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Abstract

A discrete-time adaptive algorithm is proposed to reject periodic disturbances in the case

where the frequencies are unknown and a reference sensor is not available. The stability of

the algorithm is analyzed using averaging theory, and the design of the parameters is based

on the linearized averaged system. While the algorithm is first designed for rejecting periodic

disturbances with one sinusoidal component, it is also extended to deal with cases where the

disturbance has multiple sinusoidal components. A frequency separation method is proposed

to prevent the frequency estimates from converging to the same value. The effectiveness of

the adaptive scheme is validated in simulations and in experiments on an active noise control

testbed.

Index Terms–active noise control, adaptive control, averaging analysis, magnitude phase-locked

loop, periodic disturbance rejection.

1 Introduction

Many engineering systems are subjected to periodic disturbances that adversely affect the perfor-

mance and operation of the systems. For example, in a computer disk drive system, the positioning
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of the read/write head is performed by a servo system. A repeatable runout error is caused by the

eccentricity of the track and must be compensated for [22] [25]. In active noise control (ANC),

the main objective is to eliminate or significantly reduce noise generated by a so-called “primary”

source. The primary source is often a rotating machine producing a periodic noise. Reduction

of the noise level is performed by a “secondary” source (usually loudspeakers), which generates a

destructive interference field [10] [15].

When the frequency of a sinusoidal disturbance is known, the internal model principle (IMP)

[11] can be applied, and consists in incorporating a model of the dynamics of the disturbance signal

in the compensator. For a sinusoidal disturbance with constant frequency, this means that the

controller should have a pair of poles on the jω-axis in the s-plane at a location corresponding to

the frequency of the disturbance. The repetitive controller [25] may be viewed as a special case of

IMP controller. The compensator has an infinite number of poles at ±jωd, ±j2ωd, · · · (or e±jωd ,

e±j2ωd, · · · in discrete-time). Adaptive feedforward cancellation (AFC) [7] may also be employed

and consists in adding the negative of the disturbance’s value at the plant input. Adaptation is

used to compensate for the unknown magnitude and phase of the disturbance. AFC can also be

used if the frequency is unknown, as long as a so-called reference signal is available. In active noise

and vibration control, a reference signal is a measurement of the disturbance signal ahead of its

point of entry in the system (i.e., an indirect measurement of the disturbance with a shorter time

delay than the one associated with the plant).

The frequency of the periodic disturbance is not always known and obtaining a reference signal

may not be feasible, or it may be undesirable for reliability or cost considerations. Without a

known frequency or a feedforward sensor, the control problem becomes more complicated. An

intuitive approach to reject a sinusoidal disturbance with unknown frequency is to construct a

frequency estimator and to use the estimated frequency in a disturbance cancellation scheme for

known frequency. This concept was called the indirect approach in [7] [28]. An advantage of

the indirect approach is that the frequency estimator and the disturbance cancellation scheme for

known frequency can be designed separately.

In contrast, the direct approach attempts to design a stable adaptive controller for rejecting

unknown disturbances in an integrated algorithm. A direct approach based on a magnitude phase-
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locked loop (MPLL) concept can be found in [5] [6] [7], where the estimates of the frequency, phase

and magnitude of the periodic disturbance at the input of the plant are incorporated in a single,

stable compensator. Periodic disturbance rejection may also be achieved using a direct approach

based on the adaptation of an IMP controller [9] [20] [21]. The number of adaptive parameters

can be kept small by considering the Youla-Kucera parametrization of the controller (known as

the Q-parameterization) [1] [2] [3] [16]. The internal model is adjusted directly in the controller

by updating the parameters of the operator Q, and the number of the adaptive parameters of Q is

equal to twice the number of sinusoidal components. However, an accurate estimate of the plant

transfer function must be available for the implementation of the controller.

This paper focuses on a direct approach for the rejection of disturbances with multiple in-

dependent sinusoidal signals. An example of a disturbance rejection problem with two periodic

disturbances is the web transport application of [29]. Experiments on a paper machine showed

that the spectrum of the tension had large disturbance components at the frequencies of rotation

of the winding and unwinding rolls and their second harmonics. The literature also gives examples

of estimation of signals with independent but close frequencies, a problem closely related to the

control problem considered in this paper. The paper [30] describes the problem of pitch tracking

for automatic music transcription. When multiple notes are played together (polyphonic case), the

algorithm must track more than one sinusoidal component. Similarly, [18] describe a smart sensor

that requires the extraction of a signal from a measured signal containing an additive sinusoidal

noise at a separate but close frequency.

The starting point of this paper is the continuous-time adaptive algorithm of [27] for rejecting

periodic disturbances with multiple harmonics. The algorithm has a parallel structure, where

several copies of a basic algorithm for sinusoidal disturbance rejection are combined to reject an

arbitrary periodic disturbance. In [27], it was assumed that the frequencies of the components

were harmonically related. This property yielded a design where all the components contributed to

the estimation of the fundamental frequency, while at the same time avoiding the problem of two

frequency estimates converging to a same value. Here, the frequencies of the sinusoidal components

are allowed to be independent and it is shown that a frequency separation block can be used to

avoid convergence of two estimates to the same value. Overall, the contributions of this paper are
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to:

• convert the MPLL algorithm of [27] to discrete-time, making implementation in practical

applications more straightforward;

• present a stability proof using averaging theory [4] [23], thereby justifying the approximations

on which the design of the system is based;

• modify the algorithm to enable the tracking of periodic disturbances containing two or more

sinusoidal components that are not harmonically related.

