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Abstract

The rejection of periodic disturbances is a problem frequently encountered in control engineering, and in active

noise and vibration control in particular. The paper presents a new adaptive algorithm for situations where the plant

is unknown and may be time-varying. The approach consists in obtaining on-line estimates of the plant frequency

response and of the disturbance parameters. The estimates are used to continuously update control parameters and

cancel or minimize the effect of the disturbance. The dynamic behavior of the algorithm is analyzed using averaging

theory. Averaging theory is used to approximate the nonlinear time-varying closed-loop system by a nonlinear time-

invariant system. It is shown that the four-dimensional averaged system has a two-dimensional equilibrium surface,

which can be divided into stable and unstable subsets. Trajectories generally converge to a stable point of the

equilibrium surface, implying that the disturbance is asymptotically cancelled even if the true parameters of the

system are not exactly determined. Simulations, as well as extensive experiments on an active noise control testbed,

illustrate the results of the analysis, and demonstrate the ability of the algorithm to recover from abrupt system

changes or track slowly-varying parameters. Extensions of the algorithm to systems with multiple inputs/outputs and

disturbances consisting of multiple frequency components are provided.

I. INTRODUCTION

The paper considers the rejection of unknown disturbances, with a particular interest in active noise and vibration

control applications (ANC, AVC, or ANVC) and on disturbances that are the sum of periodic signals. Examples

of applications include active control of noise in turboprop aircraft [33], vibration reduction in helicopters [24] [5],

reduction of optical jitter in laser communication systems [17], isolation in space structures of vibrations produced

by control moment gyroscopes and cryogenic coolers [14] [15], regulation of tension in paper machines [37] and

in continuous steel casting processes [31], limitation of periodic shaft deviations in magnetic bearing systems [4],

Manuscript received January 15, 2008. This material is based upon work supported in part by the National Science Foundation under Grant

No. ECS0115070 and in part by Sandia National Laboratories.

S. Pigg and M. Bodson are with the Department of Electrical and Computer Engineering, University of Utah, 50 S Central Campus Dr Rm

3280, Salt Lake City, UT 84112, U.S.A. (email: scott.pigg@utah.edu; bodson@eng.utah.edu).

S. Pigg is available for correspondence and return of proofs.



2

track following despite eccentricity in disk drives [1] [25] and CD players [11] [20], and suppression of gearbox

housing vibrations [36].

The paper proposes a new algorithm for the rejection of sinusoidal disturbances of known frequency acting on

systems with dynamics that are unknown and may vary in unpredictable ways. An example is the active control of

noise, where the dynamics of sound transmission can be considerably affected by people moving within the space

where sound propagates. The algorithm of the paper enables engineers to tackle such a difficult problem for which

few practical solutions exist. Indeed, while a limited set of solutions have been proposed, an even smaller subset

has been proved to work in practice or has been analyzed carefully.

In the signal processing literature, algorithms have been presented that combine a gradient algorithm (i.e., adaptive

least-mean-squares or LMS algorithm) with an on-line identifier of the plant’s impulse response [27][21][22]. Such

methods require considerable excitation to be injected in the form of white noise added at the input of the system

for the identification. An analysis of the stability of the closed-loop system is also not provided in the papers, let

alone any insight into the dynamics of the systems.

Adaptive control theory provides an option for the control of unknown systems with unknown periodic distur-

bances. The idea, as proposed in [8], [9] [16], is to apply the internal model principle within a model reference

or pole placement adaptive control strategy. Practically, the implementation is obtained by raising the order of the

controller and forcing some poles of the controller on the unit circle (or the jω-axis in continuous-time). Global

stability of such systems can be proved in theory, even allowing for unstable plants and for tracking of arbitrary

reference inputs. Unfortunately, there is evidence of slow convergence and poor robustness properties of these

schemes in the literature [38] [19]. It is possible that the robustness problems could be reduced or resolved using

robust adaptive control methods [10], [23]. However, we are not aware of any report of the practical viability

of these methods in disturbance rejection applications. Further, additional problems make it difficult to apply the

methods to the type of problems being considered:

• the number of adaptive parameters is two times the order of the plant plus two times the number of sinusoidal

components. Considering that an appropriate model for an active noise control system is a finite impulse

response (FIR) system with 200 parameters or so, the adaptive controller is of very high order, and identification

of the parameters is difficult.

• model reference and pole placement methods assume a known plant delay. In ANC, this delay is not known

a priori, and may vary.

Harmonic steady-state (HSS) methods have simplified the problem by approximating the plant by its steady-state

sinusoidal response. In [5], Pratt and co-workers described an HSS algorithm known as higher harmonic control

(HHC), for use in the reduction of vibrations in helicopters. In [13], the algorithm was used for the cancellation

of periodic noise in an acoustic drum. A proof of stability was provided in [13], although the authors assumed

the injection of an excitation signal to ensure correct identification of the plant. In contrast, [32] proposed a

clever algorithm that combined two gradient-type adaptation steps to obtain an algorithm with guaranteed stability

properties and without additional excitation. The proof is based on a small gain argument that requires an upper
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bound on the plant’s frequency response and a sufficiently small adaptation gain. While successful experiments

were reported in [32], no data was shown on the transient properties of the algorithm or on its ability to track

variations in the parameters.

The main contributions of this paper are:

• a remarkably simple adaptive HSS algorithm that eliminates the need for batches of data as in [13] (control

parameters are updated continuously).

• a verification of the performance of the algorithm through active noise control experiments, demonstrating the

ability to track abruptly or continuously time-varying system parameters in a challenging, practical application.

• a stability analysis based on the theory of averaging that does not require the addition of external excitation

signals and provides useful insight in the dynamics of the adaptive system.

Note that rigorous stability proofs have been the subject of much research in adaptive control, but often turn out

to be very complicated and to provide no insight about the dynamics of the systems. As an alternative, averaging

methods have provided approximate results that are far more useful [3] [30] [12]. Averaging theory shows how

a set of nonlinear time-varying differential equations can be approximated by a much simpler averaged system.

In [30] and other work, averaging theory was found to provide invaluable information on the dynamic properties

of specific adaptive control systems. For periodic disturbance rejection problems, averaging theory is even more

powerful, because the conditions for the existence of the averaged system are generally satisfied without additional

assumptions, due to the periodic nature of the signals. While averaging theory requires low adaptation gains,

experience shows that the approximation is useful for the typical adaptation gains used in practice, and that the loss

of rigor due to the approximation is more than compensated for by the powerful insights that the approximation

provides.

