗‖ ≤ ‖x(0)− x∗‖ (41)

Since x and ẋ are bounded (using (35) and

Assumption 1) and ET (x)x∗ = 0, one may deduce

that ET (x) (x− x∗)→ 0 as t→∞, and therefore the

equilibrium line is reached and the disturbance is

asymptotically cancelled. Using v = ‖x(t)‖2, one finds

that v̇ = 0, so that

‖x(t)‖ = ‖x(0)‖ (42)

for all t. Because all trajectories converge to the

equilibrium line, the steady-state value of x must satisfy

(36) as well as (42). Combining the equations, one gets

the remarkable property that, asymptotically

xi = x∗i
‖x(0)‖

‖x∗‖
, for all i (43)

The reverse sign is also allowed by the equations, but

the stability property determines that the positive sign

must be used. Thus, trajectories of x travel along the

sphere that is centered at the origin and includes x(0),
and eventually converge to the intersection of the sphere

with the line connecting the origin to x∗, on the same

side as x∗.
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Prepared using asjcauth.cls



6 Asian Journal of Control, Vol. 00, No. 0, pp. 1–10, Month 2011

4.3.4. Illustrative simulations

The simulation highlights the stability properties

of the adaptive system. The disturbance frequency is

now ω∗
1
= 320π. The plant is the same, the adaptive

gain g = 100 and

x∗ =
(
0.7471 .1548 0.1

)T
(44)

The initial vector is

x(0) =
(
−1 1 0

)T
(45)

and corresponds to an initial estimate of the phase of the

plant

tan−1(x2(0)/x1(0)) = 135
o (46)

while the actual phase of the plant is

tan−1(x∗
2
/x∗

1
) = �P (jω∗

1
) = 11.7o (47)

The phase difference of 123.3o is beyond the 90o angle

condition. The state trajectory can be seen in Fig. 2.

Although initially diverging from the unstable half of

the line, the trajectory eventually reaches the stable

side. As predicted from the stability analysis, there

is a slower mode of convergence within the x1 − x2
plane that corresponds to a near constant value of

x3. Although not shown, it was verified that ‖x(t)‖ =
‖x(0)‖ .

Fig. 2: State trajectory and relation to the line

equilibrium..

V. Adaptive algorithm with unknown frequency

and unknown plant

5.1. Adaptive algorithm and averaged system

The algorithm for the general problem of unknown

frequency and plant is obtained by combining the

MPLL algorithm with the (reduced) ADHSS algorithm

for known phase and frequency, resulting in the

differential equations

ẋ = −gE(x)w1(t)
(
wT
1
(t)ET (x)x− y

)

ṁ = 2g
m
cos(α1)(y −m cos(α1))

ω̇1 = −2g
ω
sin(α1)(y −m cos(α1))

α̇1 = ω1 − 2kgω sin(α1)(y −m cos(α1)) (48)

with positive constants g, g
m

, g
ω

, and k, and the

algebraic equations (4), (31), and (34) with

w1(t) =

(
cos(α1(t))
sin(α1(t))

)
(49)

Taking A, B, and C to be the matrices of a minimal

state-space realization of the plant, so that P (s) =
C(sI −A)−1B, the overall equations describing the

system are given by

ẋP = AxP +Bu = AxP +BwT
1
(t)θ(x)

y = CxP +m∗ cos(α∗
1
)

= CxP +m∗w1(t)

(
cos(α1 − α∗

1
)

sin(α1 − α∗1)

)

α̇∗1 = ω∗1 (50)

The overall system is described by complex,

nonlinear time-varying differential equations. Again,

averaging theory presents the best prospect for an

approximation that would give insight into the dynam-

ics of the system. The two components of the controller

were already studied using averaging and were shown to

possess desirable stability properties. It remains to show

that their combination, including coupling effects, does

not produce undesirable interactions (at least close to

the nominal operating mode).