Advantages of the MPLL disturbance compensator are its relative simplicity and the ability

to design easily a system with pre-specified closed-loop dynamics. Another useful feature of the

algorithm is that the disturbance compensator does not require the transfer function of the system

to be known in pure disturbance rejection applications. Instead, the frequency response is used,

which can be measured directly in a preliminary tuning phase. This feature is advantageous in

high-order systems with complicated dynamics and significant delay, such as found in active noise

control.

The paper is organized as follows. Section 2 gives the discrete-time adaptive algorithm for a

sinusoidal disturbance. The averaging analysis is provided in Section 3. In Section 4, the algo-

rithm is modified to manage disturbances with multiple sinusoidal components. Simulation results

demonstrate the benefit of the modification. Active noise control experiments in section 5 show

that the algorithm is effective in reducing the error caused by the disturbance for both fixed and

slowly time-varying frequencies.

2 Adaptive Algorithm for Single Sinusoid

For simplicity of presentation, we first consider disturbances having a single sinusoidal component.

The discrete-time adaptive scheme is shown in Fig. 1. The plant is described as

y(z) = P (z)(uc(z) + ud(z)− d(z))
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where P (z) is the plant transfer function, uc(z), ud(z) and d(z) are the z-transforms of the stabilizing

controller signal, of the disturbance compensation signal, and of the disturbance signal, respectively.

The disturbance is assumed to act at the input of the plant and to be of the form

d(k) = md cos(αd(k))

with a frequency

ωd = αd(k)− αd(k − 1)

C1(z) called the stabilizing controller and is designed to make the closed-loop system stable. C2(z)

is the reference shaping controller, and is used to improve the tracking of the reference input r(k).

The compensator C3(z) is given by

C3(z) = −
C2(z)

1 + C1(z)P (z)

and is used to construct an error signal ē that is indicative of the error caused by the disturbance

without being affected by the reference input. Indeed,

ē(k) = H(z) [d(k)− ud(k)] (1)

where H(z) is defined as

H(z) =
P (z)

1 + C1(z)P (z)
(2)

and the notation H(z) [(·)] is used to represent the time-domain output of the discrete-time LTI

system H(z) with input (·).

The disturbance compensation signal has the form

ud(k) = m(k) cos(α(k)) (3)

where m is the estimate of the magnitude of the disturbance md and α is the estimate of the phase
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Figure 1: Discrete-time algorithm for rejecting disturbances having a single sinusoidal component

αd. Similarly, we will denote ω as the estimate of ωd. The equations of the algorithm in Fig. 1 are⎡⎢⎣ x1

x2

⎤⎥⎦ = G−1

⎡⎢⎣ ē(k) cos(α(k))

−ē(k) sin(α(k))

⎤⎥⎦ (4)

where G is a 2× 2 matrix

G =
1

2

⎡⎢⎣ HR(ωd) −HI(ωd)

HI(ωd) HR(ωd)

⎤⎥⎦ (5)

and HR and HI are the real and imaginary parts of the frequency response of the system H(z),

evaluated at the nominal frequency ωd

HR(ωd) = Re[H(ejωd)]

HI(ωd) = Im[H(ejωd)] (6)

In the implementation of the algorithm, ωd is replaced by a rough estimate provided a priori, or by

the estimate ω.
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The remaining signals are given in the z-domain by

m(z) =
gm

z − 1x1(z)

ω(z) =
gω

z − 1x2(z)

α(z) =
kα(z − zα)

z − 1 ω(z) (7)

The parameter kα is chosen so that, for a constant frequency estimate ω, the phase α is the integral

of the frequency. Thus,

kα =
1

1− zα
(8)

It should be noted that the algorithm can be viewed as two separate parts. If d(k) and ud(k)

are not considered, the remaining blocks P (z), C1(z) and C2(z) form a standard control system

with two degrees of freedom. The subsystem will be called the nominal closed-loop subsystem.

The system from ē(k) to ud(k) can be looked at as an add-on that will be called the disturbance

compensator. In general, the nominal closed-loop subsystem is designed to achieve stability, track-

ing of reference inputs, and rejection of broadband noise. Its design should take into account

the usual constraints imposed by unmodelled dynamics and measurement noise. The disturbance

compensator is added to improve the rejection of residual sinusoidal disturbances of unknown and

time-varying frequencies. While the linear time-invariant compensator of the nominal subsystem is

unable to completely reject a disturbance with unknown frequency, the disturbance compensator

is able to do so asymptotically, at least in the ideal case where there is no measurement noise.

In pure disturbance rejection applications where the reference input is zero (such as active noise

control), the transfer functions C2(z) and C3(z) can be set to zero and the signal used by the

disturbance compensator is ē = −y. A useful feature of the algorithm in this case is that the

disturbance compensator does not require the knowledge of the transfer function of the nominal

system. Instead, the frequency response is used, and it can be obtained reliably in a preliminary

sine sweep experiment (from ud to y). Model matching to some transfer function is not needed: the

raw data can be used directly. This feature is advantageous for high-order systems with complicated

dynamics and significant delay, such as found in active noise control. In contrast, algorithms found
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in [1], [16] require an estimate of the transfer function of the system in the implementation, resulting

in greater computational load and unmodelled dynamics.