The paper is organized as follows. After formulating the system’s equations using a gradient–based identifier,

averaging theory [30] is reviewed. The averaged system associated with the problem is found and simulations

are used to demonstrate the closeness of the responses. Next, the equilibrium points of the averaged system are

determined and an eigenanalysis is used to understand the system’s behavior around the equilibrium. This analysis

enables one to understand how the algorithm handles uncertainty in the plant parameters in a way that a standard

adaptive algorithm without plant adaptation is unable to. Further simulations illustrate the results of the analysis of

the averaged system, and active noise control experiments validate the analysis further. Experimental results using

a standard LMS algorithm are presented for comparison. Finally, experiments are reported using a least-squares

identifier and demonstrate the ability of the algorithm to track time-varying parameters. For clarity we confine our

presentation to a single-input single-output plant and a single tone disturbance; however, extensions of the algorithm

to multi-input multi-output plants and multi-tone disturbances are provided.
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II. ADAPTIVE ALGORITHM

A. System formulation

Consider the feedback system shown in Fig. 1. The output of the plant

y(t) = P (s)[u(t)] + p(t) (1)

is fed back in order to determine the control signal u(t) needed to reject the sinusoidal disturbance p(t). The

notation P (s)[(·)] represents the time-domain output of the system with transfer function P (s). P (s) is assumed

to be a bounded input-bounded-output stable linear time-invariant system, but is otherwise unknown. Although the

plant is fixed in the analysis, experiments show that the use of adaptation allows the plant to vary significantly

over time. The compensator C is generally a nonlinear and time-varying control law consisting of a parameter

identification scheme and a disturbance cancellation algorithm.

Fig. 1. Feedback control system.

The disturbance is assumed to be a sinusoidal signal given by

p(t) = pc cos(ω1t) + ps sin(ω1t) = wT
1 (t)π

∗ (2)

where

π∗ =

⎛⎝ pc

ps

⎞⎠ , w1 =

⎛⎝ cos(ω1t)

sin(ω1t)

⎞⎠ (3)

and ω1 is the known frequency of the disturbance signal. Under these conditions, a control signal of the form

u(t) = θc cos(ω1t) + θs sin(ω1t) = wT
1 (t)θ (4)

is sufficient to cancel the disturbance in steady-state, provided that the controller parameter vector

θ =

⎛⎝ θc

θs

⎞⎠ (5)

is chosen appropriately.
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B. Adaptive harmonic steady-state algorithm

For the derivation of the algorithm, the response of the plant is approximated by the sinusoidal steady-state

response [5]

y(t) ' yss(t) = wT
1 (t)G

∗θ + p(t) = wT
1 (t) (G

∗θ + π∗) (6)

where

G∗ =

⎛⎝ PR PI

−PI PR

⎞⎠ (7)

and PR, PI are the real and imaginary parts of the plant’s frequency response evaluated at ω1

P (jω1) , PR + jPI (8)

Although the expression may not look familiar to the reader, the result is a straightforward application of the general

formula for the steady-state sinusoidal response of a linear time-invariant system [7, p. 459].

In the problem considered here, there are four unknowns: two are associated with the plant (PR and PI ) and two

are associated with the disturbance (pc and ps). The parameters, whose estimate will be part of the internal state

of the controller, are collected in a vector

x∗ =
³

PR PI pc ps

´T
(9)

so that the steady-state output of the plant (6) can be written as

yss(t) =WT (t, θ)x∗ (10)

where W (t, θ) is a so-called regressor matrix

W (t, θ) =

⎛⎜⎜⎜⎜⎜⎜⎝
θc cos(ω1t) + θs sin(ω1t)

θs cos(ω1t)− θc sin(ω1t)

cos(ω1t)

sin(ω1t)

⎞⎟⎟⎟⎟⎟⎟⎠ . (11)

On the basis of the linear expression in (10), an estimate x of the unknown parameter vector x∗ can be obtained

using a gradient or a least-squares algorithm [30, p. 57]. For example, a gradient algorithm for the minimization

of the squared error e2 =
¡
WTx− y

¢2 that uses the approximation y(t) ' yss(t) is given by

ẋ(t) = −�W (t, θ)
¡
WT (t, θ)x(t)− y(t)

¢
(12)

The parameter � > 0 is the adaptation gain, which will be assumed to be small in the application of the averaging

theory later in the paper.

Having derived an algorithm for the estimation of the unknown parameters, it remains to define the control law.

Note that, from (6), the disturbance is known to be cancelled exactly in steady-state for a nominal control parameter

θ∗ = −G∗−1π∗ (13)
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Given an estimate of the unknown parameter vector x, a certainty equivalence control law [30, p. 268] will redefine

θ as θ(x), a function of the estimate x, using

G(x) =

⎛⎝ x1 x2

−x2 x1

⎞⎠ , π(x) =

⎛⎝ x3

x4

⎞⎠ (14)

and

θ(x) =

⎛⎝ θc(x)

θs(x)

⎞⎠ = −G−1(x)π(x)

= − 1

x21 + x22

⎛⎝ x1x3 − x2x4

x1x4 + x2x3

⎞⎠ (15)

The nominal values satisfy

G∗ = G(x∗), π∗ = π(x∗), and θ∗ = θ(x∗) (16)

A state-space representation of the overall system can be obtained as follows. With xP denoting the states of

P (s) = C(sI −A)−1B, the plant has the following state-space representation

ẋP (t) = AxP (t) +Bu(t)

= AxP (t) +BwT
1 (t)θ(x) (17)

y(t) = CxP (t) + p(t) = CxP (t) + wT
1 (t)π

∗ (18)

Defining

E(x) =

⎛⎝ D(x)

I2×2

⎞⎠ , D(x) =

⎛⎝ θc(x) θs(x)

θs(x) −θc(x)

⎞⎠ (19)

the matrix W (t, θ) is given by

W (t, θ) = E(x)wT
1 (t). (20)

Then, the overall system is described by a set of differential equations with two vectors x and xP composing the

total state vector and

ẋP = AxP +BwT
1 (t)θ(x) (21)

ẋ = −�E(x)w1(t)
¡
wT
1 (t)E

T (x)x− CxP − wT
1 (t)π

∗¢ (22)

with (15), (19) giving the functions θ(x) and E(x). Note that this set of differential equations is both time-varying

and nonlinear, making direct analysis difficult. Fortunately, under the assumption of small gain �, the application of

averaging theory produces an approximate nonlinear time-invariant system whose dynamics can be analyzed and

provide interesting insights in the behavior of the system.
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C. Alternative solution

In the formulation presented in this paper, the algorithm has the structure of Fig. 2, where

ũ(t) = w̃T
1 (t)θ (23)

w̃1(t) =

⎛⎝ − sin(ω1t)
cos(ω1t)

⎞⎠ .

In [28], a different implementation of the same concept was proposed, whereby the regressor variables would vary

at a slower rate. The vector ya was defined as

ya =

⎛⎝ yc

ys

⎞⎠ = AVG [2w1(t)y(t)] = G∗θ + π∗. (24)

where the averaging operation AV G could be performed by averaging the signals over some multiple of the period

T of the signals. Using this approach, the system was parameterized in terms of the regressor

W (t) =

⎛⎝ θc(t) θs(t) 1 0

θs(t) −θc(t) 0 1

⎞⎠T

(25)

which corresponds to the system of Fig. 3. In this formulation, the regressor signals (25) vary at a slower rate

as compared to (11), which varies with the periodic fluctuation of w1(t). Both approaches have been tested in

experiments, with comparable results. In the implementation of [28], the averaging operation was simply neglected,

on the basis that slow adaptation would provide the necessary smoothing. Here we use a similar argument for the

analysis of the adaptive system, relying on a more formal application of averaging theory.

