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Abstract—This paper presents an exploration of the design
space for homogeneous and mixed 4phase asynchronous linear
pipelines. We extend previously published results by uncovering
their complete ordered design space, demonstrate relationships
between the latter’s governing lattice structures, tabulating the
ways in which mixed linear pipelines compose, and establish the
basic rules underpinning mixed pipeline behaviours. The inherent
structures and patterns we describe give rise to a succinct
and transparent method for calculating the specifications of
mixed and homogeneous pipelines of arbitrary depths. Practical
applications of this theory are demonstrated.

I. SETTING AND APPROACH

The computational core of many asynchronous designs is a
pipelined datapath. It is standard practice in the first stage of
design development to concentrate upon control signals and
the ways in which they can interleave. This enables one to
check that subsystems compose harmoniously (are safe, live,
preserve essential properties, etc.) before extending the model
towards data movements and calculations.

In this paper, we explore the design space for both ho-
mogeneous and mixed 4phase asynchronous linear pipelines,
and show how the complete ordered design space can be
described and tabulated in a succinct and transparent way.
The lattice-based method we describe has both strictly formal
underpinnings (it is based on a formal description of pipelines
as processes expressible in the process calculus CCS [14]) and
has clear industrial relevance: our previously reported work
(summarised below) has already allowed the abstract analysis
of all possible untimed 4phase controller interleavings, and
synthesized an implementation of each protocol in silicon.

Our approach complements and extends that of McGee and
Nowick [13], who were the first to present a lattice-based
framework for modelling asynchronous pipelines, and also
those of Furber et al. [8], [9], [11] and Lines [10], who
present earlier explorations of various related protocols. Also
of relevance are Nowick and Singh’s insightful overviews of
asynchronous pipeline design styles and techniques [17], and
Blunno et al.’s analysis of handshake protocols [3].

In previous work [1], [21] we presented a family of
abstracted untimed (delay-insensitive and speed-independent)
4phase latch controllers derived by state reduction from max1,
the most concurrent such abstraction. The family is obtained
by systematically cutting away input states and/or output states
from max1. Applying each combination of output channel cut
(Lcut) and input channel cut (Rcut) to max1 generates the
shape (a minimised state machine) of a new family member

which, if live, represents a viable protocol. The cuts form
separate Lcut and Rcut lattices, L and R, whose 10×25
cartesian product, L×R, defines the complete untimed design
space. These abstracted controllers were synthesized from
their specifications, placed and routed, and characterised via
ModelSim and PrimeTime using post layout extraction based
upon the static Artisan 12T library on IBM’s 65nm 10sf
process. We were thus able to compare such properties as
area, cycle time, forward and backward latencies, and power
per datum over a whole family of automatically generated
circuits. This emphasises the point that state reduction via cuts
is not aimed primarily at finding the smallest viable circuits,
but at opening up the space of all possible circuit abstractions
for exploration. See [16] for an illuminating application of
selected shapes to asynchronous access control schemata.

In [2] we used this approach to explore mixed linear
pipelines in the much smaller 2phase design space (containing
just 3×6 cut combinations). We were able to relate the lattice
L of output channel cuts to the lattice R of input channel cuts,
and showed how this gives fruitful insights into calculating
mixed pipeline behaviours. In particular, the independence of
Lcut and Rcut behaviours exhibited for 4phase controllers
when composed into homogeneous pipelines in [21] was found
to hold for 2phase mixed pipelines as well. This independence
is extremely important as it enables one to generate and utilise
separate compact tables LTAB:L×L and RTAB:R×R to
characterise pipeline behaviours. Without such independence,
one would expect a much larger (L×R)2 table to be needed.
Finally we were able to show that each quadrant of the larger
6×6 RTAB is related to, and can be determined from, the
smaller 3×3 LTAB.

As we shall see, these insights can be transferred in toto to
the much larger 4phase design space, where L has 35 output
cuts and R has 140 input cuts. The corresponding LTAB has
dimensions 35×35 and RTAB may be partitioned into 16 like-
sized sub-tables. We have developed succinct and transparent
(one line) formulae for both LTAB and for pertinent partitions
of RTAB. In short, we have a concise algorithm for calculating
the specifications of mixed (and hence also homogeneous)
4phase pipelines of arbitrary depths.

A. Structure of the paper

In the remaining sections in this paper: (II) gives an
overview of the above approach and pertinent results of [21],
and describes both max1, the maximal 4phase controller,



and its shape. (III) presents the full Lcut and Rcut lattices,
how to relate them, the complete family of shapes cutaway
from max1, and patterns of growth in homogeneous pipelines.
(IV) develops the structures and lattices arising from mixed
pipelines. (V) and (VI) develop LTAB and RTAB and their
index/extent formulae respectively which cover mixed pipeline
behaviours. We conclude in (VII) by presenting several small
case studies which hint that mixed pipelines containing timed
stages can be coerced into pipelines with untimed interfaces.

II. max1—THE MAXIMAL 4PHASE CONTROLLER

In this section we review key properties of max1, the
most concurrent 4phase controller, and its properties when
composed into homogeneous pipelines.

A. The max1 state machine
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Fig. 1. Stage = Latch and Controller

Joined by Varanesi in [21], the authors give a model
for a pipeline stage consisting of a LATCH which, when
ready, captures a fresh data value from input bus dIN and
shows it on output bus dOUT; together with controller LC
which is responsible for the safety of such operations under
the assumption that data is bundled and valid on the rising
edge ir↑. Since a stage operates the same way whatever the
incoming data, it is usual to omit buses from the model.
Informally, the interplay between LATCH and LC will result in
added internal time spent but makes no observable (externally
visible) difference to control signal interleaving possibilities.
A formal explanation of this equivalence is given in [21].
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Fig. 2. Minimised equivalent state machine for max1

In [21], the authors argue that the most concurrent 4phase
latch controller abstracts to the state machine shown in
Figure 2. Its specification is given entirely in terms of the
interleaving possibilities of its four external handshake lines.
By convention, outgoing signals are overbarred, whilst incom-
ing signals are not. Input request/acknowledge signals flow
horizontally, whilst output request/acknowledge signals flow

vertically down and then wrap around to the top shifted left
by 4 states.

The initial state in Figure 2 (and all shape diagrams) is
marked . When quiescent, the circuit will return to this
state to await the next transaction. The upper left shaded three
states show underrun when the output channel gets ahead of
the input channel. The lower right shaded 4 × 2 block of states
shows overrun when the input channel is getting well ahead
of the output channel. It may only be entered after an oa↑ has
been accepted and a fresh data value is guaranteed to have
been passed.

The shape abstraction was introduced in [1] as a sufficient
and clear abstraction of max1 and its cutaways. Figure 3 gives
the shape of max1. Again the initial state is indicated by ,
other live states by 2. We save clutter by omitting the wrap
around oa↓ arrows.

