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Abstract

In this paper, a new control scheme is presented for the gdatlinduction machine with specific applications to reabie
energy (wind farms in particular). The proposed contrologtgm offers the advantages of proven stability and rerzalek
simplicity. In contrast with the classical vector controktinod, where the doubly-fed induction machine is represkeit a stator-
flux oriented frame, a model with orientation of the statoltage is adopted. This approach allows for a decompositfotihe
active and reactive powers on the stator side and their aggolon the rotor side. A main contribution of the paper is tise
of a Hurwitz test for polynomials with complex coefficientsat has had little prior application in control theory. Thesults
in a proof that a PI control regulating the stator currentsuees global stability for a feedback-linearized doutdg-induction
machine. The specific condition that the Pl gains must gaisflerived as a simple inequality. The PI controller has riqdar
structure which directly relates the d-component of therwbltages to the g-component of the stator currents aretwécsa. The
feedback linearization stage only uses the direct measmenf the rotor and stator currents and is thus easily imeigable.
Furthermore, it is also shown that the PI controller (withthe feedback linearization terms) is also stable for adaange of
control gains and does not require the knowledge of the magharameters. Finally, the control system is validatednmukations

and in experiments.

I. INTRODUCTION

Doubly-fed induction machines (DFIM) have become very paplespecially in the field of renewable energy as hybrid
engines or high performance storage systems [1][2][3]i#] #or wind turbines [5][6][7]. The attractiveness of the INFstems
primarily from its ability to handle large speed variaticm®und the synchronous speed. Another advantage is thaother
electronic equipment that controls the machine only hasatodle a fraction of the total power (which is directly rethte
the operating speed [2]), reducing losses and the cost gidher electronic converter.

In this paper, a typical connection of the DFIM is considelledhis case, the stator is directly connected to the powidt g
while the machine is controlled through the rotor voltagedack-to-back (B2B) converter, consisting of an AC-DC ifieet
and a DC-AC inverter stage, is used for generating the raitiages. For generation, the control goals for a DFIM arealigu
the active and reactive powers delivered to the grid. Faredapplications, the DFIM control is composed of an innerreuotr
control loop and an external (and considerably slower) rapidal loop (see in [8] a counter example with a unique cantro
loop). This paper only focusses on the electrical loop, asglmes that, for driving applications or power managemént o

the whole DFIM and B2B, an outer mechanical loop (in termsoofiie or speed) or a power supervisor (such as Maximum
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Power Point Tracking for wind generators), provides thévagbower reference for the electrical controller. The spisealso
assumed to vary slower than the electrical variables.

Most DFIM controllers proposed in the literature are basadvector control and decoupling [9][6][10][11], also known
as PQ control. The methodology is derived from the desoniptf the electrical part of the DFIM in a stator flux-oriented
reference frame which allows the decoupling of the active @@active powers of the stator side and their independeritalo
through the rotor currents. Moreover, some of the contreltbat use the stator-flux oriented frame assume a fast $kaxo
dynamics which, in steady state, is used to reduce the ofdbe®ystem. To achieve the stator flux orientation, the fhgle
must be estimated and several operations implemented.nlinasd to the stator flux-oriented frame, a model with oaénh
along the stator voltage vector can be considered [12]. Assy an ideal power grid, control of the stator currents iis th
reference frame directly translates into the control of éiséve and reactive powers absorbed or delivered by the imach
Control algorithms are based on an inner rotor current laopl, an external PQ loop control. See recent examples inl4B][

Examples on direct control of the stator currents using thtos voltage reference frame can be found in [1][2][8][15]
these cases the control scheme contains only one loop frenstétte (or output) measurement to the controller. In [18, th
control algorithm was designed disregarding the rotor dyina and it results in a state-feedback controller plus acibm.
However, the controller makes the whole closed loop systemgmally stable, see discussion in [16]. The static stagetback
control laws proposed in [2] and [8] were obtained using pégshased techniques and ensure global asymptoticlgiabf
the DFIM (including the mechanical part), but they are veepstive to the parameter variations. Also, advanced neati
methods have been applied to the DFIM. In [17] the flatnesti@fodel has been exploited to reduce the power losses, and
a controller based on the backstepping approach is prop&seally, in [15] a nonlinear technique based on the Lyapuno
function was used to design a direct current algorithm wifeeforward action that allows to track stator current neffiees.
This scheme requires the reconstruction of the rotor flugresfces and the exact knowledge of several DFIM parameters.