Fig. 2. Proposed control system.

III. AVERAGING ANALYSIS

A. Background - mixed time scale systems

Of particular interest to our problem is the continuous-time averaging method for mixed time scale systems as

discussed in [30, p.186]. The theory applies to systems of the form

ẋ = �f(t, x, xP ) (26)

ẋP = AxP + h(t, x) (27)
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Fig. 3. Alternative control system.

which includes the problem under consideration if one defines

f(t, x, xP ) = −E(x)w1(t)
¡
wT
1 (t)E

T (x)x− CxP − wT
1 (t)π

∗¢ (28)

h(t, x) = BwT
1 (t)θ(x) (29)

For � small, x is a slow variable, while xP varies faster, except through its dependency on x. Averaging theory

shows how the trajectories of (26)-(27) can be related to the trajectories of the so-called averaged system

ẋ = �fav(x) (30)

where

fav(x) = lim
T→∞

1

T

t0+TZ
t0

f(τ , x, v(τ , x))dτ (31)

and

v(t, x) :=

tZ
0

eA(t−τ)h(τ , x)dτ. (32)

Central to the method of averaging is the assumption that the limit in (31) exist uniformly in t0 and x. In other

words, there exists a strictly decreasing continuous function γ(T ), such that γ(T )→ 0 as T →∞ and¯̄̄̄
¯̄ 1T

t0+TZ
t0

f(τ , x, v(τ , x))dτ − fav(x)

¯̄̄̄
¯̄ ≤ γ(T ). (33)

The function γ(T ) is called the convergence function. If the limit exists, � is sufficiently small, and certain technical

conditions are satisfied, the response of (26)-(27) is close to the response of (30). Specifically, the theory is based

on the following assumptions.

Assumptions

Given some arbitrary vector x ∈ Rn and for some h > 0 such that Bh = {x ∈ Rn |kxk < h}

B1 The function f is a piecewise continuous function of time, and a continuous function of x and xP .

Moreover, for some l1, l2 ≥ 0

|f(t, xa, xP,a)− f(t, xb, xP,b)| ≤ l1 |xa − xb|+ l2 |xP,a − xP,b|
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for all t ≥ 0, xa, xb ∈ Bh, xP,a, xP,b ∈ Bh. Also assume that f(t, x, v(t, x)) has continuous and bounded

first partial derivatives with respect to x for all t ≥ 0 and x ∈ Bh.

B2 The function f(t, x, v(t, x)) has average value fav(x). Moreover, fav(x) has continuous and bounded first

partial derivatives with respect to x, for all x ∈ Bh, so that for some lav ≥ 0

|fav(xa)− fav(xb)| ≤ lav |xa − xb|

for all xa, xb ∈ Bh.

B3 Let d(t, x) = f(t, x, v(t, x))−fav(x), so that d(t, x) has zero average value. Assume that the convergence
function can be written as γ(T ) |x|+ γ̃(T ), where γ̃(T ) decays exponentially to zero. Additionally, ∂d(t,x)∂x

has zero average value, with convergence function γ(T ).

The following result can then be obtained [30, p.184]:

Lemma 1 (Perturbation Formulation of Averaging): If the mixed time scale system (26)-(27) and the averaged

system (30) satisfy assumptions B1-B4. Then, there exists a bounded function w�(t, x), whose first partial derivative

with respect to time is arbitrarily close to d(t, x) and a class K function ξ(�) such that the transformation

x = z + �w�(t, x) (34)

is a homeomorphism in Bh for all � ≤ �1, where �1 > 0. Under the transformation, system (26) becomes

ż = �fav(z) + �p1(t, z, �) + �p2(t, z, xP , �) (35)

z(0) = x(0) (36)

where

|p1(t, z, �)| ≤ ξ(�)k1 |z| (37)

|p2(t, z, xP , �)| ≤ k2 |xP,zi| (38)

for some k1, k2 depending on l1, l2, lav.

A proof of Lemma 1 can be found in [30, p.348]. This proof establishes a link between the convergence function

γ(T ) and the order of the bound in (37). In particular, if d(t, x) in assumption B3 has a bounded integral with

respect to time, then γ(T ) ∼ 1
T and it can be shown that ξ(�) is on the order of �. The bound in (38) is determined

by the convergence properties of xP,zi = xP − v(t, x), which is the zero-input response of xP .

Lemma 1 is fundamental to the theory of averaging. It allows a system satisfying certain conditions to be written

as a perturbation of the averaged system and it shows that the perturbation terms are bounded. By imposing further

restrictions, conclusions can then be drawn concerning the closeness of the original and averaged systems. Consider

the additional assumptions:

B4 A is exponentially stable.

B5 Let xav(t) specify the solution of the averaged system (30). For some h0 < h, |xav(t)| ∈ Bh0 on the time

intervals considered, and for some h0, xP ∈ Bh0 .
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B6 h(t, 0) = 0 for all t ≥ 0, and
°°°∂h(t,x)∂x

°°° is bounded for all t ≥ 0, x ∈ Bh.

Then, the following result can be obtained.

Lemma 2 (Basic Averaging Lemma): If the mixed time scale system (26)-(27) and the averaged system (30)

satisfy assumptions B1-B6, then there is an �T , 0 < �T ≤ �0 and a class K function Ψ(�) such that

kx(t)− xav(t)k ≤ Ψ(�)bT (39)

for some bT > 0 and for all t ∈ [0, T/�] and 0 < � ≤ �T . Further, Ψ(�) is on the order of ξ(�) + �.

A proof of Lemma 2 can be found in [30, p.349]. Lemma 2 states that, for � sufficiently small, the trajectories of

(26) and (30) can be made arbitrarily close for all t ∈ [0, T/�]. This allows insight into the behavior of (26)-(27)
by studying the behavior of (30). Also, when d(t, x) in assumption B3 has a bounded integral with respect to time,

Ψ(�) is on the order of �. This condition is satisfied for the system under consideration due to the sinusoidal nature

of the signals.

B. Averaged system

We found earlier that the system under consideration fitted the averaging framework. It remains to determine

what the averaged system is, whether the assumptions are satisfied, and what interesting properties the averaged

system may have. The parameter vector x is frozen in the computation of the averaged system [30, p.162]. Further,

all of the time variation in the functions is due to sinusoidal signals, and the systems to which they are applied are

linear time-invariant systems. The outcome is that the average of the function f(t, x, xP ) is well-defined and can

be computed exactly. Specifically, the function

v(t, x) =

tZ
0

eA(t−τ)Bw1(τ)dτ · θ(x) (40)

= xP,ss(t) + xP,tr(t) (41)

where xP,ss(t) is the steady-state response of the state of the plant to the sinusoidal excitation w1(t) and, xP,tr is

a transient response that decays to 0 exponentially, given that A is exponentially stable.