Fig. 3. shape: uncluttered shorthand for max1

B. Growth of homogeneous max1 pipelines

Let HP(S,d) represent the homogeneous pipeline built from
d copies of the controller S. maxd abbreviates to HP(max1,d).
The shapes of pipelines max1..max3 are pictured in Figure 4.

max1

max2

max3

Fig. 4. HP(max1, 1..3): pipelines built with max1

Since maxd is the maximal pipe of depth d, all linear
homogeneous (and mixed) pipelines from core shapes may
be expressed as Lcuts and Rcuts from maxd. The pipelines
HP(max1, d) grow in regular fashion with state sizes 32, 48,
64, . . . . This growth is emphasised in Figure 4 by shading the
extra states per iteration. Notice how maxd keeps its shape as
d grows. We may indicate this growth informally by

maxd+1 = maxd +

III. FAMILIES OF RELATED SHAPES

In this section, we extend the design space from the untimed
10×25 already explored in [1], [21] to the complete space
of 35 Lcuts by 140 Rcuts, relate these larger Lcut and



Rcut lattices, show how to characterise timed and untimed
controllers by their cuts, and present experimental results over
the complete design space.

A. Left cuts on output signals

Lcut region

L a b c

Fig. 5. Two views of the Lcut region: L000..L444

On the left of Figure 5 we shade the region for valid Lcuts
(output channel cuts) over the standard shape abstraction for
max1. On the right, we have moved the top line of the shape
down 4 rows with an appropriate alignment to the right. The
potential candidates for a left cut now lie in the shaded 4
by 3 block of states. This view makes it easier to introduce
the Lcut notation. Lcut Labc denotes the removal from max1
of a states from the column marked a, b states from column
b, and c states from column c of max1, working vertically
upwards. This is a notational change from [21] which made
horizontal cuts across input signals. The change makes cuts
along the flow of output signals or↑.oa↑.or↓.oa↓ (here, from
right to left) and assists the search for relationships between
Lcuts and Rcuts.

L a b c
Fig. 6. Lcut L320

Figure 6 depicts the specific cut L320 in which the 5
cutaway states are shaded and their incoming and outgoing
arcs removed.

Labc constraints: (0≤a,b,c≤4) ∧ (a≥b≥c)

The constraints ensure that all states remaining after an Lcut
can be both entered and exited (there are no dead end states).
If we try to cut away more states on the left than L444, we
lose the ability to return to the initial state.

B. L: the Lcut lattice

Figure 7 displays LL, the lattice of 35 Lcuts, arranged in a
wedged pattern of triangles T5..T1.
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Fig. 7. LL: wedge representation of the 35 Lcuts

The corner point notation L000..L400..L444 is a convenient
shorthand for representing the Lcuts in the full lattice T5..T1.
It may be extended to cover selected sub-lattices, e.g. T4..T2
is represented by L111..L411..L443. The shading of columns of
cuts in Figure 7 and Figure 11 is explained in subsection III-E.

C. Right cuts on input signals
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Fig. 8. Rcut region: R0000..R4488

The Rcut region is shown shaded in Figure 8. When making
Rcuts, we remove states row by row working horizontally from
right to left. Rwxyz denotes the removal from max1 of w states
from the row marked w, x states from the row marked x, etc.
The maximal cutaway per row is 4 for rows w and x; and 8
for rows y and z.

Rwxyz constraints: (0≤w,x≤ 4) ∧ (0≤y,z≤8) ∧ (x+4≥y≥z≥w≥x)

The constraints ensure that all states remaining after an Rcut
can be both entered and exited (there are no dead end states).
If we try to cut away more states on the right than R4488, we
lose the ability to return to the initial state.

Figure 9 depicts the specific cut R1032 from max1. The 6
cutaway states are shaded and their incoming and outgoing
arcs deleted. No deleted state is reachable from the initial state.

Fig. 9. Rcut R1032

Figure 10 shows the result of taking both Lcut L420 and
Rcut R2042 from max1. Our standard notation for this shape
is L420[1]R2042, indicating its Lcut, Rcut and that these are
taken from max1. The use of [1] here opens the way to extend
this style of specification to pipelines of arbitrary depth. A
circuit implementation of this shape is published as BAF1 in
[9]. The 14 cutaway states are shaded and their incoming and
outgoing arcs deleted. No deleted state is reachable from the
initial state.

Fig. 10. shape L420[1]R2042

D. R: the Rcut lattice

The lattice of Rcuts has 140 elements Rwxyz. It splits
naturally into 5 levels, named RR0, RR1, ..., RR4, with all
the cuts at level RRx possessing the same x index. Lattice
level RR0, shown in Figure 11, is characterised by triangles
T5..T1, RR1 by triangles T5..T2, ...., and RR4 by just T5.
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Fig. 11. RR0: wedge representation of a portion of the 140 Rcuts

Table I characterises Lcut wedge LL and the 5 Rcut wedges
in turn with using separate columns to specify their extent first
in triangle notation, then corner notation, and finally notes their
respective sizes (number of cuts in this wedge).

TABLE I
HOMOGENEOUS RCUT CHARACTERISTICS

Wedge Extent Corner points Size

LL T5..T1 L000 L400 L444 35

RR0 T5..T1 R0000 R0040 R4044 35
RR1 T5..T2 R1111 R1151 R4155 34
RR2 T5..T3 R2222 R2262 R4266 31
RR3 T5..T4 R3333 R3373 R4377 25
RR4 T5 R4444 R4484 R4488 15

There are 35 Lcuts and 140 Rcuts. The complete design
space has 4900 shapes including max1, not all of which are
live. Shapes Labc[1]Rwxyz deadlock when their Lcuts and Rcuts
abut or overlap. For example, L440[1]R4444 is not live since all
the states in row 2 of its shape have been deleted. A shape’s
liveness may be calculated directly from its cuts.

E. Design spaces

We can generate related design families by choosing struc-
tured subsets from Lcuts and Rcuts. These subsets relate
to protocol classes that are characterised by various tim-
ing assumptions. The most robust protocols are the untimed
which assume unbounded circuit delays [7], [12]. DI—delay-
insensitive also assumes unbounded wire delays; SI—speed-
independent assumes negligible wire delays. The remaining
cuts are timed. Timed cuts are partitioned into two classes:
“locally timed” (LT for short) and “architecturally timed”
(AT). Fundamental mode, burst-mode [4], [6], and pulse based
systems [19] are examples of LT cuts. In such systems the
internal (local) delays of the circuit implementation must
be faster or have less skew than the external environmen-
tal response time. Timed LT shapes can be designed and
validated using relative timing [18], [22]. AT cuts require
timing relationships between external architectural elements.
For example, an AT cut will require that in some state the
input channel must always respond before the output channel.
The discipline of AT design is unexplored.