The main contribution of this paper, which is based on [18]the proof that a linear Pl control for regulating the stator
currents does not allow to place the closed loop poles arbjtr but ensures stability for a large range of Pl gain ealuln
comparison with the PQ stator voltage oriented control apghnes, the power regulation is achieved with one Pl locpiead
of the composition of an outer power regulator and an innermurrent loop control. Moreover, the direct Pl controBeudied
in this paper is considerably simpler in comparison witheottlirect stator current schemes. Furthermore, globallisyatan
be guaranteed if a feedback linearizing term is added. Tdedthrough term only uses the direct measurement of ther stat
and rotor currents (both accessible for a DFIM), insteachefftux estimation required in the stator flux oriented meshod

The stability proofs are based on a little-known Hurwitz fes complex polynomials [19]. This method allows to sigoétly
reduce the complexity of obtaining the stability condisoby reducing the 6th order characteristic polynomial wigalr
coefficients to a cubic polynomial with complex coefficienksterestingly, while a Routh-Hurwitz test for the 6th orde
polynomial of [20] was found to be intractable, applicatiahits version with complex polynomials yields a simple sliab
test, requiring that a single quadratic inequality be fatishy the PI gains. The method proposed in this paper is aiglicable
to other control problems with certain symmetry propertiag21], the Hurwitz test was used to find analytic condisdor

spontaneous self-excitation in induction generators. Sdrae test was applied to the algorithm presented in [15][1s%e



Il. BACKGROUND: THE COMPLEXHURWITZ TEST

The extension of the well-known Routh-Hurwitz criteriongolynomials with complex coefficients is an old result of the
literature [19], possibly not well-known due to the lack @lavant applications. The main result presented in thaepap
summarized by the following Theorem.

Theorem 1: The polynomialP(s) = s + a1s" 1 + aps" 2 + ... + a,, Whereay, = ay + jby andk = 1,2,....n, has all

its zeros in the half-plan®(s) < 0 if and only if the determinants); ... Ay,

Al =
a1 a3 as oo QA9k—1 —b2 —b4 SN —bgk,Q
1 as a4 ... QA2Kk—2 —bl —b3 . —bgk_g
0 Qg 0 _bk—l
A, =
0 b2 b4 N bgk_g al as N ask—3
0 bl b3 N bgk_3 1 a9 N a2k —4
0 BN bk 0 BN Af—1

for k=2,3,...,n anda, = b, = 0 for » > n, are all positive.
Proof: See Theorem 3.2 of [19]. |
Based on the previous Theorem, the particular case of a patymomial with complex coefficients can be derived.

Lemma 1: Assuming thata, is real and positive, the roots of a third-order polynomighvwomplex coefficients
P(s) = ags® + (a1 + jb1)s* + (ag + jba)s + as + jbs (1)

are in the open left-half plane if and only &, > 0, A, > 0 and A3 > 0, where

Ay = a, 2
ar az —by

Ay = ag as —bi |, 3
0 by
ai az 0 —bo 0
ay az 0 —by —bs

As = 0 a a3 0 —by |- (4)

0 bg 0 aq as

0 bl b3 an a9

We will show in Sections IV and V how the complex Hurwitz tesindbe used to prove stability of a DFIM control law in

an elegant and simple manner.



IIl. M ODEL OF THEDOUBLY-FED INDUCTION MACHINE

The model comes from the three phase dynamical equations@FI&l, assuming that the machine is symmetric (all
windings are identical), the stator-rotor mutual inducesare sinusoidal functions of the rotor angle [22][23]] #me three
phase system is balanced. These assumptions enable thé tuaestormations, which greatly simplify the control pteim.
The basic transformation (also known as Blondel-Park toarmation) is widely used in the study of electric machin23][
This mathematical transformation is used to decouple orleeofbalanced) phases, to refer all variables to a commenaete
frame, and to obtain state-space models whose paramegensd@pendent of the relative angle between rotor and stator

