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INTRODUCTION

Flight control laws are usually designed without accounting for constraints on the
control effectors. Control allocation algorithms can be used to distribute the control law
requirements among multiple effectors in some optimal manner while accounting for
their limited range. The objective is typically to minimize the error between the
commanded acceleration, generated by the control law, and an achievable acceleration.
Other criteria for minimizing drag, power, actuator deflection, etc., may also be
included. Two objectives considered in this paper are direct allocation'" and mixed (-
norm optimization.4 Direct allocation solves for a vector of control variables that
produce an acceleration vector with a direction identical to the desired acceleration
vector, while minimizing the magnitude of their difference. Mixed optimization
minimizes the acceleration error together with other secondary terms, such as control
effort.

Enns’ and Buffington® have successfully transformed the control allocation problem
from an (;-norm error minimization objective into standard linear programming format
and have implemented solutions using commercially available software. Linear
programming algorithms may be categorized in two groups, namely, simplex algorithms
and interior-point algorithms. Simplex algorithms are well-known and have been
previously tested for control allocation.*” Iterates of the simplex method travel along the
edges of the feasible space while decreasing the value of the cost function at each

iteration. One drawback is the simplex method's susceptibility to cycling due to



degeneracy or roundoff error. Anti-cycling rules may help but come with no guarantees.
Interior-point methods differ from simplex algorithms because they always progress
towards the optimal solution from within the feasible space, rather than along the
boundary. Interior-point algorithms have good convergence properties, which may make
them better suited to the fixed-time implementations of safety-critical systems.
Although not generally observed in practice, simplex methods cannot guarantee that a
feasible solution is anywhere near the optimum if the algorithm is stopped prematurely.
Interior-point methods, on the other hand, can be viewed as a gradient method that
always progresses in the general direction of the optimal point.

This paper starts from linear programming formulations of the control allocation
problem. Because interior-point algorithms are numerous and the literature is somewhat
discouraging to the non-specialist, details of two standard approaches suited for the
control allocation problem are described with an emphasis on implementation. These
algorithms, called primal-dual path-following, and predictor-corrector path-following
algorithms, are adapted to the control allocation problems and tested on models of a C-
17 transport aircraft and an advanced tailless fighter. Simplex solutions are computed
for a baseline comparison. Guidelines for obtaining weighting parameters and stopping
tolerances are derived from the results of the tests. Primal-dual path-following is shown
to be the most efficient of the two interior-point algorithms for the control allocation

problems presented.



PROBLEM STATEMENT

The objective of the control allocation problem is to determine the n components of
the control vector, u, that result in the desired roll, pitch, and yaw components of the
acceleration vector, a,€ R”. We assume that they are related by the control

effectiveness matrix CB as follows:
a, = CBu (1)

where CBe R"™*". We also assume that the vector is constrained by upper and lower

bounds so that
umin S u S umax (2)

The vector u may be composed of the most restrictive components of the rate limits of a
single control cycle and the position limits. Model reference control laws’ and dynamic
inversion control laws® allow one to specify the trajectories of the output of the system
by selecting the value of the term CBu due to the control input. For underdetermined
systems, where m < n, control allocation algorithms are necessary to find the control
vector u that achieves that goal. However, note that there is no guarantee that an
arbitrary a, is attainable or that the solution is unique. Although there is no inherent
restriction on the values of m and » for interior-point algorithms, the case where m < n

corresponds to the reality of the problems under consideration.

Direct Allocation Formulation

The objective optimized by direct allocation can be expressed as:
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subjectto CBu={a,, u

min

The solution to (3) is a control vector that results in an acceleration proportional to a,
and maximally achievable. Existence of the solution is guaranteed if u =0 belongs to

the constraint set.

Mixed (,-norm Formulation

Error norm formulations enable the minimization of the control error without
consideration for the direction of the acceleration vector. In general, there is no
guarantee that a, is attainable or that the solution is unique. If the solution is not
unique, a secondary objective is to minimize the magnitude of the control vector or its
distance from a preferred control value, u,. Combining the two objectives is known as
mixed optimization. A mixed objective offers additional flexibility for a designer to
satisfy secondary objectives. It is often desirable to have the control vector approach a
preferred control value that reduces drag, for instance. The mixed (;-norm objective is

defined to be

min o, - CBul + bl “

subjectto u, . <u<u__

where £ 1s a scalar weighting factor and u, is a preferred control. The (;-norm is used to

facilitate conversion to linear programming format.



Direct Allocation vs. Error Minimization

Preserving the direction of the desired acceleration does not, in general, minimize
the acceleration error for unattainable commands. The direct allocation solution will lie
on the boundary exactly in line with the desired vector. However, the solution with
minimum error results in the smallest absolute difference between an attainable
acceleration and the desired one. Which solution is preferable is debatable, although
some piloted simulations have demonstrated a more stable "feel" with error

minimization.’