The timing discipline of a cut Labc is syntactically trans-
parent. It is untimed (UT for short) iff a,b,c are all even (10
cases); it is locally timed (LT for short) iff just a and/or c are

odd (9 cases). The remaining 16 cuts are architecturally timed.
They are shaded in Figure 7 and Figure 11.

F. Experiments conducted over homogeneous pipelines

We have conducted experiments composing all 4900 shapes
S into linear homogeneous pipelines HP(S, d) for pipeline
depths d of 1..12.

Let S = L[1]R and HP(S, d) = L’[d’]R’.

Key properties noted in [21] for the untimed design space
extend to the complete 4900 member design space.

1) Liveness: HP(S, d) is live iff S is live. Input and output
signals preserve the invariants:

4cycle ( ir↑ , ia↑ , ir↓ , ia↓ )
4cycle ( or↑ , oa↑ , or↓ , oa↓ )

2) Cut independence: L’ depends only on L; R’ on R.
3) Shape capacity: depends only on its input cut R.
4) Closure: L’ ∈ Lcuts and R’ ∈ Rcuts. The Lcuts

and Rcuts are closed over operation HP. Accordingly,
when minimised, all live linear homogeneous (and
mixed) pipelines may be expressed as Lcuts and Rcuts
from some maxd′ by extending the shape notation to
Labc[d’]Rwxyz.

Modulo some minor regularity wobbles noted in [21], 7
distinct shape capacity indicators emerge when we consider
the HP operation over all cuts.

TABLE II
CAPACITY INDICATORS

Rcut of HP at depth d

Rcut 1 2 3 4 5 6
Capacity
indicator

R2222 R2222 R2222 R2222 R2222 R2222 R2222 FULL
R1032 R1032 R1032 R1032 R1032 R1032 R1032 FULL
R2143 R2143 R3254 R4365 R1032 R2143 R3254 3/4
R2243 R2243 R3364 R0032 R2243 R3364 R0032 2/3
R2244 R2244 R0022 R2244 R0022 R2244 R0022 1/2
R3254 R3254 R1032 R3254 R1032 R3254 R1032 1/2
R2155 R2155 R5266 R2155 R5266 R2155 R5266 1/2
R3265 R3265 R2153 R5376 R3265 R2153 R5376 1/3
R4365 R4365 R3254 R2143 R1032 R4365 R3254 1/4
R2266 R2266 R2266 R2266 R2266 R2266 R2266 NULL

If we use c/s to denote the increase in capacity per added
stages, the well known indicators are 1/1 (full), 1/2 (half), and
0/1 (null) noted in [21]. Table II gives examples of 4 new
possibilities: 3/4, 1/4, 2/3, 1/3. Eight of the above cuts are
used in cases 3 and 4 in the Applications Section VII.

The following examples show the relation between pipeline
depth and shape capacity, using the above Table. Lcut L000

always generates a homogeneous pipeline with Lcut L000

whatever the pipeline depth:
1) R2222 has full capacity and HP(L000[1]R2222, 6) is equiv-

alent to L000[6]R2222

2) R2244 has half capacity and HP(L000[1]R2244, 6) is equiv-
alent to L000[3]R2244

3) R2266 has null capacity and HP(L000[1]R2266, 6) is equiv-
alent to L000[1]R2266



IV. MODELLING MIXED PIPELINES

In the next three sections, we present new work on mixed
pipelines. In this section, we lay the groundwork by presenting
the extra Rcuts that arise in mixed pipelines, relating the
Lcut wedge to each of the four Rcut wedges that arise, and
summarising our experimental results over mixed pipelines.

A. Introduction
Our interest was sparked by our noting that locally timed

(LT) circuits may produce more efficient implementations
than untimed (UT) circuits. This suggested investigating the
possibility of constructing pipelines as in figure 12 from an
inner pipeline of selected efficient LT shapes which is then
bookended by UT shapes selected so that the augmented
pipeline interface is untimed. The inner LT protocols will
retain any performance and power benefits, against which their
additional timing constraints will need to be validated. But
having an untimed interface is very attractive for modular
system composition.

UT1 LT2 LT3 LT4 UT5
ir
ia

or
oa

Fig. 12. Mixed pipe: a core of LT shapes bookended by UT shapes

Figure 13 shows the composition S3 of two core shapes S1
and S2 with cut pairs (L1, R1) and (L2, R2) respectively. If
live, S1 will maintain its output 4cycle (or↑, oa↑, or↓, oa↓)
and S2 will maintain its input 4cycle (ir↑, ia↑, ir↓, ia↓). Since
these signals share handshake wires appropriately, if S1 is live
and S2 is live, then S3 will be live. Note that we may mix live
shapes freely to form live pipelines.

S1 S2
ir
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R1

L1

R2

L2

≡

S3
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R3

L3

Fig. 13. S3 = MP[S1,S2]

To specify a mixed pipeline, we have to spell out each and
every constituent shape in order. This is easiest to express as
a list: here S3 = MP[S1, S2]. As indicated in Figure 13, S3
has the cut pair (L3, R3).

As expected from previous work on 2phase controllers [2],
the Lcuts are closed under MP, the Rcuts are not. For example
MP[L000[1]R2222, L000[1]R4044] returns L000[2]R6266. In total,
there are 15 such extra cuts ranging from R5155..R7377 which
arise from mixed compositions. These extra Rcuts are only
live at pipeline depths of 2 or more.

Note that max1 may tolerate a loss of 4 states at the right
hand end of each of its rows and remain live. The shape of
this max0 = L000[1]R4444 is shown in Figure 14.

max0 = max1

Fig. 14. Shape for max0

Taking Rcuts R4444..R4488 from max1 generates shapes that
are equivalent to shapes produced by taking Rcuts R0000..R0044

from max0. Thus including shape max0 allows us to dispense
with all 15 RR4 cuts. On replacing them by the 15 Rcuts
R5155..R7377, we find the latter distribute perfectly over wedges
RR1..RR3 in that they flesh out RR1, RR2, RR3 wedges to
be isomorphic with the RR0 wedge, as indicated in Table III.

TABLE III
MIXED RCUT CHARACTERISTICS

Wedge Extent Corner points Size

LL T5..T1 L000 L400 L444 35

RR0 T5..T1 R0000 R0040 R4044 35
RR1 T5..T1 R1111 R1151 R5155 35
RR2 T5..T1 R2222 R2262 R6266 35
RR3 T5..T1 R3333 R3373 R7377 35

Subject to extent, each Rcut Rwxyz in wedge RRx has a
simple relationship with Lcut Labc belonging to LL:

Rwxyz ≈ L(y-x)(z-x)(w-x)

As examples, R1032, R2143, R3254 and R4365 in wedges
RR0..RR3 respectively all relate to L321.

There is also a simple relationship between the RRx wedges.
To obtain the corresponding Rcut one level below, just add 1
to each index.