Similarly to [1] or [2], a transformation to a synchronouarfre rotating at the constant frequency of the stator voltdge
the grid is proposed. Following standard convention, ac&lcal (two—dimensional vector) signals are partitmeto their

so—calledd and ¢ components. This yields the electrical equations

dis di, : . .
Ls sd + Lsrﬂ - _Rslsd + WsLsqu + wsLsr'qu + Vsd (5)
dt dt
dis di, : . .
L2+ Ly 28 = —wyLuisi — Reisg — @ Loriva + viq ©6)
dis di,.
Lsr% + Lr% - (Ws - W)Lsrisq - Rrird + (Ws - W)Lrirq + Vrq (7)
disg . dirg , . .
Lsr dr + Lr dt = _(ws - W)Lsrzsd - (Ws - w)Lrlrd - errq + Urq (8)

whereisq, isq, ira, irq @re stator and rotor currents, respectively;, vs, are the stator voltages, 4, v, are the rotor voltages
(and play the role of the control inputsy,is the mechanical speed, and is the stator frequency?,, R, are the stator and
rotor resistances,s, L, and Ly, are the stator and rotor self-inductances and mutual indaet withL L, > L2, .

The mechanical equation is given by

dw .. .
JE = L (isqird — tsdirg) — Brw — 7L, 9)

whereJ is the inertia,B,. is the friction coefficient, and is an external constant torque.

The use of the stator-voltage oriented synchronous frage= V, andvs, = 0 (with V, the amplitude of the three-phase

stator voltage), allows us to express the stator active aadtive powers in terms af, andi,,, respectively, so that,

Ps = Usdisd + ’Usqisq (10)
Qs = 'Usqisd - vsdisq (11)
simplify to
P, = Viig (12)
Qs - _‘/sisq- (13)

In particular, assigning a desired valifg allows one to regulate the power factor of the stator sidehefrhachine, while

¥, can be used to control the active power (delivered or condjiriog the DFIM. In a drive application)!, is fixed as a
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Fig. 1. Proposed feedback-linearizing control scheme fOF&VI.

desired value to achieve the target torque in the preseneeltaige constraints. This paper concentrates only on thbl@m

of robust regulation of, to its desired value.

IV. FEEDBACK-LINEARIZING CURRENT CONTROLLER

The proposed control scheme is presented in Figure 1. Itnsposed of the current control block and the well-known
Blondel-Park transformation to recover the dg-measurg¢snafithe currents and the stator voltages, and its invergenerate
the three-phase rotor voltages from the computedalues (in the dg-framework). Thanks to the use of the stabitage
reference (already used in [1] or [12] among others) the gsed algorithm is simpler than the classic stator-flux deidn
control [6], where the stator flux estimation (or recondirg is required for the reference frame orientation. Rennore,
the stator voltage oriented framework allows us to direadg the stator currents to regulate the active and reactive stator
power, see equations (12) and (13). This fact also simplifiesalgorithm compared with the standard approach.

The control algorithm can be also used as the inner-curoap for drive applications. Fixings, for the reactive power
compensation, a suitablg; can be obtained from a mechanical outer-loop for the torguespeed regulation (from the

mechanical dynamics (9)).

A. Feedback-linearizing current controller

The proposed controller consists of a partial feedbaclalizeng feedback stage

Urd = —(ws —w)Lgrisqg+ Rrira — (wWs — w)Lyipg + ua (14)
Urg = (ws—w)Lgpisqg+ (wWs — w)Lyirg + Ryirg + g (15)
and a Pl action
t
Uqg = —kp(lzq — isq) — k[ / (qu — isq)dT (16)
to
t
ug = kp(itg —isa)+ kl/ (it — isq)dT @a7)
to

with the scalar proportional and integral gaiis and ky, respectively.

Remark 1: The first three terms in (14) and (15) exactly cancel the firgte terms in (7) and (8), respectively, feedback-

disg dirg

linearizing the system and transforming the rotor equatms,‘dé—;d + L,‘dé—rtd = ugq and Ly, —* + Ly —* = uq.