In previous analyses, the effect of the ADHSS

on the MPLL was included in the averaging analysis,

but the effect of a phase error on the known phase

ADHSS was not. A correction term must be added

in the averaged system, similar to what was done to

study the effect of a frequency error on the 4-parameter

ADHSS algorithm. Since

p(t) =m∗wT1 (t)

(
cos(α1 − α∗

1
)

sin(α1 − α∗1)

)
(51)
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instead of

p(t) = m∗ cos(α1) (52)

the correction term to be added to the steady-state

output is

∆yss = m∗wT
1
(t)

(
cos(α1 − α∗1)− 1
sin(α1 − α∗

1
)

)
(53)

Adding the correction term to yssand substituting

δα1 = α1 − α∗1, and δω1 = ω1 − ω∗1, the overall aver-

aged system becomes

ẋ = −
g

2
E(x)ET (x) (x− x∗) (54)

+
g

2
m∗E(x)

(
cos(δα1)− 1
sin(δα1)

)

ṁ = gm (m
∗ cos (δα1)−m+ x∗

1
θc + x∗

2
θs)

δω̇1 = −g
ω
(m∗ sin (δα1)− x∗

2
θc + x∗

1
θs)

δα̇1 = δω1 − kg
ω
(m∗ sin (δα1)− x∗2θc + x∗1θs)

5.2. Equilibrium points

Since ET (x)x = 0, the equilibrium points are

determined by

ET (x)x∗ +m∗

(
cos(δα1)− 1
sin(δα1)

)
= 0 (55)

m∗ cos (δα1)−m+ x∗
1
θc + x∗

2
θs = 0 (56)

m∗ sin (δα1)− x∗2θc + x∗1θs = 0 (57)

δω1 = 0 (58)

Expanding (55) and using x∗
3
=m∗, one finds that (55)

is equivalent to

θcx
∗

1 + θsx
∗

2 +m∗ cos (δα1) = 0 (59)

θsx
∗

1 − θcx
∗

2 +m∗ sin (δα1) = 0 (60)

(56) and (59) imply that the disturbance is cancelled.

(57) and (60) are identical, which means that the

equilibrium set, instead of being one-dimensional is

actually two-dimensional, similar to the 4-parameter

ADHSS.

Using the expression for (31), the conditions for

the equilibrium points can be written as

x3
x1x∗1 + x2x∗2

x2
1
+ x2

2

= m∗ cos(δα1)

x3
x2x

∗

1
− x1x

∗

2

x2
1
+ x2

2

= m∗ sin(δα1) (61)

If we define ‖P‖, ‖P ∗‖, φ, and φ∗ so that

x1 = ‖P‖ cos (φ)

x2 = ‖P‖ sin (φ) (62)

and

x∗1 = ‖P ∗‖ cos (φ∗) (63)

x∗
2
= ‖P ∗‖ sin (φ∗) (64)

the conditions become

x3
‖P ∗‖ cos(φ− φ∗)

‖P‖
= m∗ cos(δα1)

x3
‖P ∗‖ sin(φ− φ∗)

‖P‖
= m∗ sin(δα1) (65)

Due to the two-dimensional nature of the equilibrium

subset, one can pick two free variables. If we pick ‖P‖
and φ, x1 and x2 are given by (62) and δα1 and x3 can

take one of two possible values

δα1 = φ− φ∗ + nπ

x3 = (−1)n m∗
‖P‖

‖P ∗‖
(66)

with n = 0 or 1. Note that, for n = 0, the estimate of

the magnitude of the disturbance is correct and the

PLL phase error is zero if the estimate of the plant

is exact. In general, the estimate of the magnitude of

the disturbance is weighted by the ratio of the plant

magnitude to the plant magnitude estimate, and the PLL

phase error is equal to the plant phase error φ− φ∗.

For n = 1, the magnitude estimate changes sign and the

phase simply shifts by 180◦ to compensate for it.

