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Abstract

The paper proposes a discrete-time algorithm for the rejection of sinusoidal disturbances of un-
known frequency. The algorithm is adapted from an existing continuous-time algorithm and the
overall nonlinear system is analyzed using a linear approximation. The paper shows that the noise
rejection properties may be predicted using an in-phase/quadrature decomposition of the noise similar
to the one encountered in the theory of phase-locked loops. Estimates are obtained for the standard
deviations of the plant output and of the adaptive parameters and simulations validate the predic-
tions of the analysis, despite the nonlinear nature of the adaptive system and the high level of noise
applied.

1 Introduction

The rejection of periodic disturbances is a common problem in control applications. If the frequency of
the disturbance is known, several techniques are available, including internal model control, adaptive
methods, and repetitive control techniques. These methods are closely connected. In particular, it
was shown in [1] that a standard adaptive feedforward control algorithm was equivalent to an internal
model control law. Examples of applications include helicopters [2] and high-density magnetic disk
drives [3].

When the frequency of the disturbance is not known, the problem is considerably more compli-
cated. Sometimes, the disturbance (or a signal related to it) can be measured, and the problem
can be solved using an adaptive feedforward control algorithm. However, in many applications, it is
inconvenient, if not impossible, to place a sensor on the source of the disturbance or along its path
to the plant. For such problems, an adaptive implementation of the internal model principle may be
considered [4],[5], [6]. Such algorithms are highly nonlinear and, aside from Lyapunov-type stability
results, little is known about their convergence properties or their sensitivity to measurement noise.
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In [7], two adaptive algorithms were proposed for the cancellation of sinusoidal disturbances with
unknown frequency. The first algorithm was called indirect, and was obtained by combining a fre-
quency estimation algorithm together with an adaptive algorithm for the cancellation of disturbances
of known frequency. A comparable approach was followed in [8], using a different frequency estimation
algorithm and a repetitive control method. The second algorithm of [7] was called direct, and esti-
mated the frequency, phase, and magnitude of the disturbance in an integrated fashion. The scheme
was obtained by combining a phase-locked loop concept with a sinusoidal disturbance cancellation
scheme. The algorithm was extended to handle multiple sinusoidal components and implemented
successfully in an active noise control testbed [9].

As other algorithms for the rejection of periodic disturbances of unknown frequency, the direct
algorithm of [7] is highly nonlinear. However, it may be approximated by a linear system using
techniques similar to those used for phase-locked loops [10]. As a result, estimates of convergence
rates can be obtained that are useful for design. The contribution of this paper is to show that the
continuous-time algorithm of [7] may be adapted to discrete-time, and that its noise properties may be
predicted using an in-phase/quadrature decomposition of the measurement noise signal. Simulations
show that the results of the analysis are accurate, even in the presence of high noise.

2 A Discrete-Time Algorithm

2.1 Problem Statement

The plant is assumed to be described, in the z-transform domain, by

y(z) = P (z)(u(z)− d(z))

ȳ(z) = y(z) + n(z) (1)

where u is the control input, d is the disturbance, n is the measurement noise, y is the plant output,
and ȳ is the measured plant output. P (z) is the transfer function of the plant, which is assumed to
be stable. In the time-domain, the disturbance is assumed to be given by

d(k) = d1 cos(αd(k)), (2)

with
αd(k) = ω1k + δ1. (3)

The disturbance is a sinusoidal function with magnitude d1, frequency ω1, and initial phase δ1. These
parameters are fixed, but unknown. Alternatively, (3) can be written in a recursive form as

αd(k + 1) = αd(k) + ω1, αd(0) = δ1. (4)

Although the disturbance does not need to act at the input of the plant, it is assumed that an
equivalent input disturbance may be so defined. For its cancellation, the input is then chosen to be
of the form

u(k) = θ1(k) cos(α(k)), (5)

with
α(k + 1) = α(k) + θ2(k), α(0) = 0. (6)
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Figure 1: Plant and Adaptive System

The variables θ1(k) and θ2(k) are parameters with nominal values θ1
∗ = d1 and θ2

∗ = ω1. The phase
of the disturbance is estimated through the variable α(k), and it is determined by the time history
of θ2(k) rather than through separate adaptation: even though the problem is stated in terms of
three unknown parameters, the solution is based on the adaptation of only two parameters θ1(k) and
θ2(k). Specifically, for the exponentially stable adaptive scheme developed in this paper, the phase
δ1 is determined through

δ1 =
∞�

k=0

(θ2(k)− ω1) (7)

The structure of the overall system is shown in Fig. 1.