In previous work [6] [13] [14], the analysis of schemes similar to the one presented here was

performed using approximations that are typically found in the analysis of phase-locked loops.

Here, we show that the arguments can be made rigorous by setting the system appropriately in

the context of averaging theory (see [4] for the discrete-time theory, or [23] for the continuous-time

equivalence).

3 Averaging Analysis

3.1 Background

Of interest here is the discrete-time averaging method for mixed time scale systems [4], which are

described by difference equations of the form

x(k + 1) = x(k) + �f(k, x(k), y(k), �) (9)

y(k + 1) = A(x(k))y(k) + h(k, x(k))

+�g(k, x(k), y(k), �) (10)

The theory relates the solutions of system (9)-(10) to those of the so-called averaged system

xav(k + 1) = xav(k) + �fav(xav(k)) (11)

where

fav(x) = lim
T→∞

1

T

k0+TX
k=k0+1

f(k, x, w(k, x), 0) (12)

and

w(k, x) =
k−1X
i=0

A(x)k−i−1h(i, x)

Assuming that the limit in (12) exists uniformly with respect to k0 and assuming that the parameter

� is sufficiently small, the theory provides that the subset x(k) of the solutions of the nonautonomous
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original system (9)-(10) can be approximated by those of the simpler autonomous averaged system

(11). In particular, if x = 0, y = 0 and xav = 0 are equilibrium states of the two systems, exponential

stability of the original system can be inferred from exponential stability of the averaged system.

3.2 Error Formulation and Averaged System

It is not immediately obvious that the adaptive algorithm presented earlier fits into the averaging

theory. First, a small parameter � must be artificially introduced in the equations to enable the

approximation. Then, proper changes of variables must be applied so that the origin is an equilib-

rium point of the system and so that stability can be assessed. It turns out that the results can be

achieved by the following coordinate change

m̃(k) = m(k)−md(k)

�ω̃(k) = ω(k)− ωd

α̃(k) = α(k)− αd(k) (13)

and the following redefinition of the adaptation parameters

gm = �ḡm, gω = �2ḡω, kα =
k̄α
�

(14)

where � is a “small” scalar parameter. Note that, instead of a standard error formulation ω̃(k) =

ω(k)−ωd, a special error formulation �ω̃(k) = ω(k)−ωd is used, because it turns out that the system

with the standard error formation ω̃(k) does not fit the averaging theory. With these definitions,

(7) transforms into

m̃(k + 1) = m̃(k) + � [ḡmx1(k)]

ω̃(k + 1) = ω̃(k) + � [ḡωx2(k)]

α̃(k + 1) = α̃(k) + �
£
ω̃(k) + ḡωk̄αx2(k)

¤
(15)
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where x1(k) and x2(k) were defined in (4) and can be reformulated as⎡⎢⎣ x1(k)

x2(k)

⎤⎥⎦ = G−1ē(k)

⎡⎢⎣ cos(α̃(k) + αd(k))

− sin(α̃(k) + αd(k))

⎤⎥⎦ (16)

If the closed-loop subsystem H(z) in (2) has a state-space realization

θ(k + 1) = Aθ(k) +Bu(k)

ē(k) = Cθ(k) +Du(k)

with constant matrices A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n, D ∈ R1×1 and input u(k) = d(k)− ud(k),

we obtain

θ(k + 1) = Aθ(k) +B(md cos(αd(k))

−(md + m̃(k)) cos(α̃(k) + αd(k)) (17)

ē(k) = Cθ(k) +D(md cos(αd(k))

−(md + m̃(k)) cos(α̃(k) + αd(k)) (18)

Then, (15) and (17) constitute a mixed time scale system, with x1(k) and x2(k) obtained by

arithmetic computation of (16) and (18).

It remains to determine whether the averaged system is well-defined (i.e., whether the limit in

(12) exists. However, note that all the dependencies on time in the mixed time scale system are due

to sinusoidal functions and the systems to which they are applied are linear time-invariant systems

when the parameters are frozen. As a result, the function f in (12) is periodic, and its average is
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Figure 2: Block diagram of the averaged subsystem – approximate frequency loop

well-defined. In Appendix A, it is shown that the averaged system of (15) and (17) is given by

m̃av(k + 1) = m̃av(k)− �ḡm(m̃av(k)−

�ḡm(md −md cos(α̃av(k)))

ω̃av(k + 1) = ω̃av(k)− �ḡωmd sin(α̃av(k))

α̃av(k + 1) = α̃av(k) + �ω̃av(k)−

�ḡωk̄αmd sin(α̃av(k)) (19)

Note that the adaptation of ω̃av and α̃av is not dependent on m̃av. However, the adaptation of m̃av

depends on α̃av, which makes m̃av track the signal md(cos(α̃av)− 1). The diagram of the averaged

subsystem for ω̃av and α̃av is shown in Fig. 2 and is called the approximate frequency loop. If we

returned the system to the original coordinates, we would obtain the nonlinear approximation that

was used in [6], but without the supporting theory presented here. It is easy to verify that the

averaged system has an equilibrium point at the origin and that the linearized system around the

origin is given by

m̃av(k + 1) = m̃av(k)− �ḡmm̃av(k)