5.2.1. Local stability of equilibrium points

The local stability of the equilibrium points can

be obtained by linearizing (54) around an equilibrium

state. This computation and others to follow are

best performed using a symbolic computation engine.

Allowing J to denote the Jacobian of the system

evaluated around an equilibrium, the characteristic

equation of the linearized system det(λI − J) = 0 has

the following form

λ2 (λ+ gm)
(
c3λ

3 + c2λ
2 + c1λ+ c0

)
= 0. (67)

The 2 eigenvalues at λ = 0 are associated with the

two-dimensional equilibrium subset, and the stable

eigenvalue at λ = −gm is associated with the state m,

which depends on but does not influence other states.

The stability of the three remaining eigenvalues can be

ascertained by considering the third-order polynomial
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with coefficients

c3 = 1

c2 = cos (φ− φ∗)

(
ga1 +

1

2
ga4 + (−1)

n 2kgωm
∗

)

c1 = (−1)n
1

2
gkgωm

∗ (a1 + a4) +
g2

4

(
a2
1
+ a2

2

)

+(−1)n gωm
∗ cos (φ− φ∗)

c0 = (−1)
n 1

2
ggωm

∗ (a1 + a4) (68)

where

a1 =
m∗2

‖P‖ ‖P ∗‖
, a2 =

m∗

‖P‖
(69)

a3 =
m∗2

‖P ∗‖
, a4 =

‖P ∗‖

‖P‖
(70)

By application of the Routh-Hurwitz test [7], when n =
1, c0 is negative indicating there are always eigenvalues
in the right-half plane. If n = 0,.the stability of the

system is guaranteed if and only if

|φ− φ∗| < 90◦ and c2c1 − c3c0 > 0 (71)

The condition c2c1 − c3c0 > 0 is equivalent to

cos2 (φ− φ∗) + b1 cos (φ− φ∗)− b0 > 0 (72)

where (reintroducing the original variables)

b1 = g
(
‖P ∗‖2 +m∗2

) 2kgω ‖P‖ ‖P ∗‖+ gm∗

4gω ‖P‖
2 ‖P ∗‖2

(73)

b0 =
g
(
‖P ∗‖2 +m∗2

)

g
(
‖P ∗‖2 +m∗2

)
+ gm∗2 + 2kgωm∗ ‖P‖ ‖P ∗‖

Therefore, (71) is satisfied if and only if

|φ− φ∗| < φ̄ (74)

where

φ̄ = cos−1

(√
b2
1
+ 4b0 − b1
2

)

(75)

φ̄ is well-defined and less than 90◦ because b1 > 0 and
1 > b0 > 0.

In conclusion, there is always a positive range of
angle φ around the nominal angle φ∗ for which the

system is stable. The range is reduced from the previous
range of ±90◦. It depends in a complicated manner on

the system parameters, and also on the location on the
equilibrium surface through the parameter ‖P‖. The

range becomes ±90◦ again if b0 → 0 or b1 →∞. This
condition is guaranteed as k →∞. Thus, for k chosen

sufficiently large, the stability region of the averaged
system approaches the same region as the ADHSS with

known frequency.

VI. Experiments

The performance of the algorithm was examined

through single-channel active noise control experi-

ments. The algorithm was coded in C and implemented

in a dSpace DS1104 digital signal processing board.

A sampling frequency of 8 kHz was used. A constant

amplitude sinusoidal disturbance with frequency of

180 Hz was generated by a loudspeaker, while the

control signal was produced by another loudspeaker. A

microphone was used to measure the cancellation error.

The plant consists of the hardware and transmission

in the environment from the control signal output

to the error microphone input. The experiments

were conducted in a small room where many signal

reflections are present. This is a challenging problem

that helps to illustrate the performance of the algorithm

in difficult conditions. The gain

g =




100 0 0
0 100 0
0 0 1



 (76)

was used.

6.1. Experiments with disturbances of time-varying

magnitude

In the following experiment, the frequency of the

disturbance and the plant were fixed, but the magnitude

of the disturbance m∗ varied significantly. Results are

shown where the disturbance goes away in three steps.