B. Experimental mixed pipeline results over S3 = MP[S1,S2]

1) Liveness: S3 is live iff S1 is live and S2 is live.
2) Closure: L3 ∈ L and R3 ∈ R. Thus, as with arbitrary

length homogeneous pipelines, we will be able to specify
minimised arbitrary mixed pipelines as cuts from some
maxd.

3) Independence: The input cut R3 depends solely upon
input cuts R1 and R2. The output cut L3 depends solely
upon output cuts L1 and L2.
We have conducted exhaustive experiments to show
the independence of Lcuts and Rcuts for homogeneous
4phase pipelines, and for mixed 4phase pipelines over
all combinations of untimed and locally timed Lcuts and
Rcuts, i.e. for established current design practice.
Rider: Independence holds over all cuts in the illustra-
tive examples shown in Section VII (any many more
besides). Work is underway to verify these properties
over the full design space.



Independence means that given a mixed pipeline PIPEn
MP[S1, S2, ..., Sn] of n shapes, we may calculate the
Lcut of PIPEn from the Lcuts of the pipeline shapes only
and calculate the Rcut of PIPEn from the Rcuts of the
pipeline shapes only. We use the shorthand notation Lp =
L1.L2....Ln and Rp = R1.R2...Rn for these calculations.

4) Association: Assuming the Rider regarding cut inde-
pendence, Lcuts and Rcuts associate. For any Lcuts,
La, Lb, Lc (La.Lb).Lc = La.(Lb.Lc) and (Ra.Rb).Rc =
Ra.(Rb.Rc). Associativity facilitates composing mixed
pipelines in suitable chunks.

5) Identities: L321.Labc = Labc and Labc.L321 = Labc and
R1032.Rwxyz = Rwxyz and Rwxyz.R1032 = Rwxyz

Note that L321 and R1032 are locally timed cuts.

C. LTAB and RTAB

Assuming Lcut and Rcut independence, we can generate
tables LTAB and RTAB with dimensions 35×35 and 140×140
respectively instead of a single table of size 4900×4900.

L3 R3-

?

L1

L2

LTAB

-

?

R1

R2

RTAB

One may then calculate mixed pipeline specifications of
arbitrary length by iteration. As a simple example, consider
a mixed pipe of length 4: PIPE4 = MP [ SH1, SH2, SH3,
SH4 ] where shape SHn = Ln[1]Rn for n = 1..4. Then by
cut independence, the Lcut of PIPE4 may be calculated by
LTAB[LTAB[LTAB[1,2],3],4], in shorthand ((L1.L2).L3).L4;
or L1.(L2.(L3.L4)) by associativity ; or (L1.L2).(L3.L4) by
chunking two smaller pipelines. Similarly for the Rcut of
PIPE4.

V. THE CHARACTERISATION OF LTAB:L×L
In this section we examine the structure of the 35×35 LTAB

[Labc,Lxyz] looking for patterns that build insight and develop
them to yield a simple equivalent formula.

Table IV shows LTAB[Labc,Lxyz] in full. Each of its 35
rows are distinct. Four major patterns arise, namely VERTEX,
EDGE, FACE, and CENTROID, as set out in Table V.

Table V groups LTAB rows L100, L200, L300 together as
E01 and tells us that these three rows have only five distinct
Lcuts L000, L100, L200, L300, L400. However, each of these rows
has a different pattern, say P1 for L100, P2 for L200, and P3
for L300. If we parameterise these patterns, then EDGE rows
L100, L110, L111, ..., L441 have pattern P1; L200, L220,
L222, ..., L442 have pattern P2; and L300, L330, L333, ...,
L443 have pattern P3. The four FACE groups also boast just
three distinct parameterised patterns. This structure of four
vertices, six edges, four faces, and one centroid maps neatly
onto a tetrahedron, hence the terminology.

1) Labc ∈ VERTEXr: each entry in a VERTEX row Labc
is the corresponding Lcut Labc.

TABLE V
CLASSIFYING LCUTS IN LTAB

VERTEXr = Vr
EDGErs = Vr + Vs + Ers
FACErst = Vr + Vs + Vt + Ers + Ert + Est + Frst
CENTROID = all the Lcuts
where
V0 = { L000 }
V1 = { L400 }
V2 = { L440 }
V3 = { L444 }

E01 = { L100, L200, L300 }
E02 = { L110, L220, L330 }
E03 = { L111, L222, L333 }
E12 = { L410, L420, L430 }
E13 = { L411, L422, L433 }
E23 = { L441, L442, L443 }

F012 = { L210, L310, L320 }
F013 = { L211, L311, L322 }
F023 = { L221, L331, L332 }
F123 = { L421, L431, L432 }
CENT = { L321 }

2) Labc ∈ EDGErs: an entry in EDGE row Labc may be
a vertex Vr or Vs or any of the three entries in Ers.

3) Labc ∈ FACErst: each entry in FACE row Labc may
be from one of three vertices, three edges, or Frst.

4) Labc in CENTROID: every Lcut appears once echoing
Lxyz.

Notice that the VERTEXr rows contain indices constructed
from 0 or 4 only; the EDGErs rows contain indices
constructed from 0, 4 and one digit from {1,2,3}; the
FACErst rows contain indices constructed from 0, 4 and two
different digits from {1,2,3}. Only the CENTROID contains
indices constructed from 0, 4 and each of 1, 2, and 3. So one
can tell much of the variety in a row of LTAB by inspection.

A. LTAB formula

When we examined LTAB row by row, we found just six
interesting patterns (the vertex and centroid rows are trivial).
Our initial approach was to try to characterise each row of
LTAB separately. That is given LTAB[Labc, Lxyz] returns Lpqr,
fix abc, and seek a pattern for indices pqr in terms of the 35

TABLE VI
LPQR = LTAB[L322,LXYZ]: PER DISTINCT LPQR

Lpqr ⇐= [ Lxyz ] such that LTAB[L322, Lxyz] = Lpqr

L000 ⇐= [ L000 ]
L400 ⇐= [ L400 ]
L444 ⇐= [ L440, L441, L442, L443, L444 ]
L100 ⇐= [ L100 ]
L200 ⇐= [ L200 ]
L300 ⇐= [ L300 ]
L111 ⇐= [ L110, L111 ]
L222 ⇐= [ L220, L221, L222 ]
L333 ⇐= [ L330, L331, L332, L333 ]
L411 ⇐= [ L410, L411 ]
L422 ⇐= [ L420, L421, L422 ]
L433 ⇐= [ L430, L431, L432, L433 ]
L211 ⇐= [ L210, L211 ]
L311 ⇐= [ L310, L311 ]
L322 ⇐= [ L320, L321, L322 ]



TABLE IV
LTAB: LABC×LXYZ

L1\L2 L000 L100 L200 L300 L400 L110 L210 L310 L410 L111 L211 L311 L411 L220 L320 L420 L221 L321 L421 L222 L322 L422 L330 L331 L332 L333 L430 L431 L432 L433 L440 L441 L442 L443 L444