ω̃av(k + 1) = ω̃av(k)− �ḡωmdα̃av(k)

α̃av(k + 1) = α̃av(k) + �ω̃av(k)−

�ḡωk̄αmdα̃av(k) (20)

It will be shown later that this system can be made exponentially stable by proper choice of the

adaptation parameters.
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3.3 Application of Averaging Theory

Let x(k) denote
µ

m̃(k) ω̃(k) α̃(k)

¶T

and xav(k) be
µ

m̃av(k) ω̃av(k) α̃av(k)

¶T

. For some

h > 0, �0 > 0, 0 < � ≤ �0, k ∈ Z+,T ∈ Z+, assume that:

A1) the closed-loop system H(z) in (2) is stable, which can be obtained by suitably designing

C1(z).

A2) HR(ω) and HI(ω) are continuous and Lipschitz in ω, where HR(ω) and HI(ω) are the real

and imaginary parts of the frequency response of the system H(z), evaluated at frequency ω.

A3) The initial conditions x0 and θ̃0 (where θ̃ is defined in (24) in Appendix I) are small enough

that xav ∈ Bh0 for some h0 < h and on the time interval [0, fix(T/�)] (where fix(T/�) denotes

the largest integer l such that l ≤ T/�).

Then, the following lemmas can be derived from [4] after verification of assumptions B1− B7

of the paper(see Appendix B).

Lemma 1: (Basic Averaging Lemma):

Consider the mixed time scale system (15), (17) and the averaged system (19) with assumptions

A1 and A2. Then, there is an �T , 0 < �T ≤ �0 and a class K function Ψ(�) such that

kx(k)− xav(k)k ≤ Ψ(�)bT

for some bT > 0 and for all k ∈ [0, fix(T/�)] and 0 < � ≤ �T .

Lemma 2. (Exponential Stability Lemma)

If the original system in (15) and the averaged system in (19) satisfy assumptions A1−A3, and

if the averaged system is locally exponentially stable, the equilibrium point x = 0 of the original

system is locally exponentially stable for md 6= 0 and � sufficiently small.

To illustrate the validity of the averaging analysis, we consider an example with identity plant

P (z) = 1 and C1(z), C2(z), C3(z) are all zero. No reference input signal is applied and the

disturbance is chosen as d(k) = cos(0.2kπ + 0.2π). Parameters and initial conditions for the

averaged system in (19) are ḡm = 0.5, ḡω = 1, k̄α = 2, m̃(0) = 0.1, ω̃(0) = 0.1π, α̃(k) = −0.2π. The
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Figure 3: Parameter errors for both the original and averaged systems: with larger � (left) and
with smaller � (right)

simulation parameters of the original system are transformed back by (13) and (14). Fig. 3 shows

the plots of the parameter errors m̃, ω̃ and α̃ for both the original and averaged systems, with two

different adaptation gains having � = 0.5 and � = 0.2. It can be seen that the approximation of the

averaged system is closer to the original one for smaller �.

Note that the two lemmas are based on the assumption that the initial condition x0 ∈ R3 is

sufficiently close to zero, and ω̃(0) is an element of x0. Recall from (13) that �ω̃(0) = ω(0) − ωd.

Thus, the initial frequency estimate ω(0) must become closer to the nominal frequency ωd when

� tends to zero for the approximation to be valid. Intuitively, this can be explained by the fact

that one of the states of the system (the angle of the MPLL) is the integral of another state

(the frequency of the MPLL). As the system is slowed down by reducing � , the initial error in the

frequency must be reduced to insure that trajectories stay close to the averaged system trajectories.
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Figure 4: Linear approximation of the frequency loop (top) and magnitude loop (bottom)

3.4 Linear Analysis of the Averaged System and Exponential Stability

The linear approximation of the averaged system (20) gives two decoupled systems which, trans-

formed to the original variables, yield the diagrams in Fig. 4.

For the approximate frequency loop in Fig. 4, the poles of the closed-loop system can be placed

by appropriate choice of the controller parameters. Given zd,ω some desired location in the z plane

(inside the unit circle), the following parameters will result in two poles at that location

gω =
(1− zd,ω)

2

md

zα =
1 + zd,ω
2

(21)

Since md is not known, a solution consists in using an upper bound. The approximate frequency

loop will have stable poles for all values of md less than the upper bound, and the poles will be

equal to zd,ω when md is equal to its upper bound.

For the magnitude loop, the closed-loop pole can be placed at zd,m by letting

gm = 1− zd,m (22)

Choosing stable values for the desired poles yields an averaged system that is locally exponentially

stable. The theory of averaging can be applied by choosing values of zd,ω and zd,m that are suffi-

ciently close to 1. However, although the linear approximation may not give precise estimates of

the original system when � is small, the approximation is often still indicative of the asymptotic
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convergence of the algorithm and it is very useful for design, especially for setting the parameter

gains.