Standard Form of Linear Programs

To make use of linear programming methods to solve the control allocation

problems (3) and (4), they can be expressed in the form of

min J,=c"x
X

: )
subject to Ax=b, 0<x<x__
which is a standard primal linear programming problem description.
Feasibility and Infeasibility
Consider the general optimization problem
min f (x)
) (6)

subject to  G(x)=0, H(x)>0

with smooth functions f:R" >R, G:R" > R", and H : R" > R". The values of
x € R" that satisfy the constraints are feasible. If a feasible solution exists, then at least

one optimal solution also exists. Otherwise, the problem is called infeasible. The term



infeasible is also used to refer to values of x that do not satisfy the equality constraints.
The term interior refers to values of x that are strictly within the inequality constraints,
which does not include boundary points. An infeasible interior-point algorithm is one
that accepts starting points that comply with the inequality constraints but not
necessarily with the equality constraints. The control allocation problems as stated in (3)
and (4) are guaranteed to have feasible solutions. The mixed (;-norm is clearly feasible

by selecting any control u# within the bounds u_, and u_, . For direct allocation, the

n

<0<u

min max *

problem is feasible if u

LINEAR PROGRAMMING FORMULATIONS OF CONTROL ALLOCATION

In order to take advantage of linear programming algorithms, the problems (3) and
(4) must be recast in a linear programming format, such as (5). The results of the

conversion processes developed by Bodson® are given below for convenience.

Direct Allocation

The direct allocation problem is already in standard form, however, an equivalent
problem of reduced dimension can be solved, creating a significant computational
savings (about 1/3™ reduction per iteration for the models in this paper). Direct

allocation can be expressed in the form of (5) by making the following assignments:

A=M-CB, b=-Au,, o
¢'=-a,CB, x, =u, —u

max max min

where the new variable is defined as x =u —u_, . For m =3, the matrix, M, is defined

Ay, —44,
a3 0 —qy,

as M ={ } with the rows of CB and a, reordered so that the first



T, . : .
element of a, =[ad’l a,, a“] is the one with largest magnitude. For the trivial

case where a, = 0, the solution is u =0, otherwise, the control vector is obtained from

u=x+u_ (®)

T
a,CBu
T
a,4a,

If ¢ =

> 1, the control is scaled to an achievable value u = % .

Mixed ¢,-norm Objective

The objective function for the mixed (,-norm problem can be transformed into the

following linear programming formulation

min [A-h h--h 1---1 1---1]x
subjectto [CB —CB I -I]|x=|a, - CBu,]
Osp+sumax_u0’ Osp—suo_umin
v, 20, v.20

©)

. L r .
The variables are combined in the vector, x = [ ploplov ] . Once the optimal x

1s determined, the control can be recovered with

u=p,—p +u (10)

It should be noted that the problem may be reduced if any element(s) u,, =u or

max,i

u,, =u_ . for i=1...n. In this case, the corresponding column(s) of CB or —CB in (9)

S min, i

are removed.

INTERIOR-POINT ALGORITHMS

Linear programming techniques are desirable because of the existence of well-

established, reliable algorithms. They can solve any problem that can be transformed



into a linear cost function with linear constraints, but the size of the typical control
allocation problem is rather small. Much of the overhead found in commercial linear
programming code is included to handle a wide variety of linear programming
problems, and many of the added features are not beneficial to the control allocation
problem. The emphasis of these programs is on very large-scale, sparse problems with
thousands of variables, whereas current control allocation problems are small-scale,
dense problems. Using commercial solvers makes comparison of different techniques
difficult because the user is generally at the mercy of the linear programmer's choice in
optimization code. Algorithms are usually tested against a group of problems known as
the NETLIB suite. These are problems of many different sizes and difficulty. No
algorithm has yet been shown to be universally faster for every linear programming
problem in the NETLIB suite, and the only way of knowing which one is faster for a
given problem is to test it specifically for that problem.

The main point of this section is to familiarize the reader with interior-point
algorithms and their implementation for control allocation. This section focuses on one
particular algorithm know as primal-dual path-following. A variation called predictor-
corrector path-following is also included. There are many adaptations of each method,
but our discussion is limited to standard implementations with minor refinements suited
to our problems. The concept of a path that interior-point solutions follow was
introduced by Megiddo.'" A natural progression from primal-dual or 1% order path-
following algorithms is to extend it to 2" order. This was done by Mehrotra'' and

developed (popularized) further by Lustig, Shanno, and Marsten.'? The method is often
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referred to as a predictor-corrector. The derivations of these algorithms are documented
in more detail in other papers, and the presentation is limited here to what is necessary

for implementation.

Primal-Dual Path-Following

The primal-dual path-following algorithm is described below and is captured in
pseudo-code in Figure 1 at the end of the section. The algorithm can be derived from
either the primal or dual linear programs. Let the primal problem, with objective J,, be

expressed as

min J, =c'x
y (11)
subjectto Ax=b, x=0

Incorporation of upper bounds on x are discussed later. The search for a lower bound on

J, leads to the development of the dual problem

max J, =b"1
* (12)

subjectto A"A+s=c,s>0

The difference between primal and dual cost functions plays an important role in the
development of the primal-dual algorithms. The duality principle, ¢’ x >b" A, credited
to John von Neumann,"? may be applied generally to primal and dual objectives so that
Jp 2 J, with equality only when the primal and dual variables are optimal. Since the
cost function for the dual problem provides a lower bound on J,, the difference, called
the duality gap, between the values of the primal and dual objectives can be used to

determine how close a solution is to the optimal point.
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Optimality
The Karush-Kuhn-Tucker'*"> (KKT) optimality conditions specify that optimality
requires primal and dual feasibility, and complementarity. That is, the pair (x,s) is a

globally optimal solution if and only if

A" A+s=c
Ax=5b
(13)
Xs=0
x2>20,5s2>0

where X=diag(x). The first set of equations in (13) enforces dual feasibility, the second
enforces primal feasibility, and the third enforces the complementarity conditions.