L000 L000 L000 L000 L000 L000 L000 L000 L000 L000 L000 L000 L000 L000 L000 L000 L000 L000 L000 L000 L000 L000 L000 L000 L000 L000 L000 L000 L000 L000 L000 L000 L000 L000 L000 L000
L100 L000 L000 L000 L000 L000 L000 L000 L000 L000 L100 L100 L100 L100 L000 L000 L000 L100 L100 L100 L200 L200 L200 L000 L100 L200 L300 L000 L100 L200 L300 L000 L100 L200 L300 L400
L200 L000 L000 L000 L000 L000 L100 L100 L100 L100 L100 L100 L100 L100 L200 L200 L200 L200 L200 L200 L200 L200 L200 L300 L300 L300 L300 L300 L300 L300 L300 L400 L400 L400 L400 L400
L300 L000 L100 L200 L300 L400 L100 L200 L300 L400 L100 L200 L300 L400 L200 L300 L400 L200 L300 L400 L200 L300 L400 L300 L300 L300 L300 L400 L400 L400 L400 L400 L400 L400 L400 L400
L400 L400 L400 L400 L400 L400 L400 L400 L400 L400 L400 L400 L400 L400 L400 L400 L400 L400 L400 L400 L400 L400 L400 L400 L400 L400 L400 L400 L400 L400 L400 L400 L400 L400 L400 L400

L110 L000 L000 L000 L000 L000 L000 L000 L000 L000 L110 L110 L110 L110 L000 L000 L000 L110 L110 L110 L220 L220 L220 L000 L110 L220 L330 L000 L110 L220 L330 L000 L110 L220 L330 L440
L210 L000 L000 L000 L000 L000 L100 L100 L100 L100 L110 L110 L110 L110 L200 L200 L200 L210 L210 L210 L220 L220 L220 L300 L310 L320 L330 L300 L310 L320 L330 L400 L410 L420 L430 L440
L310 L000 L100 L200 L300 L400 L100 L200 L300 L400 L110 L210 L310 L410 L200 L300 L400 L210 L310 L410 L220 L320 L420 L300 L310 L320 L330 L400 L410 L420 L430 L400 L410 L420 L430 L440
L410 L400 L400 L400 L400 L400 L400 L400 L400 L400 L410 L410 L410 L410 L400 L400 L400 L410 L410 L410 L420 L420 L420 L400 L410 L420 L430 L400 L410 L420 L430 L400 L410 L420 L430 L440

L111 L000 L000 L000 L000 L000 L000 L000 L000 L000 L111 L111 L111 L111 L000 L000 L000 L111 L111 L111 L222 L222 L222 L000 L111 L222 L333 L000 L111 L222 L333 L000 L111 L222 L333 L444
L211 L000 L000 L000 L000 L000 L100 L100 L100 L100 L111 L111 L111 L111 L200 L200 L200 L211 L211 L211 L222 L222 L222 L300 L311 L322 L333 L300 L311 L322 L333 L400 L411 L422 L433 L444
L311 L000 L100 L200 L300 L400 L100 L200 L300 L400 L111 L211 L311 L411 L200 L300 L400 L211 L311 L411 L222 L322 L422 L300 L311 L322 L333 L400 L411 L422 L433 L400 L411 L422 L433 L444
L411 L400 L400 L400 L400 L400 L400 L400 L400 L400 L411 L411 L411 L411 L400 L400 L400 L411 L411 L411 L422 L422 L422 L400 L411 L422 L433 L400 L411 L422 L433 L400 L411 L422 L433 L444

L220 L000 L000 L000 L000 L000 L110 L110 L110 L110 L110 L110 L110 L110 L220 L220 L220 L220 L220 L220 L220 L220 L220 L330 L330 L330 L330 L330 L330 L330 L330 L440 L440 L440 L440 L440
L320 L000 L100 L200 L300 L400 L110 L210 L310 L410 L110 L210 L310 L410 L220 L320 L420 L220 L320 L420 L220 L320 L420 L330 L330 L330 L330 L430 L430 L430 L430 L440 L440 L440 L440 L440
L420 L400 L400 L400 L400 L400 L410 L410 L410 L410 L410 L410 L410 L410 L420 L420 L420 L420 L420 L420 L420 L420 L420 L430 L430 L430 L430 L430 L430 L430 L430 L440 L440 L440 L440 L440
L221 L000 L000 L000 L000 L000 L110 L110 L110 L110 L111 L111 L111 L111 L220 L220 L220 L221 L221 L221 L222 L222 L222 L330 L331 L332 L333 L330 L331 L332 L333 L440 L441 L442 L443 L444
L321 L000 L100 L200 L300 L400 L110 L210 L310 L410 L111 L211 L311 L411 L220 L320 L420 L221 L321 L421 L222 L322 L422 L330 L331 L332 L333 L430 L431 L432 L433 L440 L441 L442 L443 L444
L421 L400 L400 L400 L400 L400 L410 L410 L410 L410 L411 L411 L411 L411 L420 L420 L420 L421 L421 L421 L422 L422 L422 L430 L431 L432 L433 L430 L431 L432 L433 L440 L441 L442 L443 L444
L222 L000 L000 L000 L000 L000 L111 L111 L111 L111 L111 L111 L111 L111 L222 L222 L222 L222 L222 L222 L222 L222 L222 L333 L333 L333 L333 L333 L333 L333 L333 L444 L444 L444 L444 L444
L322 L000 L100 L200 L300 L400 L111 L211 L311 L411 L111 L211 L311 L411 L222 L322 L422 L222 L322 L422 L222 L322 L422 L333 L333 L333 L333 L433 L433 L433 L433 L444 L444 L444 L444 L444
L422 L400 L400 L400 L400 L400 L411 L411 L411 L411 L411 L411 L411 L411 L422 L422 L422 L422 L422 L422 L422 L422 L422 L433 L433 L433 L433 L433 L433 L433 L433 L444 L444 L444 L444 L444

L330 L000 L110 L220 L330 L440 L110 L220 L330 L440 L110 L220 L330 L440 L220 L330 L440 L220 L330 L440 L220 L330 L440 L330 L330 L330 L330 L440 L440 L440 L440 L440 L440 L440 L440 L440
L331 L000 L110 L220 L330 L440 L110 L220 L330 L440 L111 L221 L331 L441 L220 L330 L440 L221 L331 L441 L222 L332 L442 L330 L331 L332 L333 L440 L441 L442 L443 L440 L441 L442 L443 L444
L332 L000 L110 L220 L330 L440 L111 L221 L331 L441 L111 L221 L331 L441 L222 L332 L442 L222 L332 L442 L222 L332 L442 L333 L333 L333 L333 L443 L443 L443 L443 L444 L444 L444 L444 L444
L333 L000 L111 L222 L333 L444 L111 L222 L333 L444 L111 L222 L333 L444 L222 L333 L444 L222 L333 L444 L222 L333 L444 L333 L333 L333 L333 L444 L444 L444 L444 L444 L444 L444 L444 L444