To implement the algorithm, initial estimates of the magnitude and the frequency of the distur-

bance should be used. The estimate of the frequency of the disturbance is needed to adjust G−1,

which may then be updated as a function of the estimate ω, or may be kept unchanged during

the adaptation if the prior estimate is sufficiently precise. In the case where the initial frequency

is far from ωd, the averaging analysis is not valid anymore, as the averaged out terms (e1 and

e2 in Appendix A) cannot be overlooked. It may take a longer time for ω to lock to ωd, due to

complex nonlinear dynamics. For a single sinusoidal component, estimates of the lock-in time can

be obtained using approximations found in the theory of phase-locked loops [26].

4 Extension to Multiple Components

In this section, it is assumed that the disturbance d(k) contains multiple sinusoidal components,

so that

d(k) =
NX
i=1

md,i cos(αd,i(k))

ωd,i = αd,i(k + 1)− αd,i(k), i = 1, · · · , N

The number of components N is assumed to be known a priori. If not, methods such as found in

[12] and its references can be used to estimate the number of sinusoids. Given that the parameters

md,i, ωd,i, αd,i (for i = 1, · · · , N) are unknown, a natural method is to employ several disturbance

rejection blocks to eliminate all the components of d(k).

4.1 Algorithm

The proposed algorithm is shown in Fig. 5. Each disturbance compensator is updated by the signal

ē(k), and the outputs of the compensators are summed up to cancel the effect of d(k). The ith

compensator is a copy of the algorithm in Fig. 1, with an additional subscript i (for i = 1, · · · , N)

associated to the specific component. If the MPLL algorithm is copied N times as the disturbance
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Figure 5: Adaptive scheme for disturbances with multiple sinusoidal components

compensator, it turns out that the averaged system of Fig. 5 becomes a collection of independent,

averaged systems for single sinusoid as in (19) because product terms originating from distinct

frequencies average out to zero. Similar design techniques can therefore be used for the individual

compensators. Although not common, it is possible for two frequency estimates to converge to the

same value. We propose here a technique that has been found useful to avoid this problem.

4.2 Frequency Separation

The update of ωi is

ωi(k + 1) = ωi(k) + gω,ix2,i(k) (23)

except when some estimated frequencies become too close. Then, a separation component is used

to prevent any two estimators from converging to the same frequency (such problem was found to

occur in simulations, although infrequently).

The proposed separation scheme is designed as follows. Given a minimum frequency separation

∆, a small parameter set by the designer:

1) ω̂i(k + 1) = ωi(k) + gω,ix2,i(k).

2) Let ω̂m = 1
N

NP
i=1

ω̂i(k + 1) and sort ω̂i(k + 1) in descending order. Then, label the sorted

elements as ω̄i and the corresponding index as s(i), meaning that ω̄i = ω̂s(i)(k + 1) and

ω̄i ≥ ω̄i+1 for all i. Find the (largest) index j such that ω̄j ≥ ω̂m > ω̄j+1.

3) Let δ = ω̄j − ω̄j+1
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• If δ < ∆, then ω̄j = ω̄j +
∆−δ
2
and ω̄j+1 = ω̄j+1 − ∆−δ

2

• Else, keep ω̄j and ω̄j+1 unchanged.

4) For i = j − 1, · · · ,1, let δ = ω̄i − ω̄i+1

• If δ < ∆, then ω̄i = ω̄i+1 +∆

• Else, continue.

5) For i = j + 2, · · · , N , let δ = ω̄i−1 − ω̄i

• If δ < ∆, then ω̄i = ω̄i−1 −∆

• Else, continue.

6) Assign the modified sorted frequency ω̄i to the corresponding frequency estimates ωs(i)(k+1)

based on the order obtained in step 2.

It should be noted that, in step 1, it is theoretically possible that several ω̂i’s have equal value.

This is not a problem, but it may be preferable to select the indices in step 2 to preserve the original

ordering in such case.

The separation scheme has the following properties:

• |ωi − ωj| ≥ ∆ for all i 6= j (i.e., the frequency estimates are all separated by an amount

greater than or equal to ∆).

• |ωi − ω̂i| ≤ (N − 1) · ∆ for all i (i.e., the frequency estimates are only modified by small

amounts if ∆ is small).

• if |ω̂i − ω̂j| ≥ ∆ for all i, j and i 6= j, then ωi = ω̂i for all i (i.e., the frequency estimates are

not modified if they are already sufficiently separated).

Although the frequency separation is helpful to avoid the problem of two estimates converging to

the same value, it is generally desirable to have reasonably good prior estimates of the frequencies.

If such estimates are not available, a solution consists in applying some of the eigenvector-based
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methods available in the signal processing literature [19] [24]. The multiple signal classification

(MUSIC) frequency estimation method and the estimation of signal parameters via rotational in-

variance techniques (ESPRIT) algorithm are two such methods that can be used to obtain estimates

of the frequency values before engaging the adaptive algorithm. However, the following simulations

and experiments show the ability of the MPLL algorithm to acquire and track time-varying fre-

quencies even with large initial frequency errors.