Remark 2: In contrast to [1], the PI controller is defined relating theotbr voltage component with (minus) the error of
the g-stator current (16), and the g-rotor voltage with gplthe error of the d-stator current (17). This fact turns toube
critical for the stability analysis and solves the marginatability problem of [1], see [16]. As explained in [24hi$ structure
was suggested by applying passivity-based nonlinear @aetthniques which, precisely, takes into account theimaigDFIM
dynamics where the dq stator currents appear rotated ingihatiens of the rotor fluxes (7)-(8). In [15] the cross-tenvese

also required to prove global stability, see Fig. 3 in [15].

Substituting (14)-(15) in (7)-(8), a linear closed-loos®m is obtained. Applying the Laplace transform, stapitif the
system is determined by a 6th order characteristic polyabmihich was analyzed in [20] but without reaching complete
analytic conditions for stability. Interestingly, thisx#h order characteristic polynomial with real coefficieot:n be reduced
into a 3rd order polynomial with complex coefficients for whicomplete analysis is possible.

Defining Z(s) = Lsa(s) + jlsq(s), Zr(s) = Ira(s) + jlrq(s), Vs(s) = Via(s) + jVsq(s), Vi(s) = Via(s) + jViq(s), the

closed loop system can be written as

Zs(s) Vs($)
AGs) | Z,(s) | = 0 (18)
V,,(S) _](kps + k[)I: (S)

where
LSS+RS +.7wSLS LS’I‘S+ijLST‘ O

A(s) = Lgs L.s -1 |- (19)

jlkps+kr) 0 s
Notice that the polynomiallet A(s) has 3 roots that are not required to be real or appear as copales. The complex

polynomial has the form

det A(s) = aos® + (a1 + jb1)s” + (az + jbz)s + a3 + jbs (20)

where the parameter values are given in [18].

Now the stability of the closed loop system (5)-(8) with (44p), can be analyzed with Lemma 1, wheig= p > 0

(u = LsL, — L2, > 0, in all electrical machines) is fulfilled. Computing coridits (2)-(4) yields

Ay = LR, (21)
Ay = Ly (kpwsL2R?+ kpk;Lsy LRy — 2kjwopLy Ry — kjpLsy) (22)
Ay = kwiLl2 LR, (kpLs LRy — kpkipLy, — kjwsp®) . (23)

The first condition is automatically fulfilled becausg, Rs > 0. It can be shown (see[18]) that one must haye> 0, and the
third condition is more restrictive than the second one.geguently, the Hurwitz conditions reduce &g > 0. Notice that
the stability condition does not depend on the mechaniagdpThis stability condition has as asymptote the reselkented

in [20], which implies a generalization of the previous work



Proposition 1: Consider the DFIM system (5)-(8) in closed-loop with the ttohlaw (14)-(15). If

k%L L, R,

O<kr < ——mM—
! M (ﬂws + kPLsr)

(24)

the closed-loop system is asymptotically stable.
Proof: See [18]. [ |
Finally, it is worth mentioning that the degrees of freedomvided by the Pl gains does not allow us to place the poles in
arbitrary locations, which are depending on the DFIM partanseand, consequently, the convergence speed can be liboyde
the machine parameters (see example in Figure 8). A guaditdesign rule can be obtained numerically using a Root kocu
Analisys. Moreover, for generation applications, it isaial to have resistanc&; and R, as low as possible which tends to
have A, ~ 0. This fact could affect the stability if there are delay effein the feedback loop. The use of both “direct” and

cross-terms of the stator current errors, as [15], is a pssblution to relax the influence of the, and R, values.

B. Effect of an incorrect rotor resistance estimation

As seen from (14)-(15), the feedback linearization termuiexg the knowledge ofR?,., L, and L,., which are in general
uncertain and time-varying parameters. In particular, ttu¢hermal effects, the value ak, is highly varying. In order to
evaluate the effect of a possibly incorrect estimationRof let us assume that one uses in (14)-(15) an estimated ¥glue

which can differ from the actual value of the rotor resis&nthen, defining?, := R, — R,., (19) slightly modifies to
Lg¢s+ Rs + jwsLs Lgps+ jwsLg, 0
A (s) = L5 L.s+R, -1 |- (25)
j(kps+kr) 0 s

Applying again Lemma 1 to the new matri®,.(s), it is possible to obtain a set of conditions given Ay, Ay, Az > 0.