L430 L400 L410 L420 L430 L440 L410 L420 L430 L440 L410 L420 L430 L440 L420 L430 L440 L420 L430 L440 L420 L430 L440 L430 L430 L430 L430 L440 L440 L440 L440 L440 L440 L440 L440 L440
L431 L400 L410 L420 L430 L440 L410 L420 L430 L440 L411 L421 L431 L441 L420 L430 L440 L421 L431 L441 L422 L432 L442 L430 L431 L432 L433 L440 L441 L442 L443 L440 L441 L442 L443 L444
L432 L400 L410 L420 L430 L440 L411 L421 L431 L441 L411 L421 L431 L441 L422 L432 L442 L422 L432 L442 L422 L432 L442 L433 L433 L433 L433 L443 L443 L443 L443 L444 L444 L444 L444 L444
L433 L400 L411 L422 L433 L444 L411 L422 L433 L444 L411 L422 L433 L444 L422 L433 L444 L422 L433 L444 L422 L433 L444 L433 L433 L433 L433 L444 L444 L444 L444 L444 L444 L444 L444 L444

L440 L440 L440 L440 L440 L440 L440 L440 L440 L440 L440 L440 L440 L440 L440 L440 L440 L440 L440 L440 L440 L440 L440 L440 L440 L440 L440 L440 L440 L440 L440 L440 L440 L440 L440 L440
L441 L440 L440 L440 L440 L440 L440 L440 L440 L440 L441 L441 L441 L441 L440 L440 L440 L441 L441 L441 L442 L442 L442 L440 L441 L442 L443 L440 L441 L442 L443 L440 L441 L442 L443 L444
L442 L440 L440 L440 L440 L440 L441 L441 L441 L441 L441 L441 L441 L441 L442 L442 L442 L442 L442 L442 L442 L442 L442 L443 L443 L443 L443 L443 L443 L443 L443 L444 L444 L444 L444 L444
L443 L440 L441 L442 L443 L444 L441 L442 L443 L444 L441 L442 L443 L444 L442 L443 L444 L442 L443 L444 L442 L443 L444 L443 L443 L443 L443 L444 L444 L444 L444 L444 L444 L444 L444 L444
L444 L444 L444 L444 L444 L444 L444 L444 L444 L444 L444 L444 L444 L444 L444 L444 L444 L444 L444 L444 L444 L444 L444 L444 L444 L444 L444 L444 L444 L444 L444 L444 L444 L444 L444 L444

xyz from the cuts appearing in row Lwyz. Table VI considers
FACE row L322 of LTAB and displays its 15 possible distinct
Lcuts in its left column headed Lpqr and on the right, those
Lxyz cuts which map to it. Table VI lists the pattern found for
each row in LTAB listed as row → pattern.

The L322 pattern is simple: pqr = xyy. We now apply this
technique to all 35 rows of LTAB. Table VII supplies the KEY
to unlock generality. By inspection, we now have a single
formula that fits all rows Labc in LTAB.

TABLE VII
ROW BY ROW FORMULAE FOR LTAB

KEY: [ 0 → 0, 1 → z, 2 → y, 3 → x, 4 → 4 ]

L000 → L000 L100 → Lz00 L200 → Ly00 L300 → Lx00 L400 → L400
L110 → Lzz0 L210 → Lyz0 L310 → Lxz0 L410 → L4z0
L111 → Lzzz L211 → Lyzz L311 → Lxzz L411 → L4zz

L220 → Lyy0 L221 → Lyyz L222 → Lyyy
L320 → Lxy0 L321 → Lxyz L322 → Lxyy
L420 → L4y0 L421 → L4yz L422 → L4yy

L330 → Lxx0 L331 → Lxxz L332 → Lxxy L333 → Lxxx
L430 → L4x0 L431 → L4xz L432 → L4xy L433 → L4xx

L440 → L440 L441 → L44z L442 → L44y L443 → L44x L444 → L444

In LTAB[Labc,Lxyz] ⇒ Lpqr, [ 0, z, y, x, 4 ] provides the range
of indices in Lpqr1 and [ a, b, c ] provides the selectors to pick
p, q, r from the range. Hence the formulae quoted below can
be used instead of LTAB:

LTAB[Labc, Lxyz] = PICK [ a, b, c ] [ 0, z, y, x, 4 ]

As examples,

1The sequence 0, z, y, x, 4 is monotonically increasing.

LTAB [ L322, L300 ] = PICK [ 3, 2, 2 ] [ 0, 0, 0, 3, 4 ] returns L300
LTAB [ L322, L211 ] = PICK [ 3, 2, 2 ] [ 0, 1, 1, 2, 4 ] returns L211
LTAB [ L322, L431 ] = PICK [ 3, 2, 2 ] [ 0, 1, 3, 4, 4 ] returns L433

VI. THE CHARACTERISATION OF RTAB:R×R
In this section, we examine the structure of the 140×140

RTAB [Rabcd, Rwxyz]. In order to build upon the insights
generated in the previous section, we introduce a change of
Rcut notation that relates closely to the Lcut notation (it uses
exactly the same cut indices as the Lcuts) and made the initial
exploratory work much easier. It is simple to swap between
the two Rcut notations.

TABLE VIII
MIXED RCUT CHARACTERISTICS

Wedge Extent Corner points Size

LL T5..T1 L000 L400 L444 35

RR0 T5..T1 R0000 R0040 R4044 35
RR1 T5..T1 R1111 R1151 R5155 35
RR2 T5..T1 R2222 R2262 R6266 35
RR3 T5..T1 R3333 R3373 R7377 35

W T5..T1 W000 W400 W444 35
X T5..T1 X000 X400 X444 35
Y T5..T1 Y000 Y400 Y444 35
Z T5..T1 Z000 Z400 Z444 35

The four cuts R1032, R2143, R3254, R4365 lie on wedges
RR0, RR1, RR2, RR3 respectively in identical positions (the



centroid of their respective T4 triangles). Informally we move
from one cut to the next by simply incrementing its indices
wxyz by one each. All Rcuts in wedge RR0 have a zero x
index: Rw0yz. Suppose we rotate the indices from Rw0yz to
R0yzw. We may then associate the 0 with R (R0)yzw. The
typography is easier to handle if we change the wedge names
to single letters W, X, Y, Z resulting in W321, X432, Y543 and
Z654. If in addition, we decrement all X indices by 1, all Y
indices by 2, and all Z indices by 3, the cuts become W321,
X321, Y321, Z321. In this notation, the L, W, X, Y, Z lattices
have identical structures and identical indices, as indicated in
the third level of Table VIII. To move from one R lattice level
to another we merely change its wedge indicator. We use this
more mathematical notation when relating LTAB and RTAB,
and the RR notation for pipeline experiments. It is easy to
convert between the two notations.