4.3 Simulation Results

In this section, we consider a simulation with a plant

P (z) =
z

z − 1.1

and controllers C1(z) and C2(z) chosen as

C1(z) =
0.749(z − 0.9)

z − 1
C2(z) =

0.05

z − 0.95

so that both poles of the nominal closed-loop subsystem are located at 0.79, and the step response

from r(k) to y(k) has no overshoot. The reference input r(k) is 0 for the first 1500 steps and is 1 for

the next 1500 steps. The disturbance d(k) has two sinusoidal components with nominal parameters

md,1 = 1, md,2 = 0.3, ωd,1 = 0.01× 2π, ωd,2 = 0.02 × 2π, αd,1(0) = 0, αd,2(0) = 3π/2. The initial

values of the estimates of the disturbance compensators m1 = 1.2, m2 = 0.5, ω1 = 0.007×2π, ω2 =

0.014× 2π, and 0 for the phases. The desired closed-loop poles for the disturbance compensators

are selected as zd,ω,1 = 0.98, zd,ω,2 = 0.987, and zd,m,i = 0.995 for i = 1 and 2. This leads to

parameters of the algorithm gm,1 = gm,2 = 0.01, gω,1 = 4× 10−4, gω,2 = 5.633× 10−4, zα,1 = 0.99,

zα,2 = 0.9935, kα,1 = 100, kα,2 = 153.85. In the simulations, these parameters were kept fixed and

the matrix G−1 was updated with the frequency estimate ω, assuming that the plant was known

exactly.

Fig. 6 gives the plant output without disturbance compensation. Fig. 7 shows the output

18



of the plant y(k) with and without frequency separation scheme. The parameter ∆ used in the

separation scheme was 0.002 × 2π. The plot on the top shows the plant output when there is no

separation component. A large residual error is apparent. This can be explained by Fig. 8 (top

plot) which shows the two frequency estimates converging to the same value around 0.01× 2π, and

leaving the other disturbance component uncompensated for. The bottom plots of the two figures,

obtained with the separation scheme, show that the effect of the disturbance is eliminated and that

the frequency estimates converge to the correct values. They also show that the adaptive system

converges in 1000 steps (10 periods for ωd,1).

The time of convergence is somewhat slow compared to what can be achieved with a single

sinusoidal component. Conditions were deliberately chosen to be challenging, with relatively large

initial frequency errors (30% off the nominal ones) and close disturbance frequencies. In frequency

estimation, one finds that the discrimination of two close frequencies involves time constants asso-

ciated to the difference in the frequencies, instead of the frequencies themselves. Also, [8] reports

the need to decrease the convergence speed of another adaptive control algorithm in similar exper-

imental conditions.

Figure 6: Plant output without any disturbance compensators
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Figure 7: Plant output: disturbance rejection algorithm without separation (top) and with sepa-
ration scheme 1 (bottom)

Figure 8: Frequency estimates: without separation (top) and with separation scheme 1 (bottom)

5 Active Noise Control Experiments

5.1 Experimental Set-up

The adaptive algorithm for the rejection of periodic disturbances with multiple sinusoidal compo-

nents was implemented on an active noise control system developed at the University of Utah. The20



algorithm was coded in C language and downloaded in a dSPACE DS1104 controller board hosted

in a PC. The sampling rate was 8 kHz. The adaptive algorithm requires knowledge of the frequency

response of the plant. The characteristics of P (ejω) are unknown but can be estimated in a training

stage. After the training, the estimated model P̂ (ejω) is used in the algorithm for the experiments.

The frequency response at a given frequency ω0 was estimated by an empirical transfer function

estimate (ETFE [17]) method, where the plant input was a pure sinusoid cos(ω0k). The real and

imaginary parts of the frequency response were obtained at 91 frequencies, equally spaced between

50 Hz and 500 Hz, and the results were saved in a look-up table. The range was found appropriate

for active noise control [15]. In real-time application, the real and imaginary parts of the frequency

response at the estimated frequency were obtained by linearly interpolating the look-up table, and

the matrices Gi (i = 1 · · ·N) were updated based on their respectively estimated frequencies ωi,

which correspond to the continuous-time frequencies ωi/2π× 8000 (in Hz). In the experiments, all

noise sources contained two sinusoidal components and the controllers C1(z), C2(z), C3(z) in Fig. 5

were all set to be zero. As mentioned earlier, the disturbance rejection application does not require

knowledge or implementation of the plant transfer function in that case.

5.2 Experiment with Fixed Frequencies

In this experiment, the nominal frequencies were fixed at 0.02 × 2π radians/step and 0.05 × 2π

radians/step, which correspond to 160 Hz and 400 Hz respectively in continuous-time. The initial

frequency estimates were set to be 0.015×2π and 0.045×2π, and all other parameters were initially

set at zero. The algorithm was not engaged until 1 second (corresponding to 8000 steps), so that

the effect of the noise before compensation could be evaluated. The desired closed-loop poles were

set at zd,ω,i = 0.99 and zd,m,i = 0.96, for i = 1, 2. The separation procedure was not employed since

the estimates were widely separated.

Fig. 9 shows the signal obtained from the error microphone. It shows that the algorithm, once

engaged, reduced the noise significantly within 0.3 second. The attenuation of noise is also evaluated

in the frequency domain by taking the spectral density of the error microphone before the use of

the algorithm (data in the first second of Fig. 9) and after the algorithm has converged (data from

the 2nd second to the 5th second). The spectral density of the signals was obtained using Welch’s
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Figure 9: Microphone signal

Figure 10: Spectra of microphone signal before algorithm (dotted line) and after convergence (solid
line)

averaged periodogrammethod with nonoverlapping Hanning window having a length of 800 samples

(using the function spectrum.m in Matlab). Fig. 10 shows the results with normalized frequency

from 0.01 to 0.1, where the dotted line (spectral density before algorithm engaged) demonstrates

significant spectral contents around normalized frequency 0.02 and 0.05. The solid line shows that

the two components are reduced greatly by more than 40dB after the algorithm has converged.

