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Speed Control for Doubly-Fed Induction Motors

With and Without Current Feedback
Marc Bodson, IEEE Fellow

Abstract—The paper presents a method to control the speed of
doubly-fed induction motors. The motivation lies in the possible
use of such motors for hybrid electric propulsion. The stator of
the motor is assumed to be supplied by three-phase voltages with
frequency and magnitude that may vary. The rotor is supplied
by a bi-directional converter. Two versions of the algorithm are
presented. The first version does not rely on inner current loops,
but instead commands directly the voltages applied to the rotor.
These voltages are computed using an open-loop controller for
torque and for stator reactive power, which is augmented to follow
a speed reference profile. The second version uses stator and rotor
current measurements to ensure tracking and limiting of the
rotor currents. All the parameters of the control systems can be
computed based on estimates of the machine parameters together
with a desired time constant of the speed response. The alignment
of an incremental encoder is integrated in the initialization of the
algorithm. Practical implementation and testing are performed
easily and rapidly. Experiments performed on a small-scale
laboratory testbed show very good tracking performance of a
speed profile in tests involving one motor, as well as two motors on
a single three-phase supply. Improved current limiting is observed
with the version incorporating current feedback.

Keywords: electric motors, electric propulsion, doubly-fed
induction machines, complex vectors, vector control

I. INTRODUCTION

Historically, doubly-fed induction motors (also called

wound-rotor induction motors) found limited use as alterna-

tives to squirrel-cage induction motors supplied directly by the

grid. With their rotor windings connected to external resistors,

their characteristics are identical to squirrel-cage machines,

but the addition of resistance to the rotor at start-up yields

reduced start-up currents and increased torque. In steady-state,

the rotor resistance can be reduced to increase the efficiency

of the machine, or adjusted to vary the speed over a limited

range. With the advent of power electronics, resistors were

replaced by a rectifier combined with a DC/AC converter

for the regeneration of the rotor-side power. Controlling the

amount of regenerated power is then similar to varying the

rotor resistance, and is a means of controlling the speed [1].

The use of doubly-fed induction machines expanded con-

siderably through their use as generators for wind power.

The earlier combination of rectifier + DC/AC converter was

replaced by a bi-directional AC/AC converter. Variable speed

generation was possible through the control of the magnitude,

frequency, and phase of the rotor currents. A significant

advantage of doubly-fed induction machines is that the power

flowing through the rotor is a fraction of the power flowing

directly from the stator to the grid. Neglecting losses, the
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percentage of power is equal to the percentage of speed

variation around the synchronous speed. In a generator, the

power produced on the stator is transmitted to the grid without

conversion, or conversion losses. Other generators either have

very small speed range (low-power grid-tied squirrel-cage

induction generators) or require full power AC/AC conversion.

Doubly-fed induction generators also allow for the indepen-

dent control of the active and reactive powers using the rotor

currents [2]-[4].

The advantages of doubly-fed induction generators carry

over to doubly-fed induction motors, but have not been ex-

plored to the same extent. The possibility has been studied

in electric propulsion for land [5], marine [6], and aircraft

propulsion [7]. Two main approaches have been followed for

motor control. The first approach adopts the same strategy

as the one used for doubly-fed induction generators, with a

single converter controlling the rotor currents and with the

stator connected directly to the grid. Operational procedures

and benefits are similar, although not identical to those for

doubly-fed induction generators. Examples of studies using

this approach include [8]-[15], and the present paper. The

second approach consists in having two converters: one for the

control of the rotor currents and one for the stator currents.

An interesting option consists in having converters rated each

at 50% of the total power. Then, equal power is transmitted

to the stator and rotor windings, and with equal frequencies

on the stator and on the rotor (however, in reverse sequence

on the rotor). Examples of this approach include [5] [6] [16]

-[18]

Most control algorithms for doubly-fed induction machines

are based on some form of field-oriented control, similar to

the methods used for squirrel-cage machines. The problem

is somewhat simpler when two converters are used, since

both the stator and the rotors currents can be controlled. For

example, the controller can regulate the torque, the flux level,

the stator frequency and the slip (or ratio of stator to rotor

power). With only one converter and a fixed stator voltage

and frequency, the problem becomes more comparable to the

control of squirrel-cage machines, although the fluxes can be

estimated more easily through measurements of the stator and

rotor currents. The flux magnitude is also mostly determined

by the stator voltages. In this case, it is typical to control

the active and reactive powers, or the torque and the reactive

power.