The averaged system is obtained by computing the average of

fav(x) = − lim
T→∞

1

T

t0+TZ
t0

E(x)w1(τ)
¡
wT
1 (τ)E

T (x)x− Cv(τ , x)− wT
1 (τ)π

∗¢ dτ (42)

where

Cv(t, x) + wT
1 (t)π

∗ = CxP,ss(t) + CxP,tr(t) + wT
1 (t)π

∗

= yss(t) + ytr(t) (43)

and ytr(t) = CxP,tr(t). Equations (10) and (20) imply that

yss(t) = wT
1 (t)E

T (x)x∗ (44)
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and since the transient response of the plant does not affect the average value of the function,

fav(x) = − lim
T→∞

1

T

t0+TZ
t0

E(x)w1(τ)
¡
wT
1 (τ)E

T (x)x− wT
1 (τ)E

T (x)x∗
¢
dτ (45)

= −E(x)

⎛⎝ lim
T→∞

1

T

t0+TZ
t0

w1(τ)w
T
1 (τ)dτ

⎞⎠ET (x)(x− x∗) (46)

= −1
2
E(x)ET (x)(x− x∗) (47)

In other words, the averaged system is simply given by

ẋ = − �

2

⎛⎝ D(x)

I2×2

⎞⎠³ D(x) I2×2

´
(x− x∗) (48)

with (15) and (19) giving

D(x) =
1

x21 + x22

⎛⎝ x1x3 − x2x4 x1x4 + x2x3

x1x4 + x2x3 −x1x3 + x2x4

⎞⎠ (49)

Although (48)-(49) describe a nonlinear system, the method of averaging has eliminated the time variation of the

original system, providing an opportunity to understand much better the dynamics of the system.

C. Application of Averaging Theory

The application of the theory is relatively straightforward, and verification of the assumptions is left to the

appendix. A technical difficulty is related to the fact that both the adaptive and the averaged systems have a

singularity at x21 + x22 = 0 (see equations (15) and (49)). Such singularities are quite common in adaptive control,

occurring any time the estimate of the gain of the plant is zero. Here, the singularity occurs when the estimate of

the plant’s frequency response is zero, a problem that is somewhat unlikely to occur as two parameters need to

be small for the singularity to be reached. Nevertheless, a cautious implementation of the algorithm would apply

one of the available techniques to address singularities. For example, a simple practical fix consists in using in the

control law either the parameter x if x21 + x22 > δ > 0, where δ is a small parameter, or else the last value of the

estimated parameter x that satisfied the condition. As far as the theory is concerned, we avoid the difficulty by

adding the following assumption:

B7 Assume that trajectories of the original and averaged system are such that x21 + x22 > δ for some δ > 0.

Using assumptions B1-B7, it is verified in appendix that the system given by (12)-(17) satisfies the conditions

of the theory. Thus, Lemma 1 and Lemma 2 can be applied. In the verification of assumption B3, one finds that

d(t, x) has a bounded integral with respect to time, suggesting that ξ(�) in Lemma 1 is of the order of �. Lemma 2

establishes that (48) can be used as an order of � approximation of (12)-(17) for all t ∈ [0, T/�]. Note that Lemma
2 only shows closeness of the original and averaged systems over finite time. Any stability properties connecting

the original and the averaged system would require a different theorem. The theorems of [30] do not apply because

they assume a unique equilibrium point of the averaged system. As we will see, this is not the case here.
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D. Simulation example

To show the closeness of the responses (12)-(17) and (48), we let ω1 = 330π and the plant is taken as a

250 coefficient FIR transfer function. The transfer function was measured from an active noise control system

using a white noise input and a gradient search identification procedure. The initial parameter estimate was x(0) =

xav(0) =
³
1.0 1.0 0 0

´T
. In Fig. 4, the response of the first adaptive parameter x1 is shown. Four responses

are shown: the averaged system with � = 1 (solid line), the actual system for � = 100 (dashed dot), the actual

system for � = 50 (dashed), and the actual system for � = 1 (circles). As � decreases, one finds that the trajectory

of the original system approaches that of the averaged system. Note that the parameter estimates do not converge

to the nominal values, indicating that the regressor (11) is not persistently exciting [30, p.73]. However, the control

parameters θc and θs do converge to the nominal values, resulting in cancellation of the disturbance for all values of

�. The control parameters are shown in Fig. 5, along with θ∗, the nominal value that exactly cancels the disturbance

(the constant line).

Fig. 4. The response of the first adapted parameter x1 for the averaged system and three responses of the actual system.

Fig. 5. Trajectories of control parameters for the actual and the averaged systems.
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IV. PROPERTIES OF THE AVERAGED SYSTEM

Several properties of the averaged system can be derived from the rather simple form that was obtained in

(48)-(49), enabling one to gain insight on the behavior of the closed-loop system.

A. Equilibrium surface

From the expression of the averaged system (48), we deduce that an equilibrium point of the averaged system

must satisfy

ET (x)(x− x∗) =
³

D(x) I2×2

´
(x− x∗) = 0 (50)

Therefore, x = x∗ is an equilibrium point of the system. It is not the only one, however. Using (14)-(15)³
D(x) I2×2

´
x =

⎛⎝ θc(x) θs(x)

θs(x) −θc(x)

⎞⎠⎛⎝ x1

x2

⎞⎠+
⎛⎝ x3

x4

⎞⎠ (51)

=

⎛⎝ x1 x2

−x2 x1

⎞⎠⎛⎝ θc(x)

θs(x)

⎞⎠+
⎛⎝ x3

x4

⎞⎠ (52)

= 0 (53)

In other words, ET (x)x = 0 and equilibrium points must satisfy

ET (x)x∗ = 0 (54)

(54) can be rewritten as⎛⎝ θc(x) θs(x)

θs(x) −θc(x)

⎞⎠⎛⎝ x∗1

x∗2

⎞⎠+
⎛⎝ x∗3

x∗4

⎞⎠ =

⎛⎝ x∗1 x∗2

−x∗2 x∗1

⎞⎠⎛⎝ θc(x)

θs(x)

⎞⎠+
⎛⎝ x∗3

x∗4

⎞⎠
= 0 (55)

or ⎛⎝ θc(x)

θs(x)

⎞⎠ = −

⎛⎝ x∗1 x∗2

−x∗2 x∗1

⎞⎠−1⎛⎝ x∗3

x∗4

⎞⎠ (56)

=

⎛⎝ θ∗c

θ∗s

⎞⎠ (57)

The last equation shows that any equilibrium state results in the cancellation of the disturbance, confirming the

observation made in section III D. Equation (57) also implies, with (14)-(15), that⎛⎝ x1 x2

−x2 x1

⎞⎠−1⎛⎝ x3

x4

⎞⎠ = −

⎛⎝ θ∗c

θ∗s

⎞⎠ (58)

or, reorganizing the terms, ⎛⎝ x3

x4

⎞⎠ = −

⎛⎝ θ∗c θ∗s

θ∗s −θ∗c

⎞⎠⎛⎝ x1

x2

⎞⎠ (59)
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In other words, the set of equilibrium points is a two-dimensional linear subspace of the four-dimensional state-space.