The determinant of4,(s) still has the form of (20), with the same parameters of [18]ept for the following three:

ay = L.Ry+ LR, (26)
az = kpwsLg + RSR’I‘ (27)
by = —kiLg +wsLsR,. (28)

First, note thatz; > 0, and consequentln; > 0, if and only if R. < R, + %RS, which warns against an overestimation

of R,. ConditionsAs; > 0 and Az > 0 are quite more complicated,

Ay c1k? + cokpky 4 cskp + cakp + cs (29)

As = dik? + dokpk? + dsk? + dakbk; + dskpkr + dek; (30)

where the parameters are detailed in Appendix A.
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Fig. 2. Stability boundaries given by (29) and (30) for thegmsed control law (14)-(15) with an uncertain valueRyf.

At this point, in order to simplify the stability conditiong is possible to compute the positive slope asymptote28j (

and (30), which turn out to be the same and given by

LRy + LyR, <L, R,
_ Ry + LR kp_w R ' (31)
H L,

kr

Notice that forR, = 0, this corresponds to the asymptote of (24), and the stalsitindition presented in [20] is recovered.
Also, it is worth mentioning that negative values 6y will increase the slope of (31) which implies a larger stapitegion.
However, this selection will affect the performance of tlumtroller with a longer stabilization time.
Figure 2, shows a numerical example of the stability regmndifferent values ofz,.. With the parameters of the machine
described in Section VI, and considering a 10% error infheestimation,A3 > 0 is more restrictive thad\, > 0. In Figure
2, the A3 = 0 for different errors in the rotor resistance estimation stiewn. This numerical example shows that a positive
error,i.e. R, > 0, in the estimation of?, is preferred. In other words, overestimating the rotorstesice implies decreasing
the stability region and, as pointed out before, can evetab#ige the system. Moreover, for small values ®f, a small
stable region appears féf> < 0. This can be easily seen from the asymptote (31), whgre: 0 implies a lower slope. This

fact suggests taking, = 0 to have a larger stability region, and also simplify the cohlaw. Then, asymptote (31) yields,

L,Rs+ LR, sLrRs
= et Sery, Wt (32)
M L,

kr

V. PI STATOR CURRENT CONTROLLER

The control law introduced in the previous section guaresstability for a large range of the Pl parameter values. dvew
in order to implement the control algorithm, it is necesgarknow some machine parameters and both the stator andttire ro
currents. In this section a simplification of the proposedtaler (14)-(15) is analyzed that only keeps the PI action,

(33)

t
VUprd = —kp(i:q — isq) — /{1/ (Z:q — isq)dT
to

t
Urqg = kpl(ity —isa) + ki / (i*, — isq)dr. (34)

to

For this scheme, shown in Figure 3, the rotor currents areemtired, and only the stator currents need to be measured
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Fig. 4. Stability conditions (29), (30) for the control atghm (33)-(34) for different values ab.

Notice that, in a torque controller application, the rotarrents could be required to set tfjpvalue in an outer control loop.
At this point, for the stability analysis, a constant medbalspeed is assumed. Using the same idea as before, tieel-dtomp

dynamics can be written as (18) with(s) becoming

LSS+RS +ijLS LSTSJ’_ijLST 0
Apr(s) = | Lgs +j(ws —w)Lsp Lys+ Ry +j(ws —w)L, —1 |- (35)
j(kpS + k]) 0 s

The polynomialdet Ap;(s) still has 3 roots, and the Hurwitz test described in Lemmari lma used. The determinant of
(35) has the same form as (20) with the coefficients given ipelyaix B. The stability of the closed loop system (5)-(8)hwit
(33)-(34) can be analyzed by computidg, Ay, As. A; = ay so thatA; > 0, while A, and As are in the same form as
(29) and (30), respectively, where the coefficients now thkevalues given in Appendix C.

To obtain an expression for the stability region becomespimated. As a first result, conditions can be plotted for a
numerical case. Using the machine parameters of Sectioeqtiations (29) and (30) are obtained for different valuethef
mechanical speed. Figure 4 shows the stability regionshimtechanical speed.