In almost all algorithms, it is assumed that an inner

loop regulates the currents. This regulation is achieved with

switched-mode amplifiers (hysteresis) or using a model-based

control law derived from the known dynamics of the motor.

The complexity of the system makes it difficult to prove
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stability, although [11] presents such a proof using Lyapunov

arguments. Sensorless control is sometimes considered, and

usually achieved through simple integration of the estimated

fluxes [15] [18].

A difficulty with the single converter option is the start-

up of the motor. If a connection to the grid is attempted at

standstill with minimal transients, the required rotor voltages

may exceed the converter capabilities. Therefore, various start-

up methods have been proposed. Some papers consider having

a transformer on the stator [14], while others consider having

a transformer on the rotor [10]. Other proposed solutions start

the motor as a squirrel-cage motor, with switches to return to

the normal configuration at an appropriate time. References

[1] and [15] start the motor with the rotor short-circuited or

with external resistors. The stator is connected to the grid and

the rotor converter takes over once a certain speed is reached.

Conversely, reference [13] starts the motor with the converter

engaged and the stator short-circuited, then connects the stator

to the grid once a certain speed is reached. Reference [8] does

the same with a DC source connected to the stator initially.

These multiple solutions highlight the multiple ways in which

the doubly-fed induction motor can be operated.

It is also interesting to note the significant body of work

dedicated to brushless doubly-fed induction machines. This

denomination includes machines of significantly different con-

struction, but with the advantage of not requiring slip rings to

transfer power to the rotor windings. Other limitations surface

however, and resolving them has been the subject of much

research. One category of brushless doubly-fed machines is

of the reluctance type [19] [20], whose dynamics are iden-

tical to those of doubly-fed induction motors (as opposed to

synchronous reluctance motors). Another category consists of

two doubly-fed induction motors placed on the same shaft and

with their rotor windings in parallel but in reverse sequence

[21]. Various approaches have been followed to integrate the

two machines into a single core. The dynamics of these motors

are not identical to those of doubly-fed induction motors, but it

is likely that they could be controlled using techniques similar

to those presented in this paper.

This paper’s motivation originates from a goal to use

doubly-fed induction machines for hybrid electric propulsion

[7]. The benefits of such motors extend to land and marine

propulsion as well, and possibly new applications to be devel-

oped. A single converter configuration is assumed. The paper

proposes a speed and reactive power control algorithm with

two options: with and without current sensors. In both cases, a

complex variable representation results in a description of the

algorithm with few equations. Importantly, all the controller

parameters can be determined a priori from estimates of the

system parameters and from a reasonable choice of controller

bandwidth. The simplest option without current feedback

makes it possible to rapidly implement a controller for speed

control of doubly-fed induction motors. The second option

uses stator and rotor current sensors to ensure tighter rotor

current regulation and limiting. Even then, the first option can

be useful as an intermediate step to test the integrity of the

digital control architecture, or to continue operation in case

of sensor failures. The computational needs of the first option

are also low, and stability can be proved relatively easily.

The paper does not discuss start-up methods. In the electric

propulsion application envisioned, the stator is supplied by

an AC generator (possibly a doubly-fed induction machine as

well), and the stator voltage can be reduced at start-up through

excitation control on the generator. Otherwise, one of several

methods proposed in the literature and mentioned earlier can

be used for start-up.

II. DOUBLY-FED INDUCTION MACHINE

A. Machine structure

Fig. 1 shows a schematic representation of a doubly-fed in-

duction machine (DFIM), with three stator windings and three

rotor windings. The voltages applied to the stator windings

are denoted vSA, vSB, vSC , while the currents flowing in the

windings are denoted iSA, iSB, iSC (with the sign convention

as shown on the figure). Similarly, the voltages applied to the

rotor windings are denoted vRX , vRY , vRZ , while the currents

flowing into the windings are denoted iRX , iRY , iRZ . The

position of the rotor is determined by the angle θ, which is the

angle between the stator winding A and the rotor winding X.

The figure shows a motor with one pole pair, but the analysis

of the paper applies to an arbitrary number of pole pairs nP .
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Fig. 1. Doubly-fed induction machine

B. Three-phase to complex transformation

We consider a three-phase to complex transformation (3-c

transformation) defined by

vS =

�
2

3
e−jθe

�
1 −1/2 + j

√
3/2 −1/2− j

√
3/2

�



vSA
vSB
vSC



 (1)

where θe is an arbitrary angle and vS is a complex but

scalar signal. The transformation is the combination of three

operations: a three-phase to two-phase transformation, the

grouping of the two-phase variables into a single complex
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variable, and the counterclockwise rotation of the resulting

complex variable by the angle θe. The transformation to

complex variables has been used to a lesser extent than the

other two operations, despite being proposed decades ago [22]

[23]. The complex model not only simplifies the notation and

the derivations, but also enables alternative stability analysis

and control design methods [21] [24] [25].