The set includes the nominal parameter x∗. Note that, for x constant,

f(t, x, xP,ss) = −E(x)w1(t)wT
1 (t)E

T (x)(x− x∗). (60)

Therefore, any equilibrium state of the averaged system is also an equilibrium state of the original system. This

result further explains why, in section III.D., all the trajectories were such that θ converged to θ∗. Further, (44)

indicates that any equilibrium state corresponds to a perfect rejection of the disturbance.

B. Local stability

The local stability of the averaged system can be determined by linearizing (48) around an equilibrium state x.

The following eigenvalues were computed using the Maple kernel

λ =

⎛⎜⎜⎜⎜⎜⎜⎝
0

0³
x∗2+jx

∗
1

x2+jx1

´
β³

x∗2−jx∗1
x2−jx1

´
β

⎞⎟⎟⎟⎟⎟⎟⎠ (61)

where β = − �
2

³
x∗21 +x∗22 +x∗23 +x∗24

x∗21 +x∗22

´
. The two eigenvalues at zero confirm the two-dimensional nature of the linear

equilibrium surface. The nonzero eigenvalues are complex conjugates that lie in the open left-half plane if and only

if

x1x
∗
1 + x2x

∗
2 > 0 (62)

or equivalently

x3x
∗
3 + x4x

∗
4 > 0. (63)

For the reverse signs, the eigenvalues lie in the open right half plane. The stability condition can be interpreted in

the (x1, x2) plane, as shown in Fig. 6. Specifically, the line going through the origin that is perpendicular to the

line joining (0, 0) and (x∗1, x∗2) defines the boundary between the stable and unstable states. Interestingly, this is the

same boundary that delineates the stable and unstable regions of a standard LMS algorithm that does not identify

the plant parameters [6], as will be discussed in section V.B. In this case, however, the nonlinear dynamics ensure

that all trajectories eventually converge to the stable subset of the equilibrium surface.

C. Lyapunov analysis

Lyapunov arguments can be used to establish further stability results for the averaged system. Specifically, the

Lyapunov candidate function

V = kx(t)− x∗k2 (64)

evaluated along the trajectories of (48) gives

V̇ = −�
°°ET (x) (x− x∗)

°°2 ≤ 0 (65)
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Fig. 6. Relationship between the location on the equillibrium surface and stability

which implies that

kx(t)− x∗k ≤ kx(0)− x∗k (66)

for all t > 0. Since x and ẋ are bounded (using (48) and assumption B7), one may also deduce that ET (x) (x− x∗)→
0 as t→∞. In turn, ET (x)x = 0 and (44) imply that the disturbance is asymptotically cancelled.

Further results may be obtained by noting that³
−I2×2 D(x)

´
E(x) = 0 (67)

so that ³
−I2×2 D(x)

´
ẋ = 0 (68)

Using (14)-(15)

D(x) =

⎛⎝ θc(x) θs(x)

θs(x) −θc(x)

⎞⎠ (69)

= −

⎛⎝ x1 x2

−x2 x1

⎞⎠−1⎛⎝ x3 x4

x4 −x3

⎞⎠ (70)

The result implies that ⎛⎝ x1 x2 x3 x4

−x2 x1 x4 −x3

⎞⎠ ẋ = 0 (71)

From the first equation, one has that

kx(t)k = kx(0)k (72)

for all t > 0. In other words, while the norm of the parameter error vector is monotonically decreasing, the norm

of the parameter vector is constant. In particular, the norm of the state is bounded for all time by its initial value,

regardless of the local instability around one half of the equilibrium surface. (72) along with (15) indicate that any

decrease in the magnitude of the first two estimated parameters
q
x21,av + x22,av must result in an increase in the

magnitude of the other two estimated parameters
q
x23,av + x24,av, and vice versa. Note that if the two magnitudes
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changed proportionally in the same direction, there would be no change in control parameter and no impact on

the output error. The second equation in (71) yields a further constraint on the state vector but is not as easily

integrated as the first one.

D. Simulation

In this section, we discuss an example that illustrates the properties of the averaged system. Consider the nominal

parameter

x∗ =
³
1.0 1.0 1.0 1.0

´T
, (73)

with the initial vector x(0) =
³
1.1 −2.0 −2.0 1.0

´T
and the gain � = 2.0. The eigenvalues of (48) are given

in (61). x(0) was chosen in the neighborhood of an unstable equilibrium point whose eigenvalues have relatively

large imaginary part. The trajectories of the parameter estimates were projected into the (x1,av, x2,av) plane for

visualization in the simulation result of Fig. 7.

Fig. 7. Responses of identified parameters

With the initial conditions chosen close to the unstable region of the equilibrium surface, we see that the trajectory

spirals with exponential growth as predicted, then crosses over into the stable region. The trajectory spirals back

with exponential decay towards the equilibrium surface, as the eigenvalues turn out to also have large imaginary

parts in that region. The unstable, highly oscillatory initial response was obtained by setting the initial estimate of

the phase of the plant at

]P̂ (jωo) = −61.2o. (74)

while the phase of the plant was

]P (jωo) = 45o (75)

resulting in a phase difference of ]P (jωo)−]P̂ (jωo) = 106o (beyond the 90o angle condition, but close to it to
ensure oscillatory behavior). The 90o angle condition pertains to the mixed time scale system (26)-(27) when the
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plant estimate is not updated online, such as the standard LMS algorithm. It states that for stability of the averaged

system (30) it is both sufficient and necessary that PRP̂R+PI P̂I > 0, or equivalently
¯̄̄
]P (jωo)− ]P̂ (jωo)

¯̄̄
< 90o

[30, p.163]. Although not shown, it was verified that the norm of trajectories remained constant at kx(t)k = kx(0)k =
3.20.

V. EXPERIMENTS

A. Results with the adaptive algorithm

The performance of the algorithm given by (11), (12), and (15) was examined through single-channel active noise

control experiments. The active noise control system was the same system used to identify the 250 coefficient FIR

transfer function used in section III.D. In the experiments of this subsection and of the subsection that follows,

the parameters of the plant remain unchanged. The algorithm was coded in C and implemented via a dSpace

DS1104 digital signal processing board. A sampling frequency of 8 kHz was used. A constant amplitude sinusoidal

disturbance with frequency of 185 Hz was generated by one loudspeaker, while the control signal was produced

by another. The phase of the plant was estimated experimentally at 93.2◦. The initial plant estimate was set at

P (jω) =
³
−0.01 0.1

´T
, corresponding to a phase angle of 95.7◦ and a phase difference of 2.5◦. Using these

initial conditions along with an adaptation gain of 10 results in the parameter convergence seen in Fig. 8. The

corresponding error attenuation is shown in Fig. 9. The parameters converge to values which give significant noise

attenuation.

Fig. 8. Adaptive algorithm with small initial phase difference: parameter convergence.

Next, an initial plant estimate with P (jω) =
³
0.1 −0.01

´T
was used, corresponding to a phase angle

of −5.7◦ and a phase difference of 98.9◦, beyond the 90◦ phase condition. After some initial oscillations, the
parameters are seen to converge in Fig. 10 . The corresponding error is shown in Fig. 11. Starting from the unstable

region simply results in a slightly longer transient.