In order to bound the stability region, it is possible to filek tasymptote of (29) and (30). Similarly to the case for an

unknown rotor resistance presented in the previous sedtierasymptotes for thA, = 0 and A3 = 0 are equal and given by

L.Rs+ LR, wLsR, —ws(LyRs + LsR;)
= kp + .

k
! % L,

(36)

Note that the slope of the stability boundary does not dementhe mechanical speed. As the worst case is when0, the
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Fig. 5. Simulation results: stator currents under a changiae references (FL+PI: solid line, PI: dotted line). Tomnf :¥ = [0, 0JA to ¢* = [0.5, 0]A.
Bottom: from:% = [0.5, —0.5]A to % = [0.5,0.5]A.

stability for the PI controller proposed can be ensured linge
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VI. SIMULATIONS

The proposed controllers were tested in numerical expetisngsing Matlab. The DFIM parameters are the same than ones
used in Section VII. The DFIM is connected to380V and 50Hz power grid. Using a power preserving transformation and
the stator-voltage oriented frame, this corresponds tonsteat stator voltage vecter = [380, 0]V and w, = 1007rad s .

A first simulation consists in a comparison between the twes@nted control schemes. For this test, the dg-model §5)-(8
is in a closed loop with the control schemes (14)-(15) and-(38). The knowledge of all the parameters is assumed for
the feedback linearizing control scheme and the contraigyaf the Pl action are fixed dtp = 0.5VA™!, k; = 3VA~1s!
for the FL+PI controller andcp = 5VA ™!, k; = 50VA~'s~! for the Direct Pl controller. The mechanical speed is set to
w = 325rad s''. As shown in Figure 5, both algorithms perform in a similayywahis result suggests the use of the direct Pl
controller because it is easily implementable; rotor auiseare not needed, and the knowledge of the machine pananiete
not required. However, the stability of the control law (3%) is based on the assumption of constant mechanicatispee
the simulation depicted in Figure 6, the current refereraves? = [0.5,0]A and the mechanical speed is modified. When a
sudden change of the velocity occurs, both d and g statoemisrireach the desired values after a short time. Also, hete t
during the acceleration of the mechanical speed (ftem0.5s tot = 1.5s), the d-stator current tracks the reference value but,
in the Direct Pl algorithm the g-stator current has somedstestate error. This suggests the proposed controller oii@e
IV-A for applications with mechanical speed variations.

The second test compares the proposed method (the so-daked PI controller) with an existing PQ control which also
uses the stator voltage oriented frame and splits the prolietwo loops: a first rotor current loop, and an outer power
control loop, see details in [13], pp. 2-18 to 2-22. At thismiptwo main differences arises with respect to the progose
controller (33)-(34): the stability of the PQ method is lthem the assumption of a fast inner loop with respect the power

control loop, and the use of current sensors for the rota sidequired. Figure 7, compares the behavior of the statweits
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Fig. 7. Simulation results: comparison of the direct Pltoolfer algorithm with the stator voltage PQ control.

using the proposed algorithm versus the PQ control apprivaft8], where the control gains were setkp, = 0.01AW 1,
k1, = 10AW~'s™! (for the PQ controller) andp. = 5VA™', k. = 0.1VA~'s™! (for the rotor current controller). Notice
that performance is similar although the proposed conéwl ik easier to implement and less complex.

The third set of simulations test the direct Pl controllerthis case, the model is implemented using the SimPowezgst
toolbox of Matlab, which contains a library with realistioplementations of some elements such as sources, eléntdchines
and measurement elements. For this simulation, the BleRded transformations had to be coded, as well as the olotaine
control actionp,., that is converted to the three-phase voltdge to be applied to the rotor side of the DFIM. Also, the effects
of a real implementation are includeide. sampling, quantification and saturation. The samplingUdeagy is set at 10kHz,
all the variables are quantified as in a 16bit processor, heddtor voltages which are saturatedtat20V, are delayed with
one sampling time period. The control parameterskare= 5VA ! andk; = 50VA ~'s~!. This simulation is performed with
the same parameters used in Section VII (which consists imal OFIM with large stator and rotor resistances), but d tes
using five times smallek, and R,. values, is also provided in order to show the performancelarge DFIM.