The estimated frequencies and magnitudes are also shown in Fig. 11 and Fig. 12.

5.3 Experiment with Varying Frequencies

In this section, the experiment was performed with noise frequencies that changed with time.

The first frequency varied linearly between 0.02 × 2π = 0.126 (160 Hz) and 0.018 × 2π = 0.113
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Figure 11: Frequency estimates of the control signal

Figure 12: Magnitude estimates of the controller

(144 Hz), and the second frequency changed linearly between 0.05 × 2π = 0.314 (400 Hz) and

0.048 × 2π = 0.302 (384 Hz). The initial frequencies were set at the correct frequencies at time

0. Both closed loop poles of the frequency loop were located at zd,ω = 0.998, and the poles of the

magnitude loop were set at zd,m = 0.999. All other parameters were initially set to zero.

Fig. 13 shows the signal at the microphone without disturbance compensation (top) and the

corresponding error signal when the disturbance control signal was applied (bottom). One finds that
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the disturbance was reduced dramatically despite the variation of the frequencies. The estimated

frequencies and the corresponding estimated frequency errors are shown in Fig. 14 and Fig. 15.

Fig. 16 demonstrates that the estimated magnitudes are time-varying, although the noise signal

from the D/A has constant magnitudes. This is due to the variation in frequency response of the

noise path and of the plant. An example of the plant magnitude response for an active noise control

testbed may be found in [27].

Tracking of the frequencies, as shown in Fig. 14 is excellent. Although the rate of variation of

the frequencies is slow, it is comparable to the case of noise cancellation in a turboprop aircraft

where the rotating blade frequencies are of the order of 100Hz and engine speed variations occur

over periods of seconds. If the rate of variation increases, a higher delay will be incurred in the

estimates. The controller may need to be redesigned. For example, the delay for ramp inputs can

be eliminated by increasing the order and type of the compensator of the frequency loop. A unique

feature of this algorithm, however, is that the delay can be predicted from the linear analysis.

Therefore, a design can be evaluated knowing quantitatively the trade-off between tracking of

frequency variations and immunity to noise. Other algorithms available for this problem do not

provide such knowledge.

6 Conclusions

The paper proposed an adaptive algorithm for the rejection of disturbances having multiple si-

nusoidal components of unknown frequency. Although the scheme is characterized by complex

nonlinear dynamics, averaging analysis was applied to obtain a nonlinear approximation of the

system and linearization enabled a relatively straightforward linear design of the controller. A

separation scheme was proposed to avoid the risk of convergence of the frequency estimates to the

same value and was shown to be useful in simulations. ANC experiments showed that the algorithm

was effective at rejecting the disturbances both when the frequencies were constant and when they

were slowly varying.

Appendix A: Averaged System
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Figure 13: Mirophone signal without (top) and with control (bottom)

Let x(k) denote
µ

m̃(k) ω̃(k) α̃(k)

¶T

. By defining the function

w(k, x) =
k−1X
i=0

Ak−1−iB(md cos(αd(i))− (md + m̃(i)) cos(α̃(i) + αd(i)))

and the transformation

θ̃(k) = θ(k)− w(k, x) (24)

the error signal ē(k) in (18) can be expressed as

ē(k) = C(w(k, x) + θ̃(k)) +D(md cos(αd(k))− (md + m̃(k)) cos(α̃(k) + αd(k)))

= ē1(k)− ē2(k) + Cθ̃(k) (25)
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Figure 14: Frequency estimates of the control signal

where

ē1(k) =
k−1X
i=0

CAk−1−iB(md cos(αd(i)) +Dmd cos(αd(k))

ē2(k) =
k−1X
i=0

CAk−1−iB(md + m̃(i)) cos(α̃(i) + αd(i)) +D(md + m̃(k)) cos(α̃(k) + αd(k))(26)

The signal cos(αd(k)) has instantaneous frequency ωd and cos(α̃(k) + αd(k)) has instantaneous

frequency ωd + �ω̃.

Both ē1(k) and ē2(k) are the outputs of a linear system Σ(A,B,C,D) with sinusoidal inputs

and zero initial conditions. The averaged system is obtained by taking m̃, α̃, ω̃ to be constants, so

that

ē1(k) = HR(ωd)md cos(αd(k))−HI(ωd)md sin(αd(k)) + ẽ1(k)

ē2(k) = HR(ωd + �ω̃)(m̃+md) cos(α̃(k) + αd(k))−HI(ωd + �ω̃)(m̃+md) sin(α̃(k) + αd(k)) + ẽ2(k)
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Figure 15: Frequency errors between the estimates and their nominal values

Figure 16: Amplitude estimates of the control signal

where ẽ1(k) and ẽ2(k) are transient terms tending to 0 exponentially as k → ∞, given that the

closed-loop system is stable.
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To lighten the notation, we drop the time index k for all signals. However, the reader should

remember that they remain functions of time. Then

ē

⎛⎜⎝ cos(α̃+ αd)