A similar set of equations can be derived from the unconstrained equivalents to (11)
and (12). In the primal framework, the non-negativity constraints on x are approximated
with a smooth barrier function, such as log(x), which approaches -0 as x approaches
zero. The equality constraints can be included in the cost function by use of Lagrange

multipliers. The resulting unconstrained primal problem is
min L=c "x+ A" (b- 4x) ung (14)

with ¢ > 0. The Lagrange multiplier, 4, is also referred to as a dual variable. In fact, the
reverse is also true, that is, the primal variables are the Lagrange multipliers of the dual
problem. A system of equations for optimizing (14) can be determined by differentiating
L with respect to each variable and setting the results to zero. Making use of the vector

e=[l 1 - l]T and the matrix X = diag(x), the relationships
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c—A"A-uX'e=0
Ax—b=0 (15)
x>0

are obtained. The variable x is not allowed to be identically zero so that (15) remains
well defined. By making the simple substitution, s = uX e, the system of equations in

(15) becomes very close to the desired KKT form

A" A+s—c=0
Ax—b =
x—-b=0 (16)
Xs—ue=0
x>0,s>0

If u is very small, a solution that satisfies (16) will almost be optimal. The constraint
s >0 is implied by the substitution just made. It is interesting to note that (16) can be
derived from either the primal or dual problems.

The Central Path

Megiddo'® developed the idea of a central path which lies between the primal and
dual solutions. Primal-dual path-following algorithms travel along the proximity of a
central path between primal and dual optimal solutions by gradually reducing u. As u
goes to zero, the solution tends to an optimal point. When on the central path, all
products, x;s;, have the same value, 1, and for this reason it is also known as the
complementarity gap. In general, the current point will not be on the central path
exactly. In an effort to represent a point closer to the central path, the elements of Xs are
reduced to zero at a similar rate. A commonly used estimate of u is a fraction of the

average of these terms and is computed as
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T
X s

H=o0y,with y=— and 050 <1 (17)
n

o is a centering parameter that helps to balance the updates between a pure affine-
scaling step (o =0) and a pure centering step (o =1). Zhang'® made o conditional on
the current status of y . Early on, a large fraction of y is used to compute u . Near the
end of convergence (when ¥ <<1), u is assigned a smaller and smaller fraction of y .

A dynamic centering parameter that accomplishes this is
o =min (0.1,ky) (18)

Experience has shown that £ =10 gives the best results for simulations in this
paper. Although the duality gap may initially be large, u# decreases exponentially.
When it is very small, it decreases at an even faster rate helping convergence to occur
very quickly once a solution is near the optimal point.

Step Direction

Since the intent of path-following methods is to iteratively search for the optimal
solution along a central path of decreasing values of u, it follows that a new point
(A+AA, x+ Ax, s+ As) should also lie in the neighborhood of this path. Following the
central path stabilizes the primal-dual algorithm by coaxing each pairwise product x;s; to
converge to zero at the same rate. For a new point to be on the central path, the
equations in (16) become

A"(A+A) +(s+As)=c

A(x+Ax)=b (19)
(X +AX)(s+As) = ue
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The 2™ order terms are considered negligible so that (19) can be simplified to the

linearized system of equations, with S=diag(s), to

A" 0 I |[Ad c—s—A"2

0 4 0| Ax|=| b-Ax (20)

0 S X|| As He—Xs
Solving (20) gives us the new step direction. The algorithm requires an initial starting
point that is strictly in the interior, i.e. (x>0, s >0), but does not require it to be
feasible.'” Residuals may be defined as

r=AA+s-c

r,=Ax-b (21)
r, =Xs—ue

and the step directions can be simplified to

AL =(ADA" )" (-1, + ADr,)
Ax=D(A"AA-r,) (22)
As=—A"AA-r,
where D= (X”S)f1 and r.=-r.+X 'r,. D can be defined as S™'X, but to be
consistent with later expressions of D it is left in this form.
Step Size
To guarantee the next iterate remains in the interior, only a portion of the correction
is applied in the update. The primal and dual variables can have independent step sizes

so the updates are
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X=Xx+ pa,Ax
s =5+ po,As (23)
A=A+ pa,AA

where o, =min —L,l Ax, <0, i=1..ny, o, =min —i,l
Ax; As,

and 0< p <1. Note that p is usually chosen above 0.9, and that we use p =0.99995 in

As, <0, i= ln}

our implementation.
Stopping Criteria

An optimal solution is a feasible solution that satisfies J, = .J,, . Therefore, when the
difference between primal and dual cost functions is sufficiently small the algorithm can
stop. However, if an infeasible starting point is used, then the stopping rule should
include a measure of feasibility also. There is no consensus stopping rule, but all include
the duality or complimentarity gaps and primal and dual feasibility measures. We found

the following rule sufficient for our tests

re

b
d
> 1 1

max /=] ’”}/}7”1
rnax(|JP JD,I) b

for ¢, around 10~ to 10® depending on the desired accuracy.