RTAB has 19600 elements, too large to be tackled without
structuring. We chose to partition RTAB in terms of wedges
(W, X, Y, Z) rather than (RR0, RR1, RR2, RR3) as it
made the initial visual search for patterns much easier. It
is simple to switch between these notations if using the
4-index Rwyxz on practical problems. When partitioned as
(W,X,Y,Z)×(W,X,Y,Z), RTAB splits naturally into 16 35×35
blocks we label as shown in Figure 15.
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Fig. 15. Complete WXYZ RTAB transformations

Figure 15 is marked with labelled arrows between blocks.
Each arrow represents a transformation (basically a row per-
mutation) between adjacent blocks. For ease of diagramming,
the blocks in column 5 repeat those of column 1, and the
blocks in row 5 repeat those of row 1, so the figure is a flat
representation of doughnut (toroidal) structure.

There is a simple isomorphism between LTAB and WW.
Given the function LtoW which takes Lcut Labc and returns

Wabc, then WW is the transpose of LTAB with LtoW applied
to every element: WW = APPLY LtoW (TRANSPOSE LTAB).

The four 35×140 row blocks, WW..WZ. XW..XZ, YW..YZ,
ZW..ZZ are also simply related. Displacing each element in
WW..WZ by incrementing its wedge indicator and leaving its
indices untouched returns row blocks XW..XZ and so on.

Hence we are left with the simpler task of formulae for just
WW, WX, WY, and WZ.

TABLE IX
LABELS FOR THE 140 DISTINCT ROWS OF RTAB

W000 , W100 , W200 , W300 , W400 , W500 , W110 , ... , W444
X000 , X100 , X200 , X300 , X400 , X500 , X110 , ... , X444
Y000 , Y100 , Y200 , Y300 , Y400 , Y500 , Y110 , ... , Y444
Z000 , Z100 , Z200 , Z300 , Z400 , Z500 , Z110 , ... , Z444

Consider HEX = WW ++ WX ++ ... ++ ZZ. Then HEX
has the full 19600 members of RTAB now arranged as 560
rows each of length 35. In each of these 560 rows, the entries
in each row belong to the same W, X, Y or Z wedge. There
are 140 distinct such rows, each of which occurs exactly four
times. As with LTAB, they have a straightforward labelling
which corresponds to their entry in the column labelled
W321/X321/Y321/Z321 (only one of these tags will arise). Each of
the 16 hexes has 35 rows. As labelled in Table IX, each distinct
index will appear once in each hex, but may be associated with
wedge W or X or Y or Z.

A. RTAB formulae

It suffices to generate PICK based formulae for WW, WX,
WY, and WZ. Here we detail the formulae for WW and WX.

1) Case WW: In the WW block, all Rcuts belong to the
W wedge. We first examined WW row by row, looking for
a formula, but this time in PICK notation. For Rcuts, Wabc
gives the range and Wxyz gives the cut choices: to be expected
since WW is the transpose of LL.

We require that PICK extracts pqr and the appropriate
wedge W, X, Y, Z for the result. Here are 4 examples taken
from rows W110, W210, W311, and W432 of WW; followed
by their generalisation. We remind you that PICK selects from
columns encoded 0..4. In the 4 examples, we use WPICK as
a reminder of the wedge expected.

In this and the next two tables, we save space by using
Wabc.Rxyz to abbreviate RTAB[Wabc,Rxyz].

WW block: RTAB[Wabc,Wxyz]

W110.Wxyz = WPICK [ x, y, z ] [ 0, 0, 1, 1, 4 ]
W210.Wxyz = WPICK [ x, y, z ] [ 0, 0, 1, 2, 4 ]
W311.Wxyz = WPICK [ x, y, z ] [ 0, 1, 1, 3, 4 ]
W432.Wxyz = WPICK [ x, y, z ] [ 0, 2, 3, 4, 4 ]

Wabc.Wxyz = PICK [ x, y, z ] [ 0, c , b, a , R ]
where R = 4

Above, R denotes the appropriate wedge for the resulting
Rcut Rpqr. This detail generalises to all formulae if we encode
R with (W, 4 or 0), (X, 3), (Y, 2), (Z, 1).



WX block: RTAB[Wabc,Xxyz]

W310.Xxyz = WPICK [ x, y, z ] [ 0, 1, 3, 4, 4 ]
[ c, b, a, W , 4 ]

W311.Xxyz = XPICK [ x, y, z ] [ 0 , 0 , 2, 3 , 4 ]
[ c-1, b-1, a-1, X , 4 ]

W322.Xxyz = YPICK [ x, y, z ] [ 0, 0, 1, 2, 4 ]
[ c-2, b-2, a-2, Y , 4 ]

W333.Xxyz = ZPICK [ x, y, z ] [ 0, 0, 0, 1, 4 ]
[ c-3, b-3, a-3, Z , 4 ]

Wabc.Xxyz = PICK [ x, y, z ] [ 0, b-c, a-c, R, 4 ]
where R = 4-c

2) Case WX: Note the second Rcut is always some Xxyz.
For this example, we consider Wabc rows W310, W311,
W322, and W333. Their respective abc indices occur in range
columns 2, 1, 0 respectively but appear as c-c, b-c, a-c, so that
the first range index is always zero. We have annotated each
range with its interpretation on the line below. Notice that the
wedge level is defined by the c index of Wabc.

3) Formulae for WW, WX, WY, and WZ: The remaining
block formulae for WY and WZ follow the pattern laid down
for WY and WX in that it is possible for PICK to extract the
appropriate wedge as well as its indices for every entry these
subtables.

With the definition: m⊗n = if m<n then 4+(m-n) else m-n,
the formulae for each block in the top row of RTAB are:

Wabc.Wxyz = PICK [ x, y, z ] [ 0, c, b, a, R ] with R = 4
Wabc.Xxyz = PICK [ x, y, z ] [ 0, b⊗c, a⊗c, R, 4 ] with R = 4-c
Wabc.Yxyz = PICK [ x, y, z ] [ 0, a⊗b, R, c⊗b, 4 ] with R = 4-b
Wabc.Zxyz = PICK [ x, y, z ] [ 0, R, c⊗a, b⊗a, 4 ] with R = 4-a

We now have formulae for every entry in the top row block
WW..WZ. It is a simple matter to use these 4 formulae to
calculate the entries in the remaining row blocks given the
simple (vertical) relationship between them.

A simple way of working with 4 index Rcuts, is to convert
them to 3 index notation, use the above formulae, and then
convert the back to 4 index notation.

VII. APPLICATION: CALCULATING MIXED PIPELINES

We now present case studies. The following four are each
over mixed pipelines of depth 8.

MP [ S1, S2, S3, S4, S5, S6, S7, S8 ]

Each case is tabulated over five lines. The results are given in
the tables below, depth by depth, as the pipelines grow. Per
column n, lines one and two give Ln and Rn, the Lcut and
Rcut of shape Sn = Ln[1]Rn added to the pipe at depth n.
Lines 3..5 give the Lcut, state size, and Rcut of the mixed
pipeline at this depth.

The first two cases use the same Lcut sequence and demon-
strate the claim that Lcuts work independently as we use the
same Lcut sequence in both cases.

The Lcut sequences contain no untimed cuts, 3 locally timed
cuts, and 5 architecturally timed cuts and serve to support the

CASE 1:
SH.Lcuts [ L320, L331, L322, L210, L310, L311, L211, L221 ]
SH.Rcuts [ R1132, R2032, R1142, R0032, R2132, R1031, R2133, R1033 ]
LP.Lcuts [ L320, L330, L330, L220, L110, L110, L110, L110 ]
LP.size [ 20 34 47 65 83 99 112 128 ]
LP.Rcuts [ R1132, R2132, R2252, R2252, R2252, R2252, R2255, R2255 ]

CASE 2:
SH.Lcuts [ L320, L331, L322, L210, L310, L311, L211, L221 ]
SH.Rcuts [ R0021, R3143, R0031, R1143, R1021, R2142, R1022, R2144 ]
LP.Lcuts [ L320, L330, L330, L220, L110, L110, L110, L110 ]
LP.size [ 24 34 52 68 90 106 126 134 ]
LP.Rcuts [ R0021, R2042, R0042, R0044, R0040, R0040, R0000, R0044 ]

claim for Lcut independence. The Rcuts are equally varied and
each is of full capacity.

Since the state size of max8 is 144, it is straightforward to
check that the final pipelines are L110[8]R2255 and L110[8]R0044

respectively.

CASE 3:
SH.Lcuts [ L000, L000, L000, L000, L000, L000, L000, L000 ]
SH.Rcuts [ R2222, R2143, R2243, R3254, R2155, R3265, R4365, R4444 ]
LP.Lcuts [ L000, L000, L000, L000, L000, L000, L000, L000 ]
LP.size [ 24 36 48 56 64 68 72 72 ]
LP.Rcuts [ R2222, R2262, R2266, R2222, R2266, R2262, R2222, R2222 ]

CASE 4:
SH.Lcuts [ L000, L000, L000, L000, L000, L000, L000, L000 ]
SH.Rcuts [ R4444, R4365, R3265, R2155, R3254, R2243, R2143, R2222 ]
LP.Lcuts [ L000, L000, L000, L000, L000, L000, L000, L000 ]
LP.size [ 16 20 24 36 44 56 68 80 ]
LP.Rcuts [ R4444, R4044, R0044, R4044, R0040, R0044, R4044, R0000 ]

In cases 3 and 4, we have chosen Rcuts of full and half
capacity, and then three pairs from (3/4, 1/4), (1/2, 1/2) and
(2/3, 1/3) but in jumbled order. In both cases, the depth of the
resulting mixed pipelines is four. To aid in seeing how these
pipelines grow, we have used Lcut L000 only.

Since the state size of max4 is 80, it is straightforward to
check that the final pipelines are L000[4]R2222 and L000[4]R0000

respectively.

A. Bookending

Since L000 is a vertex cut, its corresponding row in LTAB
(see Figure IV) contains only L000 entries and the column
corresponding to R0000 in RTAB contains only R0000 entries.
A simple way of bookending (Figure 12 would be to prefix and
postfix a timed pipeline by max0. As an example, we apply
this to CASE1, but show only the Lcut and Rcut sequences:

CASE1B:
SH.Lcuts [ L000, L320, L331, L322, L210, L310, L311, L211, L221 L000 ]
SH.Rcuts [ R0000, R1132, R2032, R1142, R0032, R2132, R1031, R2133, R1033 RR0000 ]
LP.Lcuts [ L000 L000, L000, L000, L000, L000, L000, L000, L000, L000 ]
LP.Rcuts [ R0000, R0000, R0000, R0040, R0040, R0040, R0040, R0044, R0044 R0000 ]

Note that although the above pipeline contains 10 stages, it
minimises to max8. Other methods of converting CASE1 to
an untimed interface would be to change the first Lcut from
L320 to L000 and the last Rcut from R1033 to R0000.

We have conducted our experiments in CCS [14]. Shapes
are expressible directly in CCS and easy to map into pipelines.
CCS has a reliable public domain tool support, the CWB
(Concurrency Workbench [15]), with built-in minimisation
to the smallest equivalent state machine and the powerful
modal µ-calculus property checking notation [20]. Both these



attributes were necessary. The cases above were all mapped
into CCS and run on the CWB. In each case, the LTAB/RTAB
formulae predictions were confirmed.

B. Implementation

The final case study implements two 5-deep homogeneous
pipelines and a 5-deep mixed pipeline following Figure 12.
The LT and UT designs implement the L300[1]R3044 burst-
mode [5] and L220[1]R0044 delay-insensitive protocols respec-
tively. Both controllers are built using five static gates. The
designs were synthesized using Petrify and Design Com-
piler, implemented to 65nm layout using Cadence EDI, and
compared for power and performance using ModelSim and
PrimeTime. The results of the design are shown below:

Cycle Forward Ave. Energy
Design Time Latency Per Stage

LT 345ps 111ps 893fJ
UT 458ps 114ps 549fJ
Mixed 410ps 114ps 710fJ

The delay-insensitive protocol is 33% slower than the burst-
mode controller, but also expends 39% less energy. The mixed
pipeline degrades performance over the pure LT pipeline, but
is only 19% slower, and expends 20% less energy. More
significantly, the burst-mode timing that results in increased
performance is hidden inside the mixed pipeline. The UT
controllers at the ends of the mixed pipeline present a robust
delay-insensitive interface to the rest of the system with no
relative timing assumptions, increasing modularity.

VIII. SUMMARY

Here we present new experiment-based results on the struc-
ture of the complete 4phase family and the patterns of its
design space culminating in succinct methods for calculating
the behaviour of mixed linear pipelines of arbitrary depth.

The patterns arising have suggested algorithmic rules
for predicting the behaviours of mixed and homogeneous
pipelines. New 4phase patterns herein described include: com-
plete lattices for L and R cuts and hence the complete
design space as L×R; a uniform way of expressing and
relating the cut lattices; the seven item full..null range of shape
capacities; a practical exploration of 4phase mixed pipelines;
clarification of the mathematical structures behind mixed
pipelines; functions for mapping lattices between L and R
cuts; and the development of a concise and transparent method
of calculating the behaviour of mixed pipelines in terms of
protocol concurrency and storage capacity. Demonstrations of
the latter’s practical use were given by tested examples.
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