Automatic Synthesis of Fast Compact Asynchronous Control Circuits
Al Davis, Bill Coates, and Ken Stevens

Hewlett-Packard Laboratories, P.O. Box 10490, Palo Alto, CA 94303, USA

Abstract

A tool called MEAT is presented which automatically synthesizes transistor level,
CMOS, asynchronous control circuits from finite state machine based specifications.
MEAT has been used to synthesize the control circuits for an asynchronous 300,000
transistor communication coprocessor.

Keyword Codes: B.6.1; B.6.3; B.7.2
Keywords: Logic Design, Design Styles, Design Aids; Integrated Circuits, Design Aids

1 Introduction

Design time is heavily influenced by the quality of the design tools. Until recently
little in the way of CAD support has been available to the asynchronous designer. MEAT
is a tool which synthesizes high performance control circuits in the form of a CMOS tran-
sistor schematic from finite state machine based specifications. The finite state machine
basis was chosen since it is a common and familiar method. The result is that an ex-
perienced synchronous circuit designer will notice a minor conceptual shift in order to
use MEAT in the creation of an asynchronous design. MEAT is by no means complete
or totally original. Prior to getting into the details, it is worthwhile to characterize the
terminology and the design space.

Notational Comment: We use the terms asynchronous and self-timed synonymously.
All asynchronous styles are fundamentally concerned with the synthesis of hazard free
circuits under some timing model. DI (delay-insensitive) circuits exhibit hazard free
behavior with arbitrary delays assigned to both the gates and the wires, and SI (speed-
independent) circuits are hazard free with arbitrary gate delays but assume zero wire
delays.

There are a large number of rather different design styles in today’s asynchronous
design community. One partition of design styles can be based on the type of asyn-
chronous circuit target: locally clocked [13,8], delay-insensitive [3,21], or various forms
of single- and multiple- input change circuits [19]. Yet another distinction can be made
on the nature of the control specification: graph based [22,4], programming language
based [3,21,1], or finite state machine based [13,8]. For the finite state machine based

styles, there is a further distinction that can be made based on the method by which
state variables are assigned [9,17]. The design style space is large and each design style
has its own set of merits and demerits.

The methods which produce delay-insensitive circuits, while not perfect [2], are the
most tolerant of variations in device and wire delays. We chose to slightly expand the
domain of timing assumptions which must remain valid to retain hazard free implemen-
tation since this permits higher performance implementations at the expense of reduced
operational tolerance. Our view is motivated by the reality that our designs have to meet
certain performance requirements. For any given layout and fabrication process, we have
models which predict the speeds of the wires and transistors for the desired operational
window. We also know the percentage of error that can be tolerated in those predictions.
We could not live with arbitrary delays for performance reasons and MEAT has therefore
been designed to insure hazard free operation under sets of timing assumptions that can
be verified as being within acceptable windows of fabrication and operational tolerance.

In order to achieve the necessary hazard free asynchronous finite state machine
(AFSM) implementation, it is necessary to place constraints on how their inputs are
allowed to change. The most common is the single input change or SIC constraint [19].
SIC circuits inherently require state transitions after each input variable transition. In
cases where the next interesting behavior is in response to multiple input changes, the
circuit response will be artificially slow, either due to too many state transitions or
due to the external arbiters required to sequence the multiple inputs. Multiple input
change or MIC circuit design methods have been developed [19,5] but either required
input restrictions or implementation techniques that were unsuitable for our purposes.
Consequently we developed the burst-mode design style which permits constrained MIC
signalling, and our implementation method does not require performance inhibiting local
clock generation or flip-flops.

Informally burst-mode state machines are Mealy machines which respond to an input
burst by making a state change and producing an output burst. As with SIC AFSM’s,
there is an implicit fundamental mode assumption which requires that the AFSM be
given sufficient time to stabilize prior to the arrival of another input burst. In practice,
this is not a severe constraint, as often some variable in the output burst enables the
subsequent input burst. More specifically an input burst is the transition of all of a set
of input variables. These signals must always change in a known trajectory, going either
high or low as indicated in the specification, but may change in any order and at any
time. A specification is illegal, if from any given state there are two exit paths one of
which is a proper subset of the other. It is also illegal to specify a state machine machine
where a given variable is not required to strictly alternate trajectory directions. The work
of Ken Yun and Steve Nowick [13,12] provides other burst-mode synthesis methods.