Figure 8 shows how the obtained dqg-stator currents stalalizhe desired values under several reference changessixgt
feedback linearizing terms implies that the dg-currenesaupled and changes oy, affect inis, (and vice-versa), but the

currents recover the set point. It is worth mentioning ttet controller is able to operate for both signs of the current,
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Fig. 8. Simulation results: dg-stator currents dependinghe DFIM resistance values.

showing that this algorithm can be used for both generatioaither electrical power or mechanical power (as in driving
applications). As expected because the closed loop polesndeon the resistance values, with the same control gdies, t

response of a DFIM with small resistances is faster (with @grshoot) than the machine with larger ones.

VIl. EXPERIMENTAL RESULTS

The proposed controller has been tested experimetally dis Wee DFIM is a 1.1kVA, 2 poles three-phase machine
(DeLorenzo DL 1022K), with the following parameter®; = 4.92Q, R, = 4.42Q, L, = 725mH, L, = 715mH and
Ly = 710mH. The DFIM is moved by a 3kW DC motor used to provide a cortsipred (at 2950rpm). Assuming a balanced
grid, by using two voltage differential sensors and two Hdfiéct currents sensors, the three phase stator voltagesuarents
are measured. Position is measured as well in order to carthatdqg transformation. The sample time is fixedL€o *s,
which corresponds to 10kHz as a maximum frequency.

The first test corresponds to a change on the d-stator cureenponent. The DFIM starts with referencesiat= [0, 0]A
and the d-component is set 19, = 0.5A (Figure 9) and changed back ¢, = 0A (Figure 10). Figures 9 and 10 show the
transient of the dg-stator currents and its referencesli@sallations of the transformed dg-currents correspotadthe effect
of unbalanced phases of the actual machine. As in the siiomnl&sts, the controller is able to control the active potwer
means of the d-stator current component. However, theignatssof the stator currents are worst than the ones obtamta
simulations due to the interaction between the controlireduo keep the mechanical speed of the DC machine and ttealtes
control algorithm. In a practical scenario with larger imewvalues than the one used in the experiment, the mechaimea
constant will smooth the current oscillations. Figure 1aveh the stator voltage and current for the a-phase’fes [0.5, 0]A.
Note that as the reactive power in the stator side is zggo= 0), the stator voltage and current are in phase.

The second test consists in to modify the reactive power ®DRIM. In this case the g-stator current component changes
fromi* = [0.5, —0.5]A to ¢* = [0.5,0.5]A. Figure 12 shows the a-phase stator voltage and curreheateginning of the test
where the phase of the current lags that of the voltage. Th&tatqr currents behavior is shown in Figure 13. This testvsh
that the reactive power can be modified using the g-stateenticomponent. Finally, the a-phase stator voltage anecuin
steady state are in Figure 14. In this case, the voltage Fegsurrent. As the change in the g-component does not affect t

active power, the mechanical speed is only slightly affé@ed the current performances are better than the prevasesc
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Fig. 9. Experimental results: dg-stator currents for a geareference froni = [0, 0]A to % = [0.5,0]A. (CH1): d-stator current reference. (CH2): g-stator
current reference. (CH3): d-stator current. (CH4): gestaurrent.
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Fig. 10. Experimental results: dg-stator currents for angeareference from?* = [0.5,0]A to % = [0,0]A. (CH1): d-stator current reference. (CH2):
g-stator current reference. (CH3): d-stator current. (Clddstator current.

VIII. CONCLUSIONS

In this paper, a particularly simple controller for the DFiN&s presented. It consists of a Pl regulator for the statoents
and (possibly) a feedback linearizing term. As the propasgtme is defined in the stator voltage reference frame ctiveea
and reactive powers are directly related to the d and q statoents, respectively, and the power regulation does eupiire
extra loops or computations. Moreover, no stator flux edtonais required. Consequently, the algorithm is simpleanth
classical vector control.