The stator currents are transformed using the same 3-c trans-

formation to produce the complex variable iS . If the angle θe
is chosen such that vS is real, the transformation corresponds

to the use of a stator voltage-oriented reference frame, which

is common in the analysis of doubly-fed induction generators.

The components of the current vector in such a frame are

typically denoted iSD, iSQ, and the complex variable iS is

then iS = iSD + jiSQ.

If vSA + vSB + vSC = 0 (Y or ∆ connection), the inverse

of the 3-c transformation (or inverse 3-c) is given by




vSA
vSB
vSC



 =

�
2

3




1 0

−1/2
√
3/2

−1/2 −
√
3/2





�
Re(vSe

jθe)
Im(vSe

jθe)

	
(2)

For the rotor variables, the 3-c transformation includes an

additional term related to the rotor angle θ defined earlier,

with

vR =

�
2

3
e−j(θe−nP θ)

�
1 −1/2 + j

√
3/2 −1/2− j

√
3/2

�



vRX
vRY
vRZ





(3)

where nP is the number of pole pairs. The angle nP θ is

inserted to refer the rotor variables to the stator frame of

reference. Assuming that vRX + vRY + vRZ = 0, the inverse

of the transformation is



vRX
vRY
vRZ



 =

�
2

3




1 0

−1/2
√
3/2

−1/2 −
√
3/2





�
Re(vRe

j(θe−nP θ))
Im(vRe

j(θe−nP θ))

	
(4)

The leading coefficient of the three-phase to complex trans-

formation is one of three options found in the literature. It

preserves the definition of power and is used in [26], for

example. It can be shown that, with a Y or ∆ connection,

vSi
∗

S = PS + jQS (5)

where PS and QS are the (total) instantaneous active and

reactive powers absorbed by the stator windings.

Consider the steady-state operation with Vpk and Ipk being

the peak values of the stator voltages and currents, and ϕ being

the power factor, so that

vSA = Vpk cos(θe), iSA = Ipk cos(θe − ϕ) (6)

The voltages and currents in phases B and C are the same

but shifted by 2π/3 and −2π/3. Then

PS + jQS =
3

2
VpkIpke

jϕ (7)

Further, the complex variables satisfy

vS =


3/2Vpk, iS =



3/2Ipke

−jϕ (8)

In other words, vS and iS are phasors for vSA and iSA in

steady-state (as well as vSB, vSC , iSB , iSC , with phase shifts

of ±2π/3). The multiplicative factor of


3/2 can be removed

by adjusting the leading coefficient of the 3-c transformation,

but then a coefficient 3/2 has to be inserted in the power

relationship (5).

C. Model of the DFIM and steady-state operation

The model of a doubly-fed induction motor in the complex

coordinates is

LS
diS
dt
+M

diR
dt

= vS −RSiS

−jωe(LSiS +MiR)

M
diS
dt
+ LR

diR
dt

= vR −RRiR

−j(ωe − nPω)(LRiR +MiS)

τe = nPM Im(iSi
∗

R) (9)

where ωe = dθe/dt, ω = dθ/dt, and τe is the torque of the

motor. RS and RR are the stator and rotor winding resistances,

LS and LR are the stator and rotor winding inductances, and

M is the mutual inductance between stator and rotor windings

when aligned.

Assuming that ω and ωe are constant (or slowly-varying, in

practice), the Laplace transform can be applied to the model

of the system, resulting in
�

sLS + ZS sM + ZMS

sM + ZMR sLR + ZR

	�
iS
iR

	
=

�
vS
vR

	
(10)

where

ZS = RS + jωeLS ZMS = jωeM
ZR = RR + j(ωe − nPω)LR ZMR = j(ωe − nPω)M

(11)

Therefore
�

iS
iR

	
=

1

∆Z(s)

�
sLR + ZR −sM − ZMS

−sM − ZMR sLS + ZS

	

�
vS
vR

	
(12)

where

∆Z(s) = (sLS+ZS)(sLR+ZR)−(sM+ZMR)(sM+ZMS)
(13)

The poles of the system are given by the two roots of the

polynomial ∆Z(s), and the transfer function from vR to iS is

given by
iS
vR

=
−sM − ZMS

∆Z(s)
(14)

Control using the complex model can be pursued success-

fully, with an example using pole placement for doubly-fed
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induction generators found in [27] [28] and an example using

a root-locus method for three-phase inverters found in [29].