This paper presents the MEAT synthesis tool, which has proven its ability to greatly
reduce design time while also generating compact, high-performance, asynchronous cir-
cuits. MEAT synthesizes a verifiably correct, hazard free implementation of the design
to produce a complex gate CMOS transistor level schematic. A complex gate is a fully
complementary CMOS function which implements the sum of products equations that

describe the implementation. MEAT has been used to develop a control intensive mul-
ticomputer communication chip called the Post Office [15]. The Post Office contains
300,000 transistors and has an area of 11 x 8.3 mm in the 1.2 micron MOSIS CMOS

process.

2 MEAT - a Tool for Control Circuit Synthesis

Asynchronous circuits are specified for MEAT as a burst-mode Mealy state ma-
chine. This style of specification provides a powerful way to encapsulate concurrency,
communication, and synchronization in a natural manner. Burst-mode state diagrams
are reasonably compact when compared to petri-nets, m-nets, STG’s, and other graphical
representations. These diagrams work well for transition (2 cycle) or level-mode (4 cy-
cle) signalling protocols. The first automated task performed by MEAT is to generate a
primitive flow table [19] from the textual AFSM specification. This is a two-dimensional
array structure which captures, in a more detailed form, the behavior represented by
the state diagram. Each row of this table represents a node in the state diagram; each
column represents a unique combination of input signals. Each entry in the table thus
represents a position in the possible state space of the FSM.

For each entry, the value of the output signals and the desired next state may be
specified. If a next-state value is the same as that of the current row, the state machine
is said to be in a stable state. If the next-state value specifies a different row, the table
entry represents an unstable state. A simple way of understanding the flow table is to
note that horizontal movement within a row represents changes in the values of input
signals, while vertical movement within a column represents a state transition. All of our
specifications are given in normal form, that is, each unstable entry in the table must
lead directly to a stable state.

Each allowed input burst will result in a particular path through the FSM state-
space, starting at the stable entry where the burst begins. Other entries in the same
row may be visited during the course of the input burst. In order for MIC behavior
to be correctly represented, it must be guaranteed that the circuit will remain stable in
the initial row until the input burst is complete. This is an important point and is a
cornerstone of the burst-mode methodology. In essence, any minterm formed from input
variables which can be reached during the course of an input burst must be covered by a
stable entry in the flow table. The minterm defined by the completion of the burst will
correspond to an unstable state which will cause a transition to the target row and fire
the output burst.

The output burst, if any, may occur concurrently with the state change, or can be
constrained to happen after the state change has occurred. To allow the flexibility for
the later synthesis stages to choose either option, signals in the output burst are labeled
as don’t cares in the unstable exit state of the flow table. Since all state transitions are
STT Single Transition Time — implies that each state variable will change at least once,
the monotonicity of output voltage changes is guaranteed, regardless of whether the value

of a given transitioning output in an unstable entry is mapped to logic level zero or one.

Any entry in the flow table not reachable by any allowed sequence of input bursts
is labeled as a don’t care and can take on any value for the outputs or next-state values.
For output bursts, it is not immediately evident which values will lead to the simplest
circuit. Therefore, the assignment of specific values to the don’t care entries is deferred
for as long as possible. The inclusion of these don’t cares can significantly simplify state
reduction and boolean minimization, and also lead to more compact circuits.

The next step in the design process is to attempt to reduce the number of rows in
the flow table by merging selected sets of two or more rows into one while retaining the
specified behavior. This involves first calculating the set of maximal compatible states.
The set of maximal compatibles consists of the largest sets of state rows which can
be merged, which are not subsets of any other such set. There may be various valid
combinations of the maximal compatibles that can be chosen to produce a reduced table
with the same behavior.

This is essentially the well-known state-reduction problem; unfortunately complica-
tions are introduced due to the MIC nature of the input bursts. “Traditional” methods
normally apply only to SIC circuits, and when used for our burst-mode specifications
may produce hazards in the final implementation.

Nowick et. al.[11] have developed the modifications necessary to the state-reduction
and subsequent synthesis steps to guarantee that the resulting implementation will be
hazard-free under burst-mode conditions. These modifications are not presently incorpo-
rated into MEAT. Currently we use a verifier [6] on the synthesized implementation. The
verifier has been modified to operate with explicit timing assumptions. Hazards detected
in the implementation are then reviewed to see if the circuit would exhibit correct be-
havior under reasonable delay assumptions. If these assumptions fall within acceptable
bounds of fabrication and operational constraints then the timing assumption is entered
into the verifier. If an unacceptable assumption is required then the circuit is fixed either
by manual repair or by modifying the state-machine specification. The manual repair
usually involves the addition of appropriate inverter chain to delay the race critical path.