IJSQ (24)

Two-Sided Bounds

Without loss of generality, the lower bound can be assumed to be zero. With an
upper bound, a second Lagrange multiplier, z, is needed. In addition, the finite upper
bounds are handled by use of a separate equality with the help of the non-negative slack

variable, w. These changes lead to additional equations to (21), namely,

ru = x - w_ xmax
(25)
r.=Wz—ue

wz
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For an infeasible starting point, the step directions are identical to (22) with

redefinitions

D=(x"'s+w'z)"

(26)
n=-r+X 'r Wl _+W'Zr,
and with the additional updates
Aw =—-Ax
4 4 (27)
Az=-W"ZAw-W"'r,_
. . . . . x's+w'z
with W=diag(w) and Z=diag(z). Updating u requires y to be redefined as y = v
n

Finally, the cost function of the dual problem changes to J, =b"A—z"x__. These
differences are of minor computational significance, making the upper bound constraint
on x a simple matter.

Starting Point

Careful selection of the starting point can eliminate the need for some of the
residuals, but can sometimes lead to slow convergence. Indeed, all interior-point
algorithms are sensitive to their starting point and there is no known method that
guarantees a good starting point. We have modified slightly a version of a method
proposed by Lustig, Marsten, and Shanno.'? It performs well for all simulations
performed for this paper. The idea of the method is to compute a least-squares solution
to the equality constraint Ax = b and modify it so that it guarantees a strictly interior-
point which is not "too infeasible" and not "too close to a boundary." The cost is slightly

less than one iteration. An initial estimate of x is computed as
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X =

A7 (447)” b‘ (28)

The absolute value is used to keep values positive. The norms of b and ¢ are compared

with unity to obtain the constants

n, =max|(1,|b
b ( ”2 ) (29)
n, = max(l, c||2)
The constant p is computed as
p =max(0.01n,,100) (30)
so that it is a minimum value for the primal variables x and w
x, =max(p, %)
(31

The free variable 4 is set to zero, while each element of s and z are initialized based on
the relative size of the corresponding scaling factor in c. Table 1 shows the assignments

of s and z which make use of the constant d = 0.5n, .

Table 1. Initial assignments of the
dual variables s and z.

Test i Zj
¢, <—d -Ci -2¢;
-d<¢ <0 d d—c;
¢, >0 ¢ td d

Predictor-Corrector Path-Following

The vast majority of commercial software is based on Mehrotra's predictor-corrector

method.'" Lustig, et al'? and others further improved upon the method by extending it to
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include variables with two-sided bounds. Mehrotra exploited the 2" order terms of the
primal-dual update to provide a better step direction. The update is split into an affine or
predictor direction and a centering or corrector direction. Assuming initial infeasibility
and including the 2" order term, the equations in (22) and (27) now become
A"AA+As— Az =,
AAx = -,
Ax+Aw = —r, (32)

SAx+ XAs = e — Xs — AX As
WAz+ZAw = ue—Wz—-AWAz

Consider the step directions for each variable to be composed of two steps, as in
Ax = por(Ax” +Ax ) (33)

The superscripts, p and ¢, represent the predictor and corrector portions of the step,
respectively, while p and a are determined as in (23). The right side of (32) is also
partitioned into predictor and corrector portions. The predictor step advances the iterate
toward the optimal solution while reducing infeasibility. The residuals, 7,, 7., r,, and
with r_ redefined as r = Xs, comprise the predictor portion of the right hand side of
(32). The corrector step keeps the updated point near the central path and utilizes the 2™

order terms to make a correction toward the optimal point.

Predictor Step

The predictor step direction is computed with
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ALY =(ADA") " (=1, + ADr,)

Ax" =D(A"AX -r,)

Aw” =—(Ax” +ru) (34)
As” =—ATAA" —r,

Az? :—Wfl(r +ZAw”)

wz

where r, =—r, + X"'r, . If a large predictor step can be taken (min(c,,a,)<1) then
Ax‘ is not computed and is left out of the update. The predictor step sizes are chosen
using the same rule for (23).

Corrector Step

The corrector step requires computation of x. In order to obtain the best estimate of
the complementarity gap, it is computed after executing (34). There are many proposed
methods of computing u, but for the control allocation problems, we found that a
constant value for the centering parameter, o, gives the lowest iteration count and also
minimizes computations:

(x+a,Ax" ) (s +o,A8" )+ (w+a, A’ ) (2 + 0, Az")

V= n (35)
U =0y, o=0.1

Other methods''"'*'™®!? can reduce y faster when closer to the optimal solution, such
as (18), and are more useful when higher accuracy is necessary. Although (18) was
found to speed up convergence for the primal-dual algorithm, it did not yield any
improvement for predictor-corrector path-following.

The corrector step is taken on the condition that the smallest step size, as determined

for the predictor step, is less than one.'® This allows for large steps when far from the
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boundary. A step size of less than one means that the current point is too near a
boundary to take a large affine step. More centering is required in this case so a
centering or corrector step is taken. The corrector step utilizes the remaining part of
(32). In fact, an identical routine to the predictor step (34) may be used to compute the
corrector step by redefining the residuals as
r.=r,=r,=0
r, =AX?AS? — ue (36)
r,. =AWPAZ? — ue
The 2™ order terms in the residuals promote rapid convergence and reduce overshoot by
steering the updates toward the central path trajectory. A new step size can be

determined as before, but using the combined updates of (33).