2.2 Basic Results

In a first step, we assume that the measurement noise n = 0, so that y = ȳ. The algorithm is based
on the following fact.
Fact:

Assume that:

• θ1 and θ2 vary sufficiently slowly that the response of the plant to the signal u can be approxi-
mated by the steady-state output of the plant for a sinusoidal input with frequency θ2.

• the instantaneous frequency θ2 is close to ω1, so that P (ejθ2) can be replaced by P (ejω1).

• the phase error α− αd is small.

Then: considering low-frequency components only, the two signals

�
y1(k)
y2(k)

�

=

�
y(k) cos(α(k))
−y(k) sin(α(k))

�

(8)
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are approximately given by
�
y1(k)
y2(k)

�

= G

�
θ1(k)− d1

d1(α(k)− αd(k))

�

, (9)

where

G =
1

2

�
Re[P (ejω1)] −Im[P (ejω1)]
Im[P (ejω1)] Re[P (ejω1)]

�

.

Proof: Let
PR = Re[P (ejω1)], PI = Im[P (ejω1)]. (10)

Under the assumptions, the output of the plant is given by

y(k) = PRθ1(k) cos(α(k))− PIθ1(k) sin(α(k))

− PRd1 cos(αd(k)) + PId1 sin(αd(k)). (11)

Keeping only the low-frequency components of the signals y1 and y2, we have

y1(k) =
1

2
PRθ1(k)−

1

2
PRd1 cos(α(k)− αd(k))

−
1

2
PId1 sin(α(k)− αd(k)),

y2(k) =
1

2
PIθ1(k) +

1

2
PRd1 sin(α(k)− αd(k))

−
1

2
PId1 cos(α(k)− αd(k)). (12)

Assuming that the phase error α− αd is small, the result is obtained.
Comments: Equation (9) can be viewed as an alternative description of the plant. Note that

α(k)− αd(k) = α(k − 1)− αd(k − 1) + θ2(k − 1)− ω1 (13)

so that, with the change of variables, the plant is approximately a linear time-invariant plant with
two inputs θ1(k) and θ2(k) and two outputs y1(k) and y2(k). The transfer function matrix consists
of a gain matrix G and a discrete-time integrator in the second channel. The parameters d1 and ω1
act as constant disturbances applied to the inputs. The parameter d1 also appears as a gain in the
second channel. In contrast to (9), equation (12) constitutes a nonlinear approximation of the plant.
This nonlinear approximation is useful to understand the transient properties of the algorithm, but
is not used in this paper.

The elimination of the high-frequency components in the signals y1(k) and y2(k) can be achieved
by low-pass filtering. In the algorithm discussed in this paper, the signals are applied to a compensator
which is itself low-pass. Thus, no filter was used for the simulations. However, it may be added if
needed.

2.3 Compensator Design

Define two variables w1, w2 through
�
w1
w2

�

= G−1
�
y1
y2

�

, (14)
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so that the dynamics of the system become decoupled. Specifically, in the z-domain

w1 = θ1 − θ1
∗

w2 =
d1

z − 1
[θ2 − θ2

∗]. (15)

The control law is chosen to be the cascade of the transformation (14) and compensators

θ1 =
C1(z)

z − 1
[w1], θ2 =

C2(z)

z − 1
[w2]. (16)

The poles at z = 1 are included in the compensators to guarantee the rejection of the constant distur-
bances composed of d1 and ω1 (the compensators are selected as conventional controllers with integral
compensation). The compensator transfer functions C1(z) and C2(z) are designed to guarantee the
stability of the closed-loop systems and satisfactory transient responses. For example, one can choose

C1(z) = −g1, C2(z) = −g2
z − za
z − zb

, (17)

where g1, g2, za, and zb are design parameters. The overall adaptive algorithm is then given by (5),
(6), (8), (14), (16), and (17).

Two simple tuning methods are proposed for the parameters of the control law. The first is the
equivalent of the continuous-time control law of [7]. Let zd be some desirable location to place the
closed-loop poles. For the first channel, the objective leads to a parameter g1 = 1−zd. For the second
channel, the parameters are

g2 =
3(1− zd)

2

d1
, za =

zd + 2

3
, zb = 3zd − 2. (18)

The second method is an alternative proposed specifically for the discrete-time version of the algo-
rithm. It consists in placing the pole of the compensator for the second channel at the origin and
neglecting the effect of the pole. The remaining closed-loop poles are both placed at zd, giving the
following parameters

g2 =
2(1− zd)

d1
, za =

zd + 1

2
, zb = 0. (19)

The response of the algorithm with the second tuning method was found to be faster and with a
wider convergence range, but also with a higher sensitivity to noise.

Estimates of the magnitude of the disturbance and of its frequency are required. These estimates
are used as initial conditions for the variables θ1 and θ2, and also for the design of the compensators.
The estimate of the magnitude of the disturbance d1 is used to adjust the gain g2 of the compensator
C2(z) and the estimate of the frequency of the disturbance is used to adjust the gain matrix G−1. The
variables g2 and G−1 may be kept constant during operation, or they may be updated as functions
of the variables θ1 and θ2. In experiments with this algorithm [9], the frequency response of the plant
was estimated automatically in an initial tuning phase, and the matrix G was updated by linear
interpolation of a table look-up as a function of the estimated frequency. In the simulations of this
paper, fixed values were used. Generally, the frequency of the disturbance may be estimated using
an estimation algorithm (such as the one discussed in [7], or those of [12]). The magnitude may
be estimated using the measured RMS output, or a fast Fourier transform. However, the region of
convergence of the adaptive scheme is generally large enough that estimates based on prior information
are typically sufficient.
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3 Noise Analysis

3.1 Linear Approximation

The previous derivation considered the noiseless case, which resulted in nominal values for the pa-
rameters θ∗1 = d1, θ

∗

2 = ω1, and nominal functions α∗(k) = αd(k), u∗(k) = d1 cos(αd(k)), y∗(k) = 0.
Now, the effect of a measurement noise n(k) added to the output y(k) is evaluated. The idea of the
derivation is to assume that the noise is sufficiently small that second-order effects can be neglected
and to decompose the noise into in-phase and quadrature components.

Define θ1 = θ∗1 + δθ1, θ2 = θ∗2 + δθ2, α = α∗+ δα, u = u∗+ δu, y = y∗+ δy, ȳ = y∗+ δy+n, where
y is the actual output of the plant, and ȳ is the measured output (the one used by the algorithm).
Since y∗ = 0, y = δy and ȳ = δȳ, where δȳ = δy + n. Define components of the measured output

�
ȳ1(k)
ȳ2(k)

�

=

�
ȳ(k) cos(α(k))
−ȳ(k) sin(α(k))

�

. (20)

Again, these two variables are the ones that are used by the algorithm, instead of y1, y2, which are
not available but remain as defined previously for the purpose of analysis. For the noise, we introduce
the in-phase and quadrature components

�
n1(k)
n2(k)

�

=

�
n(k) cos(αd(k))
−n(k) sin(αd(k))

�

. (21)

From (20),

ȳ1(k) = (y(k) + n(k)) cos(αd(k) + δα(k)),

ȳ2(k) = −(y(k) + n(k)) sin(αd(k) + δα(k)). (22)

Assuming that the noise is small and neglecting second-order effects, it follows that

ȳ1(k) = y(k) cos(αd(k)) + n1(k),

ȳ2(k) = −y(k) sin(αd(k)) + n2(k). (23)

The control input is given by

u(k) = (d1 + δθ1(k)) cos(αd(k) + δα(k)), (24)

so that, approximately,

δu(k) = cos(αd(k))δθ1(k)− d1 sin(αd(k))δα(k). (25)

Assuming slow variations of δθ1 and δα, the output of the plant corresponding to this input is given
by

y(k) = PR cos(αd(k))δθ1(k)− PRd1 sin(αd(k))δα(k)

−PI sin(αd(k))δθ1(k)− PId1 cos(αd(k))δα(k). (26)
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Multiplication of this signal by cos(αd) and sin(αd), and application to (23), yields signals whose
first-order/low-frequency components are given by

�
ȳ1(k)
ȳ2(k)

�

= G

�
δθ1(k)
d1δα(k)

�

+

�
n1(k)
n2(k)

�

. (27)

The result shows that, to first-order, the effect of the measurement noise is equivalent to the addition
of two noise variables in the transformed system. Again, analysis can again be performed in a linear
time-invariant framework.

3.2 Computation of Variances

A transfer function matrix relates the noise sources to the parameter deviations, with






δθ1
δθ2
δα




 =






C1(z)
z−1−C1(z)

0

0 (z−1)C2(z)
(z−1)2−d1C2(z)

0 C2(z)
(z−1)2−d1C2(z)




G

−1

�
n1
n2

�

. (28)

To apply the results and estimate the performance of the algorithm in the presence of noise, the
power spectra of the noise components n1 and n2 must be known. If n is a white noise with variance
σ2, it is common to assume, in the analysis of phase-locked loops, that n1 and n2 are uncorrelated
white noises with variances equal to 1

2σ
2 [10]. We will make the same assumption. The power spectra

of δθ1, δθ2, and δα can then be deduced using the transfer function (28), and the variances of these
variables can be computed by integration of the power spectra.

Alternatively, a Lyapunov equation may be solved, using the following state-space description

x(k + 1) = Ax(k) + BG−1v(k), (29)

where

A =






1− g1 0 0 0
0 1 + zb 1 −g2d1
0 −zb 0 g2zad1
0 1 0 1





, B =






−g1 0
0 −g2
0 g2za
0 0





,

x(k) =






δθ1(k)
δθ2(k)
δθ3(k)
δα(k)





, v(k) =

�
n1(k)
n2(k)

�

. (30)

Note that these equations, as well as previous equations, assume that the G matrix used by the
compensator is the true matrix corresponding ot the plant. However, the analysis can be extended
to account for a difference in the true and estimated matrices. Defining V = E(vvT ) = 1

2σ
2I, and

assuming that n1 and n2 are white noise sources, the value of the steady-state covariance matrix
P = E(xxT ) is given by the solution of the discrete Lyapunov equation ([11], p. 471)

AXAT + BG−1V (G−1)TBT = X. (31)
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which is easily obtained using modern mathematical software.
Regarding the output signals y and ȳ, (26) shows that y is a sinusoidal function with the same

frequency as the disturbance, but with a peak and phase that are random processes. The variance of
the magnitude of the sinusoid is equal to (PR

2+PI
2)(E(δθ1

2)+d1
2E(δα2)). Although the variance of

the plant output is a function of time, its average over the period of the disturbance may be defined.
This average variance may be estimated experimentally or in simulations, and is a significant perfor-
mance measure for the algorithm. Using the previous results, one finds that the average variances of
the true and measured plant outputs are given by

Eavg(y
2) =

(PR
2 + PI

2)

2
(E(δθ1

2) + d1
2E(δα2))

Eavg(ȳ
2) = Eavg(y

2) + σ2. (32)

The subscript avg refers to the averaging of the variances over the period of αd(k).

4 Simulation Results

We present simulation results obtained for a plant which is a pure delay P (z) = z−10. The disturbance
has magnitude d1 = 1, a period equal to 100 time samples,. The initial phase was set at δ1 = 0,
but could be set at arbitrary values. The estimates used by the algorithm are 0.8 for the magnitude
and 120 steps for the period. The desired closed-loop pole was selected to be zd = 0.99, leading to
g1 = 0.01, g2 = 0.025, za = 0.995, and zb = 0 (for the second tuning method). These parameters were
left fixed throughout the simulations.

Fig. 2 shows the measured output of the plant (ȳ). The plot on the left corresponds to a
simulation for a low noise condition: σ = 0.01, with the uncompensated plant output being a sinusoid
with magnitude equal to 1. The plot on the right corresponds to a high noise condition, with σ = 0.5
(or a standard deviation equal to 50% of the magnitude of the uncompensated plant output, instead of
1%). Figs. 3 and 4 show the responses of the magnitude and frequency estimates (θ1 and θ2), showing
convergence towards the expected values (the nominal magnitude is 1 and the nominal frequency is
2π/100 = 0.0628). In the high noise plots, the convergence of the parameters towards their nominal
values is barely visible in the fluctuations induced by the noise. However, the output is significantly
smaller than what it would be under uncompensated conditions, as shown in Fig. 5.

The predicted variances were computed by solving the discrete Lyapunov equation. The results
were compared to sample variances obtained from the simulations by averaging deviations between
k = 1000 and k = 11000 (in other words, a longer time period was used than for the plots, and
the initial transient was left out of the computations). The results are summarized in Table 1. The
standard deviations predicted by the solution of the Lyapunov equation are given under the heading
of “analysis”, while the results obtained through averaging of the simulations results are shown as
”simulation.” The numbers show a good match between the predictions of the analysis and the values
observed in simulations. One also finds that the variation of the measured output is primarily made
of the noise itself, rather than a variation induced by the fluctuations of the adaptive parameters.

Although the analysis of the paper and the simulations emphasized the steady-state performance
of the algorithm, significant changes in the disturbance parameters, as well as abrupt changes, may
be accommodated by the algorithm. Fig. 6 shows the results of a simulation with low noise over 3000
samples, with the magnitude and the frequency of the disturbance increased by 50% at k = 1000
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Figure 2: Measured Plant Output - Low Noise (Left), High Noise (Right)
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Figure 3: Magnitude Estimate - Low Noise (Left), High Noise (Right)
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Figure 4: Frequency Estimate - Low Noise (Left), High Noise (Right)
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Figure 5: Measured Plant Output without Compensation and with High Noise
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y ȳ δθ1 δθ2
σ = 0.01
Analysis 0.0014 0.0101 0.0010 3.5610−4

Simulation 0.0016 0.0103 0.0011 3.6510−4

σ = 0.5
Analysis 0.0718 0.5051 0.0501 0.0178
Simulation 0.0881 0.5110 0.0613 0.0180

Table 1: Standard Deviations of Plant Output and Parameters — Analysis vs. Simulation

and k = 2000, respectively. At k = 1000, the phase also jumps by 180◦ (the maximum possible).
The figure shows the response of the magnitude estimate (left) and of the frequency estimate (right).
After some transient responses, both estimates converge to their desired values.
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Figure 6: Adaptive Parameter Responses to Sudden Changes in the Disturbance Parameters

5 Conclusions

In this paper, we discussed a method for the rejection of sinusoidal disturbances with unknown
frequency. The discrete-time algorithm was obtained from an existing continuous-time algorithm,
with some non-trivial adjustments. Further extensions to handle multiple harmonics are possible.
The design of the control law could be conveniently carried out using linear techniques. In addition,
a separate analysis predicted the loss of performance incurred in the presence of measurement noise,
and the amount of fluctuation induced in the adaptive parameters. Through simulations, it was found
that the algorithm was not only effective at rejecting sinusoidal disturbances in the presence of high
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noise, but also that its performance could be accurately predicted. The derivations relied on a phase-
locked loop technique that decomposes the noise signal into in-phase and quadrature components.
Such an approach has not been widely used in control, but was found helpful for this problem. The
results that were obtained do not have counterparts for other algorithms proposed in the literature
for the rejection of periodic disturbances of unknown frequency.
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