The poles of the system with real parameters are the union of

the poles of the system with complex parameters, together with

their complex conjugates. Therefore, the stability properties of

both systems are identical (for more details on the theory, see

[24]). For example, the complex model makes it possible to

prove the following fact:

Fact: the electrical model of the doubly-fed induction machine

is stable at constant speed for all possible values of the

parameters, including the speed of the motor.

Proof of the fact: the roots of the characteristic polynomial

∆Z(s) are equal to the roots of ∆Z(s− jωe) shifted by jωe.
Therefore, the system is stable if and only if the roots of

∆Z(s− jωe) are in the open left-half plane. The polynomial

is equal to

∆Z(s− jωe) = a0s
2 + (a1 + jb1)s+ a2 + jb2 (15)

where

a0 = LSLR −M2, a1 = LSRR + LRRS , a2 = RSRR

b1 = −nPω(LSLR −M2), b2 = −nPωLRRS (16)

Using the method of [30], the roots are in the open left-half

plane if and only if

a0 > 0, a1 > 0, ∆2 =

������

a1 0 −b2
a0 a2 −b1
0 b2 a1

������
> 0 (17)

The coefficient a0 = σLSLR where σ is the leakage factor.

Therefore, for positive machine parameters, a0 > 0, a1 > 0,
while the determinant is equal to

∆2 = (LSRR + LRRS)
2RSRR

+(LSRR + LRRS)(nPω)
2 (σLSLR) (LRRS)

− (σLSLR) (nPω)2 (LRRS)2

= (LSRR + LRRS)
2RSRR

+(LSLRRSRR)(nPω)
2(σLSLR) (18)

With ∆2 > 0, the proof is completed.

III. CONTROL OF A DOUBLY-FED INDUCTION MOTOR

A. Control of torque and reactive power with voltage com-

mand

Steady-state operation is defined by sinusoidal voltages and

currents of frequency ωe (for the rotor, the frequency of the

physical variables is actually ωe−nPω). Because the electrical

system is stable, convergence to a steady-state can be assumed

for constant (or nearly constant, in practice) variables. In

steady-state, the variables vS , iS , vR, and iR satisfy

vS = ZSiS + ZMSiR

vR = ZRiR + ZMRiS (19)

Therefore, the rotor voltage needed to achieve a certain current

iS is found to be

vR =
ZR
ZMS

vS −
�
ZSZR − ZMSZMR

ZMS

	
iS (20)

Let θe chosen such that vS is real (stator voltage alignment).

Then, using (5) and (9)

vS Re(iS) = RS
�
Re(iS)

2 + Im(iS)
2
�
+
ωeτe
nP

vS Im(iS) = −QS (21)

Solving for Re(iS) and Im(iS), one finds that

iS =
vS
2RS

−
��

vS
2RS

	2
−
�
ωeτe
nPRS

+
Q2S
v2S

	
− j

QS
vS

(22)

In the solution of the quadratic equation for Re(iS), the minus

sign was chosen so that iS = 0 when τe = 0 and QS = 0.

Combining (20) and (22) gives the rotor voltage needed to

achieve a desired torque τCOM and a desired stator reactive

power QCOM (absorbed), based on the intermediate stator

current command iS,COM . For example, with QCOM = 0,
the control law is

vR =
ZR
ZMS

vS −
�
ZSZR − ZMSZMR

ZMS

	
iS,COM (23)

with

iS,COM =
vS
2RS

−

��
vS
2RS

	2
−
�
ωeτCOM
nPRS

	
(24)

The result is an open-loop control algorithm that, in theory,

provides a decoupled response with unity gain from torque

command to actual torque. The unity gain concerns the steady-

state response, i.e, the DC gain of the system at s = 0. The

transient response is affected by the poles of the system that

are given by the roots of (13). However, as shown in the fact

above, the poles are known to be stable. In practice, they are

also associated with small time constants.

B. Closed-loop control of velocity

Fig. 2 shows the implementation of a velocity control algo-

rithm using the open-loop controller for torque. The doubly-

fed induction motor is fed on the rotor by a voltage source

converter (VSC). The torque control block implements (23),

(24). Speed control can be achieved with a proportional-

integral control algorithm

τCOM = KFKP ωREF −KP ω +KI eI
deI
dt

= ωREF − ω if |τCOM | � τLIM

= 0 otherwise (25)

where ωREF is the reference value for the speed. In the

algorithm, KP is a proportional gain, KI is an integral gain,

KF is a feedforward gain applied to shift the location of the

closed-loop zero and avoid overshoot in the response, and

τLIM is a torque limit applied to stay within constraints and

avoid integrator wind-up (more details on this issue below).

For the selection of the PI gains, assume that the torque

tracks the command and that the dynamics of the motor are

adequately characterized by the standard mechanical equation

J
dω

dt
= τCOM − τL (26)
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Fig. 2. Control of motor velocity

where J is the inertia of the motor and load, and τL is the

non-inertial component of the load torque. The load torque is

treated as a disturbance for analysis. The closed-loop dynamics

of the speed control loop are given by the roots of

Js2 +KP s+KI = 0 (27)

Both poles of the velocity loop can be set at some desired

value s = −aD,V EL by letting KP = 2aD,V EL J and KI =
a2D,V EL J . Generally, a value of KF = 2/3 yields a fast

response without overshoot. In this manner, all the parameters

of the proposed control algorithm can be specified a priori.

Note that the integrator of the PI algorithm not only ensures

the tracking of a velocity command in steady-state, but also

reduces the effect of small errors in the open-loop tracking

of the torque command. A PI control loop can also be added

for the closed-loop control of the reactive power. In that case,

the parameters of the controller can be set assuming a unity

response from reactive power command to reactive power.

C. Synchronization

Fig. 2 shows a relay that is used to connect the motor to the

grid at start-up. The procedure is similar to the synchronization

of a synchronous generator to the grid, but is simpler and

possible at arbitrary speed (in particular, zero speed at start-

up). The connection of the open stator to the grid corresponds

to setting iS,COM = 0 in (23), giving the rotor voltage

needed to match the grid voltage vG as vR = (ZR/ZMS) vG.

With the stator voltage orientation, the frequency of the stator

voltages and of the grid voltages are matched automatically. In

theory, the magnitude and phase are also matched, but small

modelling errors create mismatch in magnitude and phase. If

an incremental encoder is used without alignment, the phase

error can be very large. By inserting two adjustable parameters

madj and θadj in a modified expression for the rotor voltage

vR = madj e
jθadj

ZR
ZMS

vG (28)

the synchronization procedure provides an opportunity to align

the encoder as well as compensate for small errors. The

angular adjustment is also applied to the second term of (23)

after the motor is connected.

D. Torque and reactive power limits

Limits can be placed in the control law to ensure that

the constraints are satisfied. For simplicity, we consider two

special cases where limits can be computed with relatively

simple analytic expressions.

Case 1: consider the case with QCOM = 0. Then, both vS and

iS,COM are real. For the square root in (24) to be well-defined,

one needs
ωeτCOM
npRS

�

�
vS
2RS

	2
(29)

which implies a limit on the torque

τCOM � τMAX,1 �
nP
ωe

v2S
4RS

(30)

From (21), one has

vSiS = RSi
2
S +

ωeτe
nP

(31)

so that a limit on the current |iS | � iS,MAX implies a limit

on the torque

τCOM � τMAX,2 �
nP
ωe

�
vSiS,MAX −RSi

2
S,MAX

�
(32)

Finally, the rotor current is given by

iR = −
LS
M

iS − j
vS −RSiS

ωeM
(33)

so that

|iR|2 − i2R,MAX = a1i
2
S − 2a2iS − a3 (34)

where

a1 =
R2S + ω2eL

2
S

ω2eM
2

, a2 =
RSvS
ω2eM

2
, a3 = i2R,MAX −

v2S
ω2eM

2

(35)

Then |iR| � iR,MAX if

iS � iS,RMAX �

�
a2 +



a22 + a1a3

	
/a1 (36)

This new limit on the stator current due to the rotor current

limit implies a third limit on the torque.

τCOM � τMAX,3 �
nP
ωe

�
vSiS,RMAX −RSi

2
S,RMAX

�

(37)

Note that the limits were computed for positive (motoring)

torque. Limits for negative torque can be computed similarly,

but are slightly different.

Example: consider a small motor with parameters RS =
0.66 Ω, RR = 0.94 Ω, LS = 13.1 mH, LR = 9.8 mH,

M = 9.7 mH, nP = 2. Assume that the supply voltage is 11.1
Vpk line-neutral, and that the stator and rotor line currents are

limited to 6 Apk. Converting the values to complex equivalent

variables using (8), one finds vS = 13.6 V, iS,MAX = 7.35 A,

and iR,MAX = 7.35 A. The limits on the torque are then

computed to be τMAX,1 = 0.371 N.m, τMAX,2 = 0.341 N.m,

τMAX,3 = 0.274 N.m. Therefore, the torque limit is due to

the rotor current limit and is τLIM = 0.274 N.m.

Case 2: consider the case where RS = 0. This approximation

is appropriate for large machines. This case can be solved
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without assuming QCOM = 0. Equation (21) with RS = 0
gives

iS =
ωeτe
vSnP

− j
QS
vS

(38)

The open-loop control algorithm is simply

vR =
ZR
ZMS

vS −
�
ZSZR − ZMSZMR

ZMS

	
·

�
ωeτCOM
vSnP

− j
QCOM
vS

	
(39)

The first torque limit disappears in this case. With a limit

on the stator current |iS| � iS,MAX , the torque and reactive

power are jointly restricted by the quadratic constraint

�
ωeτCOM
vSnP

	2
+

�
QCOM
vS

	2
� i2S,MAX (40)

From (33) and (38), the rotor current is given by

iR = −
LS
M

ωeτe
vSnP

− j

�
vS
ωeM

− LS
M

QS
vS

	
(41)

With a limit on the rotor current |iR| � iR,MAX , the torque

and reactive power are restricted by a second constraint

�
LS
M

ωeτCOM
vSnP

	2
+

�
vS
ωeM

− LS
M

QCOM
vS

	2
� i2R,MAX

(42)

This inequality shows that a higher torque can be reached with

QCOM > 0, and maximum torque is obtained when QCOM =
v2S/(ωeLS). This means that all the magnetizing current of the

motor is provided by the supply connected to the stator instead

of the rotor converter. For given QCOM , (40) and (42) yield

torque limits τMAX,2 and τMAX,3, from which τLIM can be

deduced.

E. Current control loop

Although limits can be applied to the torque and reactive

power commands to ensure that currents stay within their lim-

its, the effectiveness of the limiting depends on the accuracy of

the electrical model and of its parameters. Operation must also

be such that the steady-state approximation is valid. In order

to protect the rotor-side converter, tighter current regulation

and limiting may be desired. The result can be achieved using

an inner current control loop and assuming the availability of

current sensors. Current control schemes have been developed

extensively for cage rotor induction machines, including with

a complex representation of the system comparable to the one

used in this paper [31] [32]. A current control algorithm is

proposed here using a complex representation and inspired

from algorithms developed for cage rotor machines [33].

As the DFIM is controlled from the rotor, the roles of the

stator and rotor are reversed compared to the cage rotor

case. The problem is at the same time simpler and more

complicated: simpler because the flux can be computed from

measurements of the rotor and stator currents (as opposed to

using a flux estimator), and more complicated because the

stator is connected to a voltage source (as opposed to short-

circuited windings).

Using the steady-state relationship (19) and the definitions

(11), the rotor current needed to achieve a certain current

iS,COM is given by

iR,COM =
vS − ZSiS,COM

ZMS

(43)

Therefore, the torque control algorithm composed (23) and

(24) is replaced by (24) and (43), together with a feedback

control law for the rotor currents.

Using the definitions (11), the first two equations of (9) can

be written as

LS
diS
dt
+M

diR
dt

= vS − ZSiS − ZMSiR

M
diS
dt
+ LR

diR
dt

= vR − ZRiR − ZMRiS (44)

Solving for diR/dt gives

diR
dt

=
1

σLR
(vR − uR) (45)

where σ = 1−M2/(LSLR) and

uR = ZRiR + ZMRiS +
M

LS
(vS − ZSiS − ZMSiR) (46)

The control law for the rotor current is chosen to be

vR = uR −RT iR +KP,C (iR,COM − iR)

+KI,C

�
(iR,COM − iR) dt (47)

where iR,COM is the desired value set for the rotor current

(43), and RT , KP,C , KI,C are controller parameters to be

determined.

In the Laplace domain, the transfer function from the rotor

current command iR,COM to the rotor current iR is

iR
iR,COM

=
KP,Cs+KI,C

σLRs2 + (KP,C +RT )s+KI,C

(48)

Similarly to [33], we set

KP,C = σLR aD,CUR, KI,C = RT aD,CUR (49)

so that the closed-loop transfer function becomes

iR
iR,COM

=
(σLRs+RT ) aD,CUR

(σLRs+RT ) (s+ aD,CUR)
=

aD,CUR
s+ aD,CUR

(50)

The closed-loop response is a first-order system with unity

gain and a bandwidth specified by aD,CUR. Note that a pole

is cancelled in the response, but the pole is real and with a

negative real part that can be set by choice of the controller

parameter RT .

IV. EXPERIMENTAL RESULTS

A. Hardware platform

The versions of the algorithm with and without current

control loop were tested on an experimental platform at the

University of Utah. The general organization of the compo-

nents is shown on Fig. 3. The main elements of the system

are a dSPACE DS1104 real-time data acquisition and control

system (DAC SYSTEM) hosted by a PC, a Hirel Systems
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inverter board (CONVERTER), and a Motorsolver doubly-

fed induction machine (M) connected to a Motorsolver brush

DC motor (LOAD) whose encoder was used for position

measurement (θ). The stator of the DFIM was connected to the

three-phase grid through a transformer, lowering the voltage

to about 11.1 Vpk line-neutral at 60 Hz. The connection was

controlled through a relay triggered by a dSPACE digital

output.

3

3

3
LOAD

GRID
RELAY

v

M

θ

θ

SG
vR

v
R iR

v  ,S

v  ,  G

iS

i   S

CONVERTER

DAC
SYSTEM

v

ω      
REF

Fig. 3. Organization of the experimental system

The voltages and currents were measured as three-phase

variables and converted in the DAC system to the correspond-

ing complex variables using (1) and (3). The line voltages of

the grid (vG) and of the stator (vS) were measured through

voltage reduction networks and the line currents were mea-

sured through current sensors. Rotor currents were measured

through sensors on the inverter board. The operator could

trigger the relay from the PC and apply a reference value for

the velocity. For the experiments of the paper, a pre-specified

pattern of velocity commands was applied. The command for

the stator reactive power was set at zero.

The electrical parameters were estimated through standstill

measurements, with the resulting values used in the above

example. The inertia was estimated at J = 3.5 10−4 kg.m2.

It was found that, for the general purpose platform used, a

sampling frequency of 5 kHz was close to the maximum

achievable. Accordingly, the bandwidth of the current loop

was set at 500 Hz (aD,CUR =3,142 rad/s), and the bandwidth

of the velocity loop was set at 50 Hz (aD,V EL =314 rad/s).

The same bandwidth was used for the velocity loop in voltage

and current command modes.

Before connection to the grid, the algorithm was started with

iS,COM = 0. The magnitude coefficient madj was close to 1 in

the synchronization phase, and the offset θadj was adjusted so

that the phases of the grid and stator voltages matched. When

the phases matched, the relay was engaged with zero torque

and reactive power commands. Minimal transients resulted.

Then, the speed profiles were applied through the control law.

The controller parameters are given in the table below.

The parameter RT was chosen close to RR, based on prior

simulation experiments. The algorithm also used the variable

τLIM , which was computed in real-time using the actual stator

voltages and the smallest value obtained from formulas (30),

(32), and (37).

Velocity loop Current loop

Parameter KP KI KF KP,C KI,C RT
Value 0.22 34.5 0.67 8.22 3142 1

B. Single motor experiment

A motor was controlled with the voltage command algo-

rithm discussed in the paper with a velocity reference that

slowly rose from zero to 2,700 rpm, then was abruptly brought

to zero. Fig. 4 shows the speed response of the motor. The

reference is also shown but is super-imposed and not distinct

at the scale of the plot. With nP = 2, 1,800 rpm is the

synchronous speed associated with the 60 Hz grid frequency.

Therefore, the plot spans the sub-synchronous and super-

synchronous modes, as well as rapid braking of the motor

to zero speed.
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Fig. 4. Speed and speed reference for a linearly increasing speed

Fig. 5 shows the instantaneous values of the stator and rotor

peak voltages, using (8) and a similar formula for the rotor

voltages but using the magnitude of the complex rotor voltage.

Due to the transformer, there is a small variation of the stator

voltage. The peak rotor voltage varies significantly with the

speed. It is minimized around the synchronous speed, and

otherwise increases proportionally to the absolute value of

the slip (which can be predicted from (11) and (20)). Fig.

6 shows the instantaneous peak values of the stator and rotor

currents, and Fig. 7 shows the rotor currents for the first two

phases (X and Y) of the rotor around the synchronous speed.

The frequency of the rotor currents becomes small around the

synchronous speed. Below the synchronous speed, the rotor

currents are in forward sequence, but they switch to the reverse

sequence above the synchronous speed.