− sin(α̃+ αd)

⎞⎟⎠ = e1 + e2 + e3

where

e1 =
1

2

⎛⎜⎝ HR(ωd)md cos(α̃) +HI(ωd)md sin(α̃)−HR(ωd + �ω̃)(m̃+md)

−HR(ωd)md sin(α̃) +HI(ωd)md cos(α̃)−HI(ωd + �ω̃)(m̃+md)

⎞⎟⎠

e2 =
1

2

⎡⎢⎣ γ1 γ2

γ2 −γ1

⎤⎥⎦
⎛⎜⎝ cos(2αd)

sin(2αd)

⎞⎟⎠

e3 = (ẽ1 − ẽ2 + Cθ̃)

⎡⎢⎣ cos(α̃) − sin(α̃)

− sin(α̃) − cos(α̃)

⎤⎥⎦
⎛⎜⎝ cos(αd)

sin(αd)

⎞⎟⎠
and

γ1 = HR(ωd)md cos(α̃)−HI(ωd)md sin(α̃)−HR(ωd + �ω̃)(m̃+md) cos(2α̃)

+HI(ωd + �ω̃)(m̃+md) sin(2α̃)

r2 = −HR(ωd)md sin(α̃)−HI(ωd)md cos(α̃) +HR(ωd + �ω̃)(m̃+md) sin(2α̃)

+HI(ωd + �ω̃)(m̃+md) cos(2α̃)

Letting � = 0 and α̃, ω̃, m̃ be constant, we obtain,

AVG [e1] = G(ωd)

⎛⎜⎝ −m̃av(k)−md +md cos(α̃av(k))

−md sin(α̃av(k))

⎞⎟⎠
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and AVG [e2] = 0, AV G [e3] = 0. It follows that

AVG

⎡⎢⎣
⎛⎜⎝ x1

x2

⎞⎟⎠
⎤⎥⎦ = AVG

⎡⎢⎣G−1(ωd)ē

⎛⎜⎝ cos(α)

− sin(α)

⎞⎟⎠
⎤⎥⎦

= G−1(ωd)×AV G [e1 + e2 + e3]

=

⎛⎜⎝ −m̃av(k)−md +md cos(α̃av(k))

−md sin(α̃av(k))

⎞⎟⎠
Appendix B: Verification of the Assumptions of Averaging Theory

Let

f(k, x, θ̃, �) =

⎛⎜⎜⎜⎜⎝
0

0

ω̃(k)

⎞⎟⎟⎟⎟⎠+ ē(k)

H2
R(ωd) +H2

I (ωd)

×

⎛⎜⎜⎜⎜⎝
ḡm(HR(ωd) cos(α̃(k) + αd(k))−HI(ωd) sin(α̃(k) + αd(k)))

ḡω(−HI(ωd) cos(α̃(k) + αd(k))−HR(ωd) sin(α̃(k) + αd(k)))

ḡωk̄α(−HI(ωd) cos(α̃(k) + αd(k))−HR(ωd) sin(α̃(k) + αd(k)))

⎞⎟⎟⎟⎟⎠ (27)

fav(x) =

⎛⎜⎜⎜⎜⎝
−ḡm(m̃+md −md cos(α̃))

−ḡωmd sin(α̃)

ω̃ − ḡωk̄αmd sin(α̃)

⎞⎟⎟⎟⎟⎠
and define d(k, x) = f(k, x, 0, 0)− fav(x). Given assumption A2 of section 3.3 and the facts that

ksin(x1)− sin(x2)k ≤ kx1 − x2k

kcos(x1)− cos(x2)k ≤ kx1 − x2k

ksin(x1)k ≤ 1

kcos(x1)k ≤ 1

the following results can be justified for ∀x ∈ Bh, ∀θ̃ ∈ Bh, 0 < � ≤ �0 and k ∈ Z+:
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B1) x = 0, θ̃ = 0 is an equilibrium point of (27), i.e., f(k, 0, 0, �) = 0, and f(k, x, θ̃, �) is Lipschitz

in x, θ̃.

B2) f(k, x, θ̃, �) is Lipschitz in �, linearly in x, θ̃.

B3) fav(0) = 0 and fav(x) is Lipschitz in x.

B4) d(k, x) is piecewise continuous in k, has bounded and continuous first derivative in x, and

d(k, 0) = 0. Moreover, there is a nonnegative strictly decreasing function γ(k) with the

property γ(k)→ 0 as k →∞, so that

°°°°° 1T
k0+TX

k=k0+1

d(k, x)

°°°°° ≤ γ(T ) kxk

and °°°°° 1T
k0+TX

k=k0+1

∂

∂x
d(k, x)

°°°°° ≤ γ(T )

B5) A is uniformly exponential stable, which is known by assumption A1 in section 3.3.

B6) Same as assumption A3 in section 3.3.

B7) Let h(k, x) = md cos(αd(k))− (md + m̃(k)) cos(α̃(k) + αd(k)), we can check that h(k, 0) = 0,

and °°°°∂h(k, x)∂x

°°°° ≤ kb

for some kb > 0 and ∀x ∈ Bh0

The above results indicate that the system satisfies all the assumptions B1 − B7 for a mixed

time scale system in [4].
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