Implementation Issues

Each of the algorithms discussed so far have a common enemy, namely, finite
precision of computers. As the iterates come closer and closer to a boundary, they either
approach zero or their dual approaches zero. In either case, the numerical conditioning
degrades. In an attempt to shorten number of iterations, some algorithms use the
previous solution in a trajectory of commands as the starting point for the next solution.
However, for good convergence of interior-point methods, it is important that the
estimate becomes feasible before it becomes complimentary, making warm starting
techniques impractical. Since the algorithms are designed so that convergence of the
variables is simultaneous, many singularities are likely to occur together. There are three

implementation choices that help combat these numerical difficulties; a numerically
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stable step direction, Cholesky factorization, and applying limits to reciprocals.
Fortunately, these improvements are not difficult.

Numerically Stable Step Direction

The step As is traditionally defined as As = —4" A4 —r, but our experience has been

that the calculation
As=-X""r - X'SAx (37)

is numerically more stable and should replace the corresponding updates in (22) and
(34).
Cholesky Factorization

Common to every interior-point algorithm is the term (ADAT )71 . When computing
(ADAT )_1 , it is advisable to use a stable inversion routine. Most interior-point methods
employ Cholesky factorization to accomplish this. Since D is positive definite, ADA" is

symmetric positive definite (assuming full row rank) and can be factored as

ADA™ = LI (38)

where L is an upper right triangular matrix. Once in this form, A can be computed very
easily and with more numerical stability. There are other, more advanced techniques,
such as pivot ordering and Cholesky-infinity factorization that handles positive semi-
definite matrices.'® These have not been found to be beneficial to control allocation

problems, presumably because they are small and dense.
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Limits on Reciprocals

Inverses of the primal variables, x and w, and the diagonal matrix, D, are computed
at each iteration. As the optimum point is approached, elements of both x and w can
approach zero, implying that their reciprocal approaches infinity. Complementarity of
the primal and dual variables also drives many of the diagonal elements of D to either
zero or infinity. To prevent an internal error in the computer, each value is checked after
the reciprocal is performed. The following operation was found to apply an acceptable

upper limit for each reciprocal element

x' =min(x",10°) i=1...n (39)

AIRCRAFT SIMULATION MODELS

Aircraft models are nonlinear in general. However, at a given flight condition, the
model may be linearized. The aircraft aerodynamic model is a function of altitude, Mach
number, angle-of-attack, and sideslip. Additionally, the control moments will be a
function of the flight condition and the current control effector positions. Flight
computers typically store multiple linear models on a grid over the entire flight envelope
of the aircraft. The tests in this paper have been restricted to one flight condition for
each of two aircraft. The aircraft models represent the Boeing C-17 cargo jet and an
advanced tailless fighter studied by Lockheed-Martin. These aircraft were chosen
because they have large numbers of effectors and because they are representative of two
types of systems. The tailless fighter is an example of a system with coplanar controls,*

whereas the C-17 does not have this property.
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u and CB

min > “"max ?

Given a,, u

Convert the control allocation problem to a linear program, see (7) or (9)

Choose values for parameters p and €,

Compute starting point, (x, s, w, z, and 1) see (28)-(31) and Table 1

XTS + WTZ
2n

Compute feasibility residuals(rc, Ty Vs T, andru) see (21) and (25)

xs2 "wz?d

Compute complementarity gap, 4 =min(0.1,10y)y, where y =

While (24) is false
Solve for the step direction,

[AA] _(ADAT)_l (=, + 4Dr )|
Ax _ ]
N D(A"AA-1,) ) pD=(x"s+wz)"
= 1 -1 wnere
Aw A m XS nE=r,+ X n, =W, +WZr,
“Ax
A2 zaw-wr,

Compute step sizes for primal and dual variables

¢, =min -2 Ax;<0,i=1.n;, a, =min LIRS
Ax, As,

Update the variables x, s, w, z, and 4

As; <0, i= ln}

s =5+ papAs
X=x+po,Ax
A z=z+pa,Az
w=w+ pa,Aw
P A=A+ pa,Ad

Compute complementarity gap

Compute feasibility residuals
end while

Compute control vector, see (8) or (10) as appropriate.

Figure 1. Steps of a primal-dual interior-point algorithm.
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C-17 Model

The C-17 model includes sixteen separately controlled surfaces: four elevators, two
ailerons, two rudders, and eight spoilers. The flight condition for this model is at an
altitude of 30,000ft and at a speed of Mach 0.69. The control effectiveness matrix is

given by

-0.5158 -0.8129 -0.8129 -0.5158 -0.1224 -0.1224 0.0114 0.0169
CB=| 02077 0.1126 -0.1126 -0.2077 0.4812 -0.4812 0.3044 0.3137
0.0188 0.0102 -0.0102 -0.0188 0.0241 -0.0241 -0.3428 -0.5118

-0.0361 -0.0116 0.0192  0.0338 -0.0361 -0.0116 0.0192 0.0338
-0.1056 -0.2130 -0.2723 -0.3045 0.1056 0.2130 0.2723 0.3045
—-0.0465 -0.0460 -0.0457 0.0397 0.0465 0.0460 0.0457 0.0397

The actuator commands are given in degrees and have the following limits:

w, =[15 15 15 15 26 26 5 5 30 30 30 30 30 30 30 30
u, =[-15 =15 =15 =15 -39 -39 =5 =5 0 0 0 0 0 0 0 of

The ordering of the controls is as follows: outer left elevator, inner left elevator, inner
right elevator, outer right elevator, left aileron, right aileron, lower rudder, upper rudder,
four left spoilers, four right spoilers. The output vector of this model consists of pitch,

roll, and yaw rates.

Tailless Model

The advanced tailless fighter model®' includes eleven separately controlled surfaces

consisting of elevons, pitch flaps, thrust vectoring, outboard leading edge flaps, spoiler
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slot deflectors and all-moving tips. The flight condition for this model is 15,000ft at

Mach 0.4. The control effectiveness matrix is given by

=2.5114 -2.5115 -1.9042 -0.9494 -0.9494
CB=| 3.7450 -3.7450 0 1.7718  —-1.7718
-0.5319 0.5319 0 —0.4893  0.4893

-1.1329 0 1.5046  1.5046 —-0.0003 -0.0004
0 —-0.0455 -2.0751 2.0752 -0.2887 0.2887
0 -0.8174 0.2875 -0.2875 -0.1418 -0.1418

The actuator commands are given in degrees and have the following limits:

u,.. =[ 30 30 30 60 60 10.61 10.61 60 60 40 40]T
u =[-30 =30 -30 -60 —60 -10.61 -10.61 0 0 O O]T

The ordering of the controls is as follows: left and right elevons, pitch flaps, left and
right all-moving tips, pitch thrust vectoring, yaw thrust vectoring, left and right spoilers
slots, left and right outboard leading edge flaps. The output vector is composed of

modified rotational rates. Specifically, the components are pitch rate, stability axis roll

rate, and a blend of sideslip and stability axis yaw rate.

TEST RESULTS AND COMPARISONS

A set of uniformly distributed random vectors are used to test each algorithm,
formulation, and aircraft model to provide comparisons. The vectors are angular
acceleration commands for the aircraft that are to be generated by the deflecting control
surfaces. The set, W, is comprised of three subsets of vectors, namely, achievable,

exactly achievable, and unachievable acceleration commands, ‘¥ ={%Q, Q, 29}. The
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subset, Q cR*, consists of 1000 vectors in random directions that are scaled so that
each vector just touches the boundary of the attainable set. Two more subsets of vectors
are then created by halving and doubling the magnitudes. Most control allocation
algorithms behave differently for these three subsets of commands. The test set was
therefore created this way to ensure that each case was adequately represented.

Comparisons of the algorithms are made regarding accuracy and control effort.
Simplex solutions are provided as baselines since their solutions are exact (i.e. within
machine precision). The weighting of the control term for the baseline solutions was
chosen to be 7 =1x10". The selection of 4 is somewhat arbitrary, but must be large
enough for numerical reliability yet small enough to keep the control term secondary.
Conclusions from the simulations regarding stopping criteria, €, and the weighting
parameter, 4, in the mixed (,-norm optimization problem are determined and used to
evaluate the computational efficiency of the algorithms.

It turns out that the behavior of the primal-dual and predictor-corrector methods are
nearly identical for the following tests. Indeed, the results for each aircraft model are
similar as well. In light of this, except where otherwise noted, the plots in this paper
specifically use the C-17 model and the primal-dual algorithm, but are also

representative of each combination of interior-point algorithm and model.

Accuracy

To determine the accuracy of the interior-point algorithms, measures for the
acceleration accuracy and control effort were evaluated. These characteristics were

treated separately so that specific behavior could be observed. For a desired



27

acceleration, a,, and the baseline command (obtained from a simplex algorithm), u_,

the accuracy of an interior-point solution, u#, was measured by

. = ||ad —CBu”1 —||ad —CBu,|, (40)
“ |,

The error is normalized by the (,-norm of control effectiveness matrix,
||CB||1 = mjax le‘CBif‘. This definition of €, gives it an interpretation in terms of an
angle difference of the effectors using the interior-point method versus the simplex
method. This angle can then be compared to the resolution of the control effectors. An
acceptable error is considered to be £, <0.1 degrees.

Control effort is again measured by the difference between the interior-point
solution and the simplex solution. Multiple solutions often exist which result in
identical CBu's, yet very different u's. Considering a preferred control, u,, the measure

of control effort, €, , was chosen to be

£, = u =], =l ~uo] (41)

If £, 1is negative, the interpretation is that the interior-point solution is closer to the
preferred control than the simplex solution. For this to be possible, the optimal point
must have multiple solutions. One such case is the tailless aircraft model with the direct
allocation approach. In this case, the simplex method usually finds solutions with more
controls at their limits than the interior-point algorithms, resulting in a higher energy
expense.

This section shows the behavior of the different algorithms and formulations as

functions of the stopping tolerance, &, , and the control weighting, 4. This insight assists
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the designer in choosing appropriate values for these parameters. In the selection of ¢,
and 4, the metrics €, and ¢, are the chief concern, but the computational burden that is
related to €, must also be considered. Choosing the largest value of &, that still satisfies
one’s requirements will likely result in the smallest number of computations.