In the next experiment, a comparison is made between

the voltage command and the current command options of

the algorithm. A large step of reference velocity was applied

at the initial time. Fig. 8 shows the responses with voltage

command (VC) and current command (CC), together with the

speed reference. Fig. 9 shows the peak rotor current obtained



8

0 1 
0 2 
0 3 
0 4 
0


Time (s)


4


6


8


10


12


S
ta

to
r 

a
n

d
 r

o
to

r 
p

e
a

k
 v

o
lt
a

g
e

s
 (

V
)


Stator

Rotor

Fig. 5. Peak stator and rotor voltages
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Fig. 7. Rotor currents for phases X and Y around the synchronous speed

with the two options. The plots show that the current command

achieves a slightly faster response, while the voltage command

results in a small excursion of the peak current over the 6 A

limit.
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Fig. 9. Peak rotor currents with voltage and current command options

The next experiment shows the speed responses with a

profile mixing large and small steps. The speed responses,

shown in Fig. 10 are very close. The peak rotor current

responses shown in Fig. 11 again demonstrate a better respect

of the rotor current limit with the current command option.

Although lowering the limit could reduce the peak, a better

option might be to reduce the rate of variation of the speed

reference.
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Fig. 10. Speed responses for a profile of large and small steps
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Fig. 11. Peak rotor current with voltage and current command options for a
profile of large and small steps

C. Two motor experiment

The algorithm was also tested with two motors of the

same construction connected on the same grid connection and

controlled with two copies of the same algorithm. Fig. 12

shows the speed responses of the two motors, which are com-

manded to reach the synchronous speed (at different times),

then to change speed by increments of identical magnitude

but opposite sign, then to return to standstill together. The

responses follow closely the commands, which are not shown

on the plots because they would overlap. Fig. 13 shows the

torque commands to the two motors. Interestingly, one motor

requires a somewhat lower torque command, possibly due to

lower friction in the DC motor used as load. Note that it

is possible to successfully control the motors independently

despite the common, non-ideal supply. Experiments were also

carried out on a similar system at NASA Glenn Research

Center, including experiments with three motors in parallel

and with a feedback control loop added for the reactive power

[12].

0
 10
 20
 30
 40

500


0


500


1000


1500


2000


2500


Time (s)


S
p

e
e

d
s
 o

f 
m

o
to

rs
 1

 a
n

d
 2

 (
rp

m
)


Motor 2

Motor 1

Fig. 12. Speed responses of motor 1 and motor 2 for the two-motor
experiment
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Fig. 13. Torque commands to motor 1 and motor 2 in the two-motor
experiment

Overall, excellent results are obtained with remarkably sim-

ple algorithms, especially when the voltage command option is

used. For illustration, the listing below shows the core Matlab

m-code embedded in Simulink to compute the rotor voltages

vrx, vry, vrz based on a torque command tcom (assuming

RS = 0 and QS,COM = 0). The complex representation

involves complex variables instead of the two-dimensional

vectors of standard dq transformations. The computations are

equivalent, but the complex representation yields a compact

representation with few lines of code.
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Core control code

a1=[sqrt(2/3) -1/sqrt(6)+1i/sqrt(2) -1/sqrt(6)-1i/sqrt(2)];

a2=a1*[vsa;vsb;vsc];

vs=abs(a2);eithe=a2/vs;

zs=Rs+1i*ome*Ls;zr=Rr+1i*(ome-np*om)*Lr;

zms=1i*ome*M;zmr=1i*(ome-np*om)*M;

vrc=zr*vs/zms-(zs*zr-zms*zmr)*ome*tcom/(zms*vs*np);

a3=vrc*eithe*exp(-1i*np*th);

a4=[sqrt(2/3) 0;-1/sqrt(6) 1/sqrt(2);-1/sqrt(6) -1/sqrt(2)];

vr=a4*[real(a3);imag(a3)];

vrx=vr(1);vry=vr(2);vrz=vr(3);

V. CONCLUSIONS

A new algorithm was proposed for the control of doubly-fed

induction motors based on voltage commands to a rotor-side

converter. Options were presented with and without current

feedback. Due to their simplicity, the algorithms are easy to

implement and test. The option with current control is slightly

more complicated, but provides better tracking and limiting

of the peak rotor currents. The voltage command option is

useful on its own, but also as an intermediate step for the

development of the current command mode. A valuable feature

of the algorithms is that the parameters can be selected a

priori using motor parameters and a reasonable specification

for the response time. The core of the control system is an

open-loop torque and reactive power control algorithm, which

is augmented by an outer PI control loop to regulate the

velocity. Limits can be applied to the torque and reactive power

commands to avoid exceeding the constraints. These limits

can also be computed from machine parameters, and can be

adjusted automatically in real-time if some parameters such as

the supply voltage or frequency are modified through control

of the generator.
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