In contrast with the standard decoupling controllers, thad®on is defined with a particular structure (relating theotor
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AutoLevel
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Fig. 11. Experimental results: a-phase stator voltage {Catphase stator current (CH2), d-stator current (CH3)cgathtor current (CH4), fori = [0.5, 0]A.
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Fig. 12. Experimental results: a-phase stator voltage {CH¥hase stator current (CH2), d-stator current (CH3) qusdator current (CH4), foi} =
[0.5, —0.5]A.
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Fig. 13. Experimental results: dg-stator currents for angeareference fromi} = [0.5,0.5]A to i} = [0.5, —0.5]A. (CH1): d-stator current reference.
(CH2): g-stator current reference. (CH3): d-stator curré@H4): g-stator current.

voltage component with (minus) the error of the g-statorent; and the g-rotor voltage with (plus) the error of thetatesr
current). Stability is analyzed with a Routh-Hurwitz test polynomials with complex coefficients. This method pd®ms a

simple analysis tool to determine the stability regionshe tontrol gains.

The paper presents two approaches. The first algorithmstsrafia feedback linearization stage plus a Pl action. Tdhisme
is particularly attractive because the resulting systefingar and independent of the mechanical speed. The influehan
incorrect estimation of the rotor resistance is also stlididne second algorithm only uses the PI term, so that it ieemely
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Fig. 14. Experimental results: a-phase stator voltage {CH¥hase stator current (CH2), d-stator current (CH3) qusdator current (CH4), foi} =
[0.5,0.5]A.
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easy to implement. This current loop does not require eitherknowledge of the machine parameters or measurements of
the rotor currents. As opposed to the previous algorithra, dtability of the second approach is based on the assumption
of constant mechanical speed. However, this restrictiowigely assumed and can be accepted when the time constant of
the mechanical dynamics is much higher than the electrical s a consequence of using a direct regulation of therstato
currents (measurements of the rotor currents are not edjlineither of the proposed algorithms allows to assigrctbsed
loop poles, that are dependent on the DFIM parameters.

The proposed controllers are verified in simulations. Fiastig-model of the DFIM is used to compare both controllers,
resulting in a similar behavior. Secondly, a comparisoroisedwith respect to the common PQ control. The presenteditigo
is found easy to tune and cheaper to implement because itddesquires sensors for the rotor currents. And third, fhect
PI algorithm is tested in a more accurate scenario. The maskd in the simulation contains some parasitic elements and
non-ideal effects such as sampling, quantification and sietegy, in order to emulate a real experiment. The result detnate
good performance and validate the proposed control schemally, some experimental results using the direct PI tigm

for a real setup are provided. These experimental testsroottie advantages predicted in the simulation stage.
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APPENDIX

Appendix A: Parameters of the A; and Aj conditions in Subsection 1V-B. Parameters of (29) and (30) are

. = —,uLgr co = L?Tﬂ c3 = —2wspulg LyRg
s = wilgL,RB cs = RR, (B?+w?uL,L,)
and
di = —wyuLl?RR, dy = wil3 R, (RS —winl,)
dy = —wul? Ry(LR?+w2ul, +3L.RR,) di = w3L3 L,Rf
ds = wL?.R,R, (WpLsL,+ %+ L,RB) ds¢ = wsLyR2R?(w?uL,L, + (%)

where = L, R, + LyR,.

Appendix B: Parameters of the complex polynomial det .A(s) in Section V. Parameters of (20) in Section V aig = p,

ap, = L,Rs+ LR, as RsR, — ws(ws — w)pu + kpwsLs a3 = kjwsLg,

b1 = p2ws—w)—kpLs by = (ws—w)L.Rs+wsLsR, —kiLs bs = 0

Appendix C: Parameters of the A, and Aj conditions in Section V. Parameters of (29) and (30) in Section V are

1 = _MLET C2 = LET’Y 3 = ,UfLsr (w(LSRT‘ - LT‘RS) - Wﬂ)
ca = wLlgyl,Ryy c5 = RsRT’YQ
and
di = —wsul? RR, dz = wsul? Ry (—QwsRT7 —wsw?ul, —wR, (L, Ry — LSRT))
dy = wsL? Rs(R.y—wswpL,) ds = ww?ul? L,Rs(WLR, — (ws —w)y) +ws L% Rs Ry (wsy + WL, Ry)
dy = ww?Ll3 L.Ryy ds = wsLgRsR,(RsR, — (ws — w)wsp) (v + w?nLsLy)

wherey = L. Rs; + LR,