Direct Allocation Objective

Acceleration Accuracy

Figure 2 is a comparison of the mean acceleration error as calculated in (40) for the
direct allocation objective. Tests for the C-17 model are plotted versus the tolerance, €,
used in the respective stopping criteria for the three interior-point algorithms. Both path-

following methods demonstrate similar abilities in converging to very high accuracy.

1000 ———— Primal-Dual |
— — — Predictor-Corrector

10'10 | | | |
10° 1072 10 . 1076 1078

S

Figure 2. Mean acceleration error for the direct allocation

formulation. (C-17)
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The acceleration error can be thought of as the deviation of u from u;. In that sense,
it can be measured in degrees, i.e. the difference in angle between the actual command
and the baseline command. By analyzing the figures, an appropriate tolerance may be
selected for the desired accuracy. For example, assuming a desired accuracy of £, <0.1
for the tailless fighter, one should choose &£ <0.1 for either interior-point method.

Control Accuracy

The direct allocation method does not explicitly minimize the control cost because it
is not designed to. However, for systems with coplanar controls (i.e. three or more
controls are linearly dependent), such as the tailless fighter, the direct allocation
problem does not have a unique solution. The simplex method arrives at the optimal
vertex which always has variables at their limits, often maximizing the control. Interior-
point methods, on the other hand, travel from the interior, and typically converge to an
optimal solution with smaller variables. This inherent trait often results in solutions that
have fewer saturated controls than that of the simplex method. For example, the
maximally attainable acceleration a, =[133.5289 -349.2778 37.8923]" for the
tailless model has a simplex solution, u_, and primal-dual interior-point solution, u,

equal to

u, =[-30.0 30.0 30.0000 —60.0000 -53.7145 6.6754 10.61 60.0 0.0 0.0 40.0]T
u =[-30.0 30.0 -6.7738 -19.1244 -12.8389 -0.024 10.61 60.0 0.0 0.0 40.0]T

The solutions are identical except for the 3™ thru 6™ components. The acceleration error
is €,=1.7585x10". Clearly the interior-point solution is much smaller in magnitude

than the simplex solution even though practically identical accelerations are generated.
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The example given has about 27% smaller control than the simplex control, but the
average percentage difference using an interior-point method was found to be about 5%
smaller. Figure 3 is a histogram showing the distribution of the difference (as a
percentage) in control costs between the simplex and primal-dual solutions for the
tailless fighter.
Mixed ( -Norm Objective

Visualization of the errors of the mixed (,-norm is best done with a three
dimensional surface so that the relationship of both the weighting, /4, and the stopping
rule tolerance, &, can be simultaneously observed. The error is computed from the
simplex solution using 4 = 10°. Robust selection of 4 and g, for each algorithm can

be done by using values that satisfy the £, <0.1 selected tolerance.
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Figure 3. Histogram of percent difference in control costs.
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Acceleration Accuracy

Figure 4 shows the mean error surface. The highest accuracy is clearly at or near the
point with the smallest tolerance and where /4 is the same as that of the baseline method
(h=1x10""). One finds that suitable values for the path-following methods are, on
average, £, < 0.1 for either model and with £#<0.01 and 4#<0.001 for the C-17 and
tailless fighter, respectively. An empirically derived rule of thumb for acceleration
accuracy was found to be £, <100¢, .

Control Cost

The control effort depends heavily on the penalty placed on the control term in the
objective function. A high value of 4 results in solutions that favor smaller magnitude
control values at the expense of the acceleration error. Figure 5 shows the surfaces for
the control costs using the interior-point methods. Again, the results between both
algorithms are essentially the same. In fact, we find that the control cost, which is less
than or equal to zero for 2 <107 andé&, <10h is also the same for either aircraft model.
Selection of h and €,

By analyzing both plots of acceleration error and control cost, parameters 4 and €,
can be judiciously selected. Table 2 lists these parameters so that one set can be chosen
to satisfy both models. The stopping tolerance should be chosen as large as possible to
minimize iteration count. The control cost weighting should also be chosen as large as
allowed for minimum control cost. From the table, acceptable values are 4 =0.001 and

£ =0.01.
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Figure 5. Control cost using mixed optimization.
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Table 2. Parameter selection for the path-following

methods.
h &,
C-17  ¢,<0.1 <0.001
. <0.1

Tailless €, <0.1 <0.01

C-17 ¢,<0 , <10h

> B >

Tailless €, <0 =10

£,<0.1 and

107 <h<0.001 £ <10h

g, <0 ‘

Computational Cost

Computational efficiency is extremely important for real-time applications. The
computational efficiency of each algorithm is measured here by the number of iterations
and by the number of floating point operations, or flops (using the Matlab 5.3 flops
function), for platform independence.

Iteration Count and Floating Point Operations

Iteration count is usually the parameter of interest for analyzing the speed of linear
programming algorithms. For small problems, such as found in control allocation,
however, the number of floating point operations also offers valuable insight. The
models and formulations can be converted to a problem size to analyze the algorithm

efficiency. Problem size is typically defined by

L=mn+m+n (42)

with m and n representing the numbers of rows and columns of 4. The number of flops
per iteration count is dependent on the sizes of A, b, and ¢, which correspond to the

three terms in (42). Figure 6 and Figure 7 display the iteration count and the number of
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flops, respectively, required to converge using acceptable parameters just determined
(h=0.001 and &, =0.01). The first graph plots the number of iterations vs. problem
size. The number of iterations is shown for each algorithm using the same line pattern
for both mean and maximum except that the maximum line has squares marking the
data points.

From Figure 6 it may appear that the simplex is the slowest algorithm followed by
the primal-dual followed by the predictor-corrector. But in fact the reverse is true. The
number of iterations does not tell the whole story because the predictor-corrector
method requires about 1.4 times the number of flops per iteration as compared to the
primal-dual method. The mean values of each interior-point algorithm are very similar.
Predictor-corrector requires the fewest number of iterations, but the most flops per
iteration, which ultimately places it at a higher computational need than the primal-dual
interior-point method when the worst case is considered. The worst case is important for
control applications to determine whether an algorithm will converge within the
prescribed cycle time.

Convergence Behavior

One of the most attractive traits of interior-point algorithms is their uniform
convergence towards the optimum. Figure 8 and Figure 9 show the average convergence
of the acceleration error as a function of number of iterations with a mixed (,-norm
formulation for the C-17 and tailless fighter aircraft models, respectively. The weighting
factor, A, is set very small (10™) so that the acceleration error completely dominates the

cost. In the figures, the first iteration is taken as the starting point calculation. Although



36

C-17 Model

p—
S
: \S}

104 Predictor-Corrector Primal-Dual
107 3
107 E
-7 | | | | !
107 4 6 g 10 12 14
[terations

Figure 8. Average convergence of interior-point methods.

10’ Tailless Aircraft Model

Primal-Dual

Predictor-Corrector

2 4 6 8 10 12 14
[terations

Figure 9. Average convergence of interior-point algorithms.
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the algorithms converge at different rates, they all show consistent progress towards an
optimal solution. As opposed to other techniques, interior-point methods are well-

suited to implementations with fixed number of iterations.

Real-Time Data

The primal-dual algorithm using the mixed (,-norm objective was implemented in
the C programming language to get an idea of the real-time requirements for these
methods. The predictor-corrector method was not implemented, but its timing can be
extrapolated from the flops and iteration comparison shown. Timing is consistent for
each iteration and does not vary. Table 3 shows the timing data obtained using a PC
based on a 1.46GHz AMD Athlon 1700 processor. Convergence data is given for the set
¥ using a weighting parameter of =10 and a stopping tolerance at £, =107,

The data show that the maximum time required to compute accurate solutions using
an interior-point algorithm is less than 200us for either aircraft model. Although today's

flight computers are about a decade behind current computers, this experiment shows

Table 3. Timing and convergence data using data set \V'.

h =10'6, Mean £, Max g, Mean Max Max

£, =10° iterations iterations convergence
time

Primal-

dual 1.4x10°  1.5x107 12 22 150ps

Tailless

Primal-

dual 3.1x107  59x10” 12 21 170 ps

C-17

igﬁfel:: 59x10™ 8.0x10™" 10 17 41ps

Simplex ) ¢ 104 3.8x10™ 15 25 T4ps

C-17
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that interior-point algorithms are now, or in the near future, within our ability to be
implemented in real-time control allocation applications. Although there appears to be a
large difference in accuracy, the values are much smaller than resolutions of real

effectors which make the difference negligible.

CONCLUSIONS

The control allocation problem has been posed here with two different objectives,
namely, the direct allocation objective and a mixed (,-norm objective. These objectives
were transformed into efficient linear programming formulations so that they could be
solved using any linear programming algorithm. Presentations of two common interior-
point algorithms, primal-dual path-following, and predictor-corrector path-following
were given. Adaptations to the starting points and the stopping rules were included in
the descriptions. The increase in the number of computations due to infeasible starting
points and two-sided bounds was insignificant. Implementation techniques such as
Cholesky factorization and placing limits on variables were found to improve numerical
stability. Tests using the control allocation algorithms were performed on linear models
of two different aircraft, a tailless fighter and a C-17. Both interior-point algorithms
performed well. The primal-dual path-following method was found to be slightly better
overall than the predictor-corrector path-following method, as it required fewer
computations and was simpler to implement. However, we suspect that the predictor-
corrector method may be better for larger scale problems. Guidelines for choosing the
stopping rule tolerance and the control weighting for the mixed (,-norm formulation

were given, and specific values for the two aircraft models were found.
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In summary, interior-point algorithms can be successfully applied to control
allocation methods. Although they are slower than the simplex algorithm, interior-point
algorithms progress uniformly towards the optimum, so that implementations with a
fixed number of iterations can be considered. Interior-point methods are well behaved
for large scale systems and one may expect good scalability for problems with many
effectors as well as more competitive performance with simplex methods. Interior-point
algorithms can also be applied to nonlinear programming problems so that extensions to
control allocation problems with nonlinear cost functions or with moments that are
nonlinear functions of the effectors are possible.

The sensitivity of the solution is an area of interest for future research. For problems
formulated using direct allocation criteria we suspect that interior-point methods will be
less sensitive than simplex methods due to the gradient nature of the algorithm.
However, for problems cast in the (,-norm format the sensitivity is independent of the
method used. The (,-norm solution without a weight on the control vector is more
likely to be sensitive since the control may jump by a finite amount for an arbitrarily
small benefit in performance. A change in the solution will only occur for

improvements that are greater than a value determined by the weighting factor.
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