Although the initial conditions of the system produce a locally unstable adaptive system, the dynamics are such

that convergence to a non-unique equilibrium state is eventually achieved. In the transient, the parameter error
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Fig. 9. Adaptive algorithm with small initial phase difference: error attenuation.

Fig. 10. Adaptive algorithm with large initial phase difference: parameter convergence.

vector and the parameter vector remain bounded by their initial value. In the steady-state, the parameter vector is

such that the nominal control vector is reached.

B. Comparison to standard LMS algorithm

A standard algorithm in active noise and vibration control is the filtered-X LMS algorithm [26, p.62]. It is a

gradient-type algorithm of which we present an implementation here for the sake of comparison. Recalling (6), the

steady-state output of the plant is

y = wT
1 G
∗θ + p = wT

1 G
∗ (θ − θ∗) (76)

The error y2 can be minimized by using the gradient algorithm [2]

θ̇ = −�G∗Tw1y (77)

The corresponding averaged system

θ̇ = − �

2
G∗TG∗ (θ − θ∗) (78)
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Fig. 11. Adaptive algorithm with large initial phase difference: error attenuation.

has a unique equilibrium at θ = θ∗ that is exponentially stable if G∗ 6= 0. If G∗ is not known, an a priori estimate
G of G∗ is used, and the averaged system becomes [2]

θ̇ = − �

2
GTG∗ (θ − θ∗) (79)

θ = θ∗ is still an equilibrium, but it is unique and exponentially stable if and only if the eigenvalues of

GTG∗ =

⎛⎝ x1 −x2
x2 x1

⎞⎠⎛⎝ x∗1 x∗2

−x∗2 x∗1

⎞⎠ (80)

lie in the open right half plane. The condition for stability is again that

x1x
∗
1 + x2x

∗
2 > 0 (81)

which requires that the phase of the initial estimate of the plant be within 90◦ of the true value.

Experiments with the filtered-X LMS algorithm show the benefits of the algorithm of (11), (12), and (15). In the

first experiment, the plant estimate P (jω) has a phase difference of 1.7◦ with respect to the actual plant. Using

the estimate along with an adaptation gain of 75, the responses of the parameters can be seen in Fig. 12, and the

corresponding error attenuation can be seen in Fig. 13. As expected, the parameters converge to values that result

in significant noise cancellation.

Next, a phase difference of 99.8◦ was applied In Fig. 14, the parameters are seen to experience divergence which

results in the exponential growth of the error in Fig. 15. Comparing these results with those obtained in the previous

section, one finds interesting similarities between the stability regions of the algorithms. With the algorithm of (11),

(12), and (15), however, on-line identification produces a nonlinear system where trajectories eventually converge

to the vicinity of a stable equilibrium, regardless of the initial error in the estimate of the phase of the true plant.

VI. EXPERIMENTS WITH LEAST-SQUARES ALGORITHM AND TIME-VARYING SYSTEMS

In the experiments of this subsection, the parameters of the plant are allowed to change significantly with time.

In some situations, it may be desirable to use a least-squares algorithm for its superior convergence properties. A
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Fig. 12. LMS algorithm with small initial phase difference: parameter convergence.

Fig. 13. LMS algorithm with small initial phase difference: error attenuation.

discrete-time implementation [18] is available that incorporates a stabilizing mechanism to insure stability while

still allowing for rapid convergence. The parameter vector x is obtained by minimizing the cost function

E [x(n)] =
nX

k=1

(e(k)−WT (k)x(n))2λn−k + α |x(n)− x(n− 1)|2 (82)

where λ is a forgetting factor and α is a stabilizing factor. Note that this criterion incorporates a penalty on

the parameter variation, while for α = 0, the standard least-squares with forgetting factor is recovered. Setting

∂E/∂x̂(n) = 0, the estimate that minimizes (82) is

x(n) =

Ã
nX

k=1

W (k)WT (k)λn−k + αI4x4

!−1
×
Ã

nX
k=1

W (k)e(k)λn−k + αx(n− 1)
!

(83)

From this batch formula, an equivalent recursive formulation can be found as

K−1(n) = λK−1(n− 1) +W (n)WT (n) + α(1− λ)I4x4 (84)

x(n) = x(n− 1) +K(n)W (n)(e(n)−WT (n)x(n− 1)) + αλK(n)(x(n− 1)− x(n− 2)) (85)
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Fig. 14. LMS algorithm with large initial phase difference: parameter convergence.

Fig. 15. LMS algorithm with large initial phase difference: error attenuation.

where

K−1(0) = αI4x4. (86)

A forgetting factor λ < 1 causes the influence of old data on the identification of x to be reduced as time proceeds,

enabling the algorithm to track variations in the true parameters. From [18], the averaged system corresponding to

(84)-(85) is given by

K−1av (n) = λK−1av (n− 1) +E(x)ET (x) + α(1− λ)I4x4 (87)

θav(n) = θav(n− 1)−Kav(n)E(x)E
T (x)θav(n− 1) + αλKav(n) (θav(n− 1)− θav(n− 2)) . (88)

The least-squares algorithm was tested with challenging test conditions requiring continuous adaptation. A

constant amplitude sinusoidal disturbance with frequency of 185 Hz was assumed. Plant parameters were initialized

at x1(0) = x2(0) = 1.0, and disturbance parameters were initialized at x3(0) = x4(0) = 0. A forgetting factor

λ = 0.999 was used. This choice corresponds to a time constant of 1, 000 samples, or 0.125 seconds. A value of

α = 75 was chosen. The covariance matrix was started at (86). (84) was used to update K−1(n) and the inverse

was taken for use in updating x. These results were obtained using the control structure of Fig. 2.
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Fig. 16. Error and control signals with fixed true parameters and microphone switched at ≈ 2.75 s.

Fig. 17. Identified parameters when true parameters suddenly change.

An error microphone provided feedback to the algorithm, and attenuation results can be seen in Fig. 16. The

estimated parameters can be seen in Fig. 17. The control algorithm was engaged after approximately 0.75s and

convergence occurred in less than one half second. Unknown to the algorithm, the microphone used for cancellation

was abruptly switched at approximately 2.75s to a microphone located some 4 feet away. After a brief time interval,

the algorithm was able to compensate for the change in plant parameters, again in less than half a second.

The ability to track slow time variations in system parameters was also explored. In Fig. 18 and Fig. 19, the result

of manually moving the error sensor within the field of cancellation are shown. In these figures, the parameters

were frozen after reaching the initial steady-state The error signal is shown along with the frozen control signal.

Significant errors occur once the microphone has moved sufficiently to alter the characteristics of the system in a

significant way.

In Fig. 20, the algorithm is allowed to track the time-varying parameters. Significant attenuation is now observed

despite the fact that both plant and disturbance parameters are changing. The identified parameters are shown in

Fig. 21.
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Fig. 18. Error and control signals with continuously changing parameters but frozen estimates.

Fig. 19. Parameter estimates frozen after reaching steady-state.

VII. EXTENSION OF THE ALGORITHM

A. MIMO case

In the extension of the algorithm (11), (12), and (15), assume that there are i outputs of P (s) and j inputs. Take

the disturbance as consisting of a single sinusoidal component, and apply the algorithm of (11), (12), and (15)

at each output. At each plant output, there are 2j plant parameters and 2 disturbance parameters to be identified,

giving a regressor at each output of the form

Wi(t, θ) =

⎛⎜⎜⎜⎜⎜⎜⎝
uv

ũv

cos (ω1t)

sin (ω1t)

⎞⎟⎟⎟⎟⎟⎟⎠ (89)

where

uv =

⎛⎜⎜⎜⎝
u1(t)
...

uj(t)

⎞⎟⎟⎟⎠ , ũv =

⎛⎜⎜⎜⎝
ũ1(t)
...

ũj(t)

⎞⎟⎟⎟⎠ (90)
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Fig. 20. Error and control signals with continuously changing system parameters.

Fig. 21. Tracking of continuously changing parameters.

and each uj , ũj correspond to a plant input. This leads to a state vector of the form

xi(t) =
³

P̂Ri1 · · · P̂Rij P̂Ii1 · · · P̂Iij p̂ci p̂si

´T
(91)

For clarity, the individual elements of the vector xi(t) are denoted by the estimate of the corresponding element of

x∗i . For calculation of the control coefficients, the states of each algorithm can be combined as

G =

⎛⎝ P̂R P̂I

−P̂I P̂R

⎞⎠ , π =

⎛⎝ p̂c

p̂s

⎞⎠ (92)

where

P̂R =

⎛⎜⎜⎜⎝
P̂R11 · · · P̂R1j
...

. . .
...

P̂Ri1 · · · P̂Rij

⎞⎟⎟⎟⎠ , P̂I =

⎛⎜⎜⎜⎝
P̂I11 · · · P̂I1j
...

. . .
...

P̂Ii1 · · · P̂Iij

⎞⎟⎟⎟⎠ (93)

and

p̂c =

⎛⎜⎜⎜⎝
p̂c1
...

p̂ci

⎞⎟⎟⎟⎠ , p̂s =

⎛⎜⎜⎜⎝
p̂s1
...

p̂si

⎞⎟⎟⎟⎠ (94)
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The control coefficients are determined by

θ = −G−1π (95)

where

θ =
³

θc1 · · · θcj θs1 · · · θsj

´T
(96)

In (95), the appropriate pseudo-inverse should be used for cases where i 6= j. The initial conditions of each xi must

be chosen so that G is not singular, but all other initial conditions can be 0. The jth plant input is found as

uj(t) = θcj cos (ω1t) + θsj sin (ω1t) (97)

In order to demonstrate this extension of the algorithm, an active noise control experiment is presented. The

plant consists of 2 inputs (control loudspeakers) and 2 outputs (error microphones). The disturbance is a 160 Hz

sinusoid. The initial conditions of each xi were chosen as

x1(0) =
³
1 1 0 0 0 0

´T
(98)

x2(0) =
³
0 0 1 1 0 0

´T
(99)

The results of the experiment can be seen in Fig.22, where significant attenuation is observed at each output of the

plant.

Fig. 22. Output error with 2 inputs and 2 outputs.

B. Multiple frequency components

The algorithm of (11), (12), and (15) can also be extended for the rejection of a periodic disturbance consisting

of multiple sinusoidal components. A disturbance consisting of m sinusoidal components is written in the form of

(2) as

p(t) = wT
mπ
∗ (100)



26

where the vector

wm(t) =

⎛⎝ vcos

vsin

⎞⎠ (101)

consists of

vcos =

⎛⎜⎜⎜⎝
cos(ω1t)

...

cos(ωmt)

⎞⎟⎟⎟⎠ , vsin =

⎛⎜⎜⎜⎝
sin(ω1t)

...

sin(ωmt)

⎞⎟⎟⎟⎠ (102)

and the vector

π∗ =

⎛⎝ pc

ps

⎞⎠ (103)

consists of

pc =

⎛⎜⎜⎜⎝
pc,1
...

pc,m

⎞⎟⎟⎟⎠ , ps =

⎛⎜⎜⎜⎝
ps,1
...

ps,m

⎞⎟⎟⎟⎠ (104)

Each ωm, pc,m, ps,m corresponds to a specific sinusoidal component of the disturbance. We have the regressor

W (t, θ) =

⎛⎜⎜⎜⎜⎜⎜⎝
uv

ũv

cos (ωt)

sin (ωt)

⎞⎟⎟⎟⎟⎟⎟⎠ (105)

where

uv =

⎛⎜⎜⎜⎝
u,1(t)
...

u,m(t)

⎞⎟⎟⎟⎠ , ũv =

⎛⎜⎜⎜⎝
ũ,1(t)
...

ũ,m(t)

⎞⎟⎟⎟⎠ (106)

and

u,m(t) = θc,m cos (ωmt) + θs,m sin(ωmt) (107)

ũ,m(t) = θs,m cos (ωmt)− θc,m sin(ωmt) (108)

These definitions lead to a vector of identified parameters of the form

x(t) =
³

P̂R,1 · · · P̂R,m P̂I,1 · · · P̂I,m p̂c p̂s

´T
(109)

where

p̂c =

⎛⎜⎜⎜⎝
p̂c,1
...

p̂c,m

⎞⎟⎟⎟⎠ , p̂s =

⎛⎜⎜⎜⎝
p̂s,1
...

p̂s,m

⎞⎟⎟⎟⎠ (110)
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Again for clarity, the individual elements of the vector x(t) are denoted by the estimate of the corresponding element

of x∗.Calculation of the control coefficients can be combined as

G =

⎛⎝ P̂R P̂I

−P̂I P̂R

⎞⎠ , π =

⎛⎝ p̂c

p̂s

⎞⎠ (111)

where

P̂R =

⎛⎜⎜⎜⎝
P̂R,1 0 0

0
. . . 0

0 0 P̂R,m

⎞⎟⎟⎟⎠ , P̂I =

⎛⎜⎜⎜⎝
P̂I,1 0 0

0
. . . 0

0 0 P̂I,m

⎞⎟⎟⎟⎠ (112)

The control coefficients are found similar to (95) by

θ = −G−1π (113)

but now

θ =
³

θc,1 · · · θc,m θs,1 · · · θs,m

´T
(114)

The control signal is found as

u(t) = u,1(t) + u,2(t) + · · ·+ u,m(t) = wT
mθ (115)

In order to demonstrate this extension of the algorithm, an active noise control experiment is presented. The

plant consists of a single input (loudspeaker) and a single output (microphone). The disturbance consisted of two

sinusoidal components of 180 Hz and 160 Hz respectively. The initial x was

x =
³
−0.04 −0.7 1.04 1.4 0 0 0 0

´T
(116)

The result of the experiment can be seen in Fig. 23, where significant attenuation is observed.

Fig. 23. Plant output with disturbance consisting of 2 frequency components.
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VIII. CONCLUSIONS

An adaptive algorithm for the rejection of periodic disturbances of known frequency affecting unknown plants

was considered. Typically, in active noise and vibration control applications, the plant is approximately linear,

allowing a linear expression at the output of the plant to be derived. The unknown parameters were collected in

a vector, and an estimate of this vector formed the states of a nonlinear controller. Since the overall closed-loop

system was nonlinear and time-varying, averaging theory was applied to analyze the system. By averaging over

time, a much simpler time-invariant system was obtained, whose dynamics closely approximated the dynamics of

the actual system. It was shown that the averaged system for the algorithm under consideration was a 4-dimensional

nonlinear system with a 2-dimensional equilibrium surface. Half of the surface was locally stable and the other

half was unstable. Generally, trajectories converged to the stable subset of the equilibrium surface, resulting in

cancellation of the disturbance. Further properties of the trajectories of the systems were obtained from an analysis

of the averaged system Simulations and single-channel active noise control experiments illustrated the results. It

was found that stability was achieved in situations that would be unstable with simpler algorithms that do not

provide plant adaptation. In addition, the ability to track abruptly or continuously time-changing system parameters

was demonstrated. While we have considered disturbances of known frequency, many real-world scenarios contain

unknown frequencies that may drift over time. As such, future work will combine the adaptive algorithm presented

here with frequency estimation techniques [34] in order to reject disturbances of unknown and time-varying

frequency acting on unknown and time-varying systems.

IX. APPENDIX

A. Verification of assumptions B1-B6

The original and averaged systems are given by

f(t, x, xP ) = −E(x)w1(t)
¡
wT
1 (t)E

T (x)x− CxP − wT
1 (t)π

∗¢ (117)

fav(x) = −
1

2
E(x)ET (x)(x− x∗) (118)

and

d(t, x) = f(t, x, v(t, x))− fav(x) (119)

= −E(x)
µ
w1(t)w

T
1 (t)−

1

2
I2×2

¶
ET (x)(x− x∗) +E(x)w1(t)ytr(t) (120)

where ytr(t) decays exponentially to zero. In the verification of B1-B6, assumption B7 will be assumed to hold.

Then, we have the following:

For some arbitrary vector x ∈ Rn and for some h > 0 such that Bh = {x ∈ Rn |kxk < h}

B1 Due to the sinusoidal variation of w1, f is continuous in t. Due to assumption B7 and the BIBO stability

of P (s), f is a smooth continuous function in x, xP for all t ≥ 0 and x, xP ∈ Bh. Again, as a result of

B7, {∂f/∂[x, xP ]} is bounded for all t ≥ 0 and x, xP ∈ Bh.
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B2 In the main text it is shown that the averaged system (118) can be obtained from the original system (117)

and, due to assumption B7, ∂fav/∂x is continuous and bounded for all x ∈ Bh.

B3 Since averaging is done with respect to time, d(t, x) and ∂d(t,x)
∂x have zero average value. Further, the

following bounds can be derived¯̄̄̄
¯̄ 1T

t0+TZ
t0

d(τ , x)dτ

¯̄̄̄
¯̄ ≤ 1

T
γ1(T ) kxk+ γ̃(T )

¯̄̄̄
¯̄ 1T

t0+TZ
t0

∂d(t, x)

∂x
dτ

¯̄̄̄
¯̄ ≤ 1

T
γ2(T )h

where

γ1(T ) =
1

2ω
°°°P̂ (jω)°°°2

∙°°°P̂ (jω)°°°2 kπk2 + kπ̂k2 kP (jω)k2 − 2 kP (jω)k2 °°°P̂ (jω)°°°2 (θcθ∗c + θsθ
∗
s)

¸ 1
2

,

γ2(T ) =
1

2ω
°°°P̂ (jω)°°°2

⎡⎢⎣kx∗k2 + 4 kP (jω)k2
⎛⎜⎝ kπ̂k2°°°P̂ (jω)°°°2 − θcθ

∗
c − θsθ

∗
s

⎞⎟⎠
⎤⎥⎦

1
2

,

and γ̃(T ) converges exponentially to 0 with ytr for all x ∈ Bh. Then, one can write

γ(T ) =
1

T
max[γ1(T ), γ2(T )h]

for all x ∈ Bh. Further, by assumption B7 and due to the sinusoidal variation of w1, d(t, x) has a bounded

integral with respect to time for all t ≥ 0 and x ∈ Bh.

B4 This assumption can be verified for the vast majority of active noise and vibration control applications for

which this algorithm is designed.

B5 This assumption follows directly from the constraint on the averaged system (72) derived in the main text

and the bounded-input bounded-output (BIBO) stability of P (s).

B6 This assumption is satisfied as a consequence of the BIBO stability of P (s).

B7 This assumption is satisfied as long as the magnitude of the plant frequency response does not approach

zero. While the amplitude response in active noise and vibration control applications may exhibit dramatic

dips due to the interaction of signal reflections, this can be avoided by appropriate arrangement of the

hardware.

X. REFERENCES

REFERENCES

[1] A. Sacks, M. Bodson, & P. Khosla, “Experimental Results of Adaptive Periodic Disturbance Cancellation in a High Performance Magnetic

Disk Drive,” ASME Journal of Dynamics Systems, Measurement, and Control, vol. 118, pp. 416-424, 1996.

[2] B. Wu & M. Bodson, “Multi-Channel Active Noise Control for Periodic Sources – Indirect Approach,” Automatica, vol 40, no. 2, pp.

203-212, 2004.

[3] B. D. O. Anderson, R. R. Bitmead, C. R. Johnson, P. V. Kokotovic, R. L. Kosut, I. M. Y. Mareels, L. Praly, & B.D. Riedle, Stability of

Adaptive Systems. Passivity and Averaging Analysis. MIT Press, Cambridge, MA 1986.



30

[4] C. R. Knospe, S. J. Fedigan, R. W. Hope, & R. D. Williams, “A Multi-Tasking Implementation of Adaptive Magnetic Bearing Control,”

IEEE Trans. on Control Systems Technology, vol. 5, no. 2, pp. 230-238, 1997.

[5] D. Patt, J. Chandrasekar, D. S. Bernstein, & P.P. Friedmann, “Higher-Harmonic-Control Algorithm for Helicopter Vibration Reduction

Revisited,” AIAA Journal of Guidance, Control, and Dynamics, vol. 28, no. 5, pp. 918-930, 2005.

[6] D. R. Morgan, “An Analysis of Multiple Correlation Cancellation Loops with a Filter in the Auxiliary Path,” IEEE Trans. on Speech and

Signal Processing, vol. 28, no. 4, pp. 454-467, 1980.

[7] E. Kamen and B. Heck, Fundamentals of Signals and Systems: Using the Web and Matlab, 2nd Edition, New Jersey, Prentice Hall, 2000.

[8] G. Feng & M. Palaniswamy,“Adaptive Implementation of Internal Model Principle for Continuous Time Systems,” IEE Proceedings-D,

vol. 139, no. 2, pp. 167-171, 1992.

[9] G. Feng & M. Palaniswamy, “A Stable Adaptive Implementation of the Internal Model Principle,” IEEE Trans. on Automatic Control, vol.

37, no. 8, pp. 1220-1225, 1992.

[10] G. Tao, Adaptive Control Design and Analysis, Wiley, Hoboken, New Jersey, 2003.
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