The goal of the experiment is to study the implications

of the phase-lock condition (28) for the combined

ADHSS/MPLL algorithm. (28) suggests that phase-

lock could be lost when the m∗ suddenly decreases.

However, the results show that the nonlinear dynamics

of the combined algorithm are able to adjust the

estimated parameters in such a way that phase-lock as

well as significant disturbance rejection are maintained.

Fig. 3 shows the disturbance, whose magnitude goes

away and then returns to its value roughly 1 second

later. The control signal changes in equal proportion,

and disturbance cancellation is maintained. Fig. 4

shows the states of the adaptive HSS. As one would

expect, the decrease in m∗ is reflected primarily in

x3. Fig. 5 shows the frequency estimate ω1. From the

oscillations in the frequency estimate of Fig. 5, it is

observed that the MPLL does not loose phase-lock until

the disturbance has gone completely away.
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Fig. 3: Disturbance, control signal, and the output of the

plant when the disturbance goes away in three steps and

then comes back.

Fig. 4: The states of the adaptive HSS when the

disturbance goes away in three steps and then comes

back.

6.2. Experiments with disturbances of time-varying

frequency

In the next experiment, the ability to deal with

a step change in the disturbance frequency was

investigated. Once the system reached steady-state,

the disturbance frequency was abruptly changed from

180Hz to 185Hz. Fig. 6 shows the frequency estimate,

which tracks the sudden change in the disturbance

frequency. Fig. 7 shows the output of the plant. When

the disturbance frequency changes, we note a small

spike in y(t). However, the system quickly recovers,

and significant disturbance rejection is maintained.

Fig. 5: The MPLL frequency estimate when the

disturbance goes away in three steps and then comes

back.

Fig. 6: Frequency estimate when the disturbance

frequency is stepped from 180Hz to 185Hz.

VII. Conclusions

An adaptive algorithm for the rejection of

a sinusoidal disturbance of unknown/time-varying

frequency acting at the output of an unknown/time-

varying plant was presented. The algorithm had a

disturbance rejection component based on an adaptive

harmonic steady-state algorithm that estimates the plant

frequency response at the disturbance frequency along

with the disturbance parameters. Because this com-

ponent required that the frequency be known exactly,

a second component providing frequency estimation

was added. It was found that the magnitude/phase-

locked loop algorithm used for frequency estimation
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Fig. 7: The plant output and control signal when

the disturbance frequency is stepped from 180Hz to

185Hz.

was able to deal with the effect of the control signal

on the plant output. Further, its properties enabled the

simplification of the ADHSS algorithm. Under steady-

state approximations, the MPLL is known to be locally

stable, while the ADHSS is globally stable.

The combination of the ADHSS and MPLL

resulted in an overall system described by 6 nonlinear

time-varying differential equations. The theory of

averaging was applied to find that the equilibrium of the

system was a two-dimensional surface. Any point on the

surface resulted in cancellation of the disturbance. An

eigenanalysis of the averaged system linearized around

the equilibrium surface revealed that a subset of the

surface was locally stable. Various ANC experiments

demonstrated the ability of the algorithm to track

variations in both system and disturbance parameters.

A two-phase start-up procedure was used to be sure that

the stable subset of the equilibrium surface was reached.

VIII. List of symbols

The following symbols were used in the paper:

y(t), u(t), p(t), P (s), PR, PI , w1(t), π, θ, θC , θS,
θ∗, θ∗C , θ

∗

S, α1(t), α
∗

1
, ω1(t), ω

∗

1
, m(t), m∗, G, W (t, θ),

x(t), xi, x
∗, x∗i , e. ec, es, λi, vi, xP , A, B, C, ∆yss

δα1, δα
∗

1, δω1, δω
∗

1, ci, bi, φ, φ
∗, φ̄, g, gω, gm, k.
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