The final choice of minimized states is an example of the binate covering problem.
There are three constraints on this choice. First, and obviously, only compatible states
may combined (compatibility constraint). Second, each state in the original design must
be contained in at least one of the reduced states (completeness constraint). Third,
selecting certain sets of states to be merged may imply that other states must also be
merged (closure constraint). Grasselli and Luccio [7] have developed a tabular method
for determining a closed cover of states, which is also in the process of being incorporated
into MEAT. At present, MEAT requires the user to manually determine and enter a state
covering. If any of the necessary constraints are not satisfied, MEAT will inform the user
that the covering is invalid.

A new flow table representing the behavior of the minimized FSM is then generated
by merging the specified rows of the original flow table. It should be noted that it is not
always true that minimizing the number of states will simplify the hardware or increase

performance. However, a reduced state machine can result in fewer state variables which
in most cases does indeed result in a smaller and faster implementation.

A set of state variables must then be assigned to uniquely identify each row of the
reduced flow table. These state variables are used as feedback signals in the final circuit.
In contrast to synchronous control logic design, state codes may not be randomly assigned,
but must be carefully chosen to prevent races. The MEAT state assignment algorithm
is based on a method developed by Tracey[17]. The Tracey algorithm has the advantage
that it produces STT state assignments which minimizes delay in the implementation.
In cases where two or more state variables must change value when transitioning to a
new state, all variables involved are allowed to change concurrently, or race. It must be
guaranteed that the outcome of the race is independent of the order in which the state
variables actually transition in order to produce a non-critical race which exhibits correct
asynchronous operation. Several valid assignments may be produced, and each will be
passed to the next stage for evaluation. Each state assignment will result in a unique
implementation.

After state codes are assigned, the next synthesis stage computes a canonical sum
of products boolean expression for each output and state variable. A modified Quine-
McCluskey minimization algorithm is used. The resulting expression includes all essential
prime implicants, and possibly other prime implicants and additional terms necessary to
produce a covering free of logic hazards. It may be possible for each output or state
variable to be specified using several alternate minimal equations. The large number of
don’t care entries typically present in the flow table causes the standard algorithm to be
rather inefficient and increases the likelihood that more than one minimal expression will
be found. The MEAT implementation contains optimizations for don’t care dominant
functions. Each possible solution is given a heuristic “weight” that indicates the expected
speed and area cost of implementation using complex CMOS gates. When multiple state
assignments have been produced in the previous step, the total weight of each unique SOP
(sum of products) equation is then used to choose between the various instantiations.

The minimized equations produced in the previous step are then used to automat-
ically generate transistor netlists (suitable for simulation) and a schematic. The com-
plementary nature of CMOS n-type and p-type devices is exploited to generate a single,
complex, static gate through simple function preserving transformations. These transfor-
mations can increase performance while reducing the area and device count. As a SOP
equation is folded into a complex gate, the number of logic levels required to generate the
output can be reduced. If the function is too large to be implemented as a single module,
it can easily be broken up into a tree of complex gates with 2 or more logic levels, but
better overall performance. Typical state machine implementations have response times
between 3 and 5 2-input NAND gate delays.

Our complex gate design generates negative logic outputs (low voltage levels for
asserted signals). A convention of positive logic levels is assumed for all signals external
to the state machine, requiring that the outputs be inverted. This is a performance
feature, since sizing the final inverter to match the specific load can be used to reduce
rise and fall times. When outputs need to drive a large load, a buffer tree can be used.

It is important to note that while the verifier searches for hazards on the AND/OR logic
equations produced by MEAT, the netlist complex gate synthesis is done in a manner
which does not introduce new hazards.

All state machines also require a reset signal to place the storage logic into the correct
initial state. Storage in these state machines is implemented via the state variables. If a
single complex gate is used to generate the output, the state storage is reset by NOR-ing
the output with the reset line. For complex gate trees, a resetable NAND gate is used.
Although the performance of the NOR gate is not optimal, the load on the feedback lines
is local to the state machine and typically small so large gain is not required.

3 Design Issues and Examples

Rather than presenting a series of complex designs, we will present a number of
design vignettes which illustrate interesting points in the design space, and an example

of MEAT usage.

3.1 Using Burst-Mode to Increase Performance

Burst-mode assumes that inputs and outputs are generated as discreet sets, or bursts.
In general, this violates delay-insensitive and speed-independent assumptions. For ex-
ample, assume that an input burst has completed, and the resulting output burst causes
several outputs to be generated. One of the outputs could be generated before the oth-
ers. This output can be received by a destination module which could in turn generate
an output which is fed back as an input to the original module even before the rest of
the outputs have been generated. This violates burst-mode operation as the next input
burst has occurred before the previous output burst has completed. Burst-mode assumes
that all outputs in the burst must be generated before the environment can respond to
the output burst or computation interference may occur. The cases where computation
interference can occur can be flagged and checked by circuit timing analysis.

If an input burst changes an internal state variable, speed-independent operation
will generally require the state variable to stabilize before the output can be changed.
Performance can be improved if outputs can change concurrently with state changes.
MEAT accomplishes this by making the transitioning output a don’t care in the unstable
exit point of a row in the flow table. This places a priority on logic minimization, but
usually will produce a circuit which can generate an output concurrent with state changes.
The fundamental mode assumption guarantees that the AFSM is ready to accept the next
input burst when it arrives, as the state variable transition has completed and the logic
has stabilized. Unger has shown that it is possible to improve on this model [18], although
his method is not presently incorporated into MEAT.

]

—‘ X ——=Trigger — Stat e Qut put Driver =2

St ate Machi ne))
MEAT St ate Machi ne Logic Bl ocks

Figure 1: State Machine Generation

3.2 When Speed-Independent Circuits Fail: The Isochronous
Fork

The performance enhancing local timing assumptions that MEAT supports are best
exploited when they are constrained to a fixed physical extent, as is the case with in-
dividual AFSM modules. Hierarchical composition of these modules can then proceed
under delay-insensitive rules since all of the external interfaces should be designed avoid
timing assumptions. Inside an AFSM, the relative delay of wires and gates can be more
easily controlled, analyzed, and modified as the constraints are all local. When these
timing assumptions apply outside an individual module then the entire system must be
analyzed to assure compliance with the timing assumption set. If this were the case, then
there would be little to distinguish the circuit from a synchronous one.

A common performance and synthesis assumption made by many asynchronous cir-
cuit designers is that of speed-independence. The assumption that wire delay is zero
leads to the isochronous fork assumption. This implies that multiple devices driven by
a single component react to the signal change at approximately the same time. This
model works well for situations where the transistors are slow and the paths are fast.
Unfortunately this model becomes less valid as IC technology progresses and is certainly
suspect even today.

Furthermore, whenever the rise or fall time of an isochronous fork is greater than
the switching delay of any physical device, failure may occur due to variances in switch-
ing thresholds. Noise, long wires, and high-capacitance paths exacerbate the problem.
Within a particular AFSM module, this problem can be managed successfully but be-
tween modules it is difficult. Martin [10] and Van Berkel [20] have both described circuit
failures due to paths which did not behave in an isochronous fashion. Both failures were
the result of using C-elements in module interfaces. C-elements inherently contain an
isochronous fork. Namely the output of the C-element will be an output of the module
as well as being fed back locally to maintain the C-element’s state.

The philosophy we have used in the MEAT tool and in the design of our circuits is
to remove isochronous forks from external interfaces. MEAT state machines are imple-
mented as shown in Figure 1. Our philosophy is that we would rather increase the cost
and difficulty of designing modules if it can simplify the composition of systems. Timing
assumptions are always easier to analyze and fix in a small, local cell rather than across

a series of modules. Systems are hard to design and low-level modules are relatively easy.
If by making the module design harder, it becomes easier to do the inherently complex
task then the overall difficulty is reduced.

The trigger box has two functions. First, high capacitance inputs (inputs with a slow
rise time) will be passed through an inverter or Schmitt trigger. This will reduce the load
on the input line, which can increase circuit performance. It also results in crisp rise and
fall times of signals internal to the AFSM. Secondly when an unasserted input signal is
required by the state or output boxes, the trigger box will invert that signal. Each input
will have its inverted and uninverted signal shared among all function blocks in the state
machine to eliminate hazards and create a smaller implementation. While this method
does not remove the isochronous forks, it does permit them to be localized. In this case
the isochronous forks created by sharing the inverters are easily controlled within the
AFSM domain. Components within a particular AFSM are physically close. Hence wire
delays of the internal signals and the trigger box delay are normally insignificant.

The driver block is used to generate positive output voltage levels and to increase the
signal strength when the output is heavily loaded. Circuit performance is enhanced since
it is sized to drive its output load appropriately. Isochronous forks in MEAT will only
exist when a state variable is used directly as an output. In such cases, the output can be
buffered by one or two inverters to assure the fork is isolated within the AFSM. While this
decreases the performance of the circuit, the module can function in a delay-insensitive
manner and can be safely used without analyzing it’s load in a broader context.

This design style has been tested continuously over the last five years. We have
designed several large asynchronous circuits which have generally worked the first time,
merely using simulators to verify correct composition of the modules. The result of this
experience has led to a high confidence factor in the method.

3.3 An AFSM example

In order to illustrate exactly what MEAT does, we will transcribe an actual synthesis
run using MEAT to create a Post Office state machine called the SBUF-SEND-CTL. The
behavior is initially specified as a burst-mode AFSM as shown in Figure 2. This example
is taken from the suite of Post Office state machines publicly available for use by other
researchers [14,13]. The specification of sbuf-send-ctl is textually entered for MEAT as
follows:

:fsm sbuf-send-ctl
:in (Deliver Begin-Send Ack-Send) ;1ist of input variables
:out (Latch-Addr IdleBAR Send-Pkt) ;list of output variables
:state 0 (Deliver)

1 (IdleBAR * Latch-Addr)
:state 1 (Deliver™)

2 O
:state 2 (Begin-Send)

:state

:state

:state

:state

:state

:state

The following is a transcript from a MEAT session. The specification resulted in a

N NN RO oD DWW

(Latch-Addr™)
(Begin-Send™)
(Send-Pkt)
(Ack-Send)
(Send-Pkt™)
(Ack-Send™)
(Id1eBAR™)
(Deliver)

O
(Deliver™ * Ack-Send)

(Send-Pkt~ * Latch-Addr)

(Ack-Send™)
O

lack-send
lidle*

Tack-send
| send-p

Tdeliver

Tlatch-addr
Tidle*

|deliver

Tbegin-send
|latch-addr

| begin-send
Tsend-pkt

|deliver

deliver Tack-send
| send-pkt
. Tlatch-addr . /

lack-send

Figure 2: Sbuf-send-ctl State Machine

single implementation with two state variables.

> (meat "sbuf-send-ctl.data")

Max Compatibles: ((0 5) (1 2 7) (3 4) (6))
Enter State set: ((0 5) (1 27) (3 4) (6))

SOP for "Y1":
18: DELIVER + Y1*BEGIN-SEND™
SOP for "YO":

28: BEGIN-SEND + YOxACK-SEND™ + YO*DELIVER
SOP for LATCH-ADDR:
12: Y1xY0~™
S0P for IDLEBAR:
30: ACK-SEND + BEGIN-SEND + YO + Y1
S0P for SEND-PKT:
12: YO*BEGIN-SEND~
HEURISTIC TOTAL FOR THIS ASSIGNMENT: 100

The implementation can then be verified for hazard-free operation by the verifier.
The verifier reads the specification and implementation. For this example, the state
variables and outputs generated by MEAT are implemented as two-level AND/OR logic.
Each signal is generated independently of the others. Only direct inputs are shared,
so the same inverted signal in different output logic blocks will use separate inverters.
Separate inverters will result in verification errors in the burst-mode speed-independent
analysis. In this example, the begin-send signal is shared by Y1 and send-pkt. The two
inverters are merged and the output is forked to both logic blocks. This implementation
is then verified. The verifier points out a d-trio hazard [19] which is removed by adding an
inverter to change the sequencing of begin-send into the Y0 logic. The implementation
is then verified as hazard free as follows:

> (verifier-read-fsm "sbuf-send-ctl.data")

Max Compatibles: ((0 5) (1 2 7) (3 4) (6))
Enter State set: >((0 5) (1 27) (3 4) (6))

> (setq *impl* (merge-gates ’(1 11) *implx*))

> (verify-module *impl* *spec)

10 20 30 40 50

Error: Implementation produces illegal output.

> (setq *impl* (connect-inverter 10 6 *implx))
> (verify-module *impl* *spec)

10 20 30 40 50 60 70 79 states.

T

The canonical SOP equations generated by MEAT are then transformed into complex
gates for implementation. The CMOS circuit for Y0 is shown in Figure 3.

ack-send 0|

deliver q YO0 q

begin-send q

¢ . » Y0
begin-send |q YO0 |

ack-send | deliver |

Figure 3: Complex CMOS Gate for sbuf-send-ctl Y0
3.4 D-Trio Hazards, Assumptions, and Possible Elimination

Figure 4 shows a static d-trio or nonessential function hazard which is found in some
of the state machines produced by MEAT. D-trio hazards are fundamental and cannot be
removed in every case, but they will be detected by the verifier In this cases the hazard
occurs because the input burst resulted in an internal state change while the output
burst contained no transition for the Done signal. The d-trio hazard in this example can
produce a static 1-hazard on the Done signal. The input burst is perceived by the Done
output logic after the state change burst thereby creating the hazard.

The W8 signal of the logic with the d-trio also contains an isochronous fork. If we
ignore the potential threshold deviations then timing analysis shows that the physical
behavior will not exhibit the hazard. However, this circuit cannot be included in a system
without analyzing the driver, load, and stray capacitance on the W8 input or errors will
result.

By modifying the trigger logic in the Sendr-Done state machine shown in Figure 4,
we can both eliminate the d-trio hazard and the external isochronous fork. This incurs
no performance penalty. The W8 signal to the Done logic remains delayed by a single
inverter, while the W8 signal to the state logic becomes double inverted rather than fed
directly into the logic from the input.

The double inversion has the effect enforcing correct sequencing of the order of arrival
of the W8 signal to the Done logic. Transitions on W8 will always be perceived by the
Done logic before changes in the state variable, resulting in hazard-free circuit operation.
Transitions are ordered such that the assertion of the state variable is not critical to the
performance of the circuit, so the double inversion of W8 into the state logic has no

W8
Req-S Reg-S

__\ |
_J Done wa D Done

Logic with d-trio hazard D-trio hazard removed

Figure 4: Hazard removal from “Sendr-Done” state machine

deleterious effect.

4 Summary

The goal in the development of the MEAT tool was to generate fast, compact,
efficient, asynchronous control circuits. Demonstrating the performance advantages of
asynchronous circuits is important if the discipline is to attract commercial attention.
Our Post Office design methodology was no exception; as long as the circuit was fast
nobody cared how we did it except us. We view this as a sad reality, since asynchronous
design has other benefits as well as a conceptual elegance.

Building a large, fully self-timed circuit has resulted in many insights. The need for
synthesis and analysis tools that compare with those available to the synchronous design
community is of primary importance. We hope that MEAT is a step in the direction
of attracting more broad based interest. We have publicly offered both the MEAT tool
and many of the Post Office state machines to the IC CAD design community in hopes
that others will improve on this step. The need for more robust circuit behavior and for
higher performance levels is ubiquitous.

MEAT, like any CAD tool, is incomplete. The backend only produces schematics.
Manual layout is prohibitively time consuming. Some form of automatic layout is neces-
sary unless we abandon the complex gate approach and take advantage of standard cell
and technology mapping approaches. Automatic layout is a difficult task and should also
include automatically sized transistors for the performance needs of the design. Using
standard cells will result in some lost performance but the synthesis task is easier. We
are investigating both options.

There are other performance oriented factors that should be included. As a design

is passed down through the different stages of MEAT, some information is lost. The
complexity of the algorithms and simplicity of the circuits could be enhanced by pre-
serving some of this information. State graphs lack the formalisms required to analyze
compositions of these circuits for safety, liveness, deadlock, and other properties. We are
currently investigating a process calculus as a means of specifying and generating MEAT
state graphs as well as proving correct operation and construction. MEAT also needs to
be connected to existing CAD tools. An example is the connection to a timing analyzer
so that the timing assumptions can be automatically analyzed for compliance.

Most importantly MEAT only generates control circuits. For the Post Office expe-
rience we assumed that the datapath design would be similar to synchronous methods.
We found out the hard way that this is not the case. Hence there is a significant need
to adapt existing datapath generators to accommodate asynchronous methods such as
micropipelines [16]. We also need to integrate the MEAT capability with the rest of our
CAD suite since at present there is too much user interaction. Part of this has already
been done, but the integration process is incessant by nature.

Approximately a fifth of the Post Office control path design was done manually,
and the rest was done using MEAT. The automated part of the design took one-fourth
the amount of design time and was virtually error free. Those errors were corrected
when Steve Nowick pointed out a flaw in our minimization algorithms. Our design style
has proven to be a very natural transition for existing hardware designers, primarily
since it is based on traditional finite state machine control. Our synthesis techniques
have generated compact high-performance circuits that work, and the complexity of the
synthesis algorithms has proven to be viable for large designs.

References

1]

2]

[4]

[5]

[10]

[11]

[12]

[13]

Erik Brunvand and Robert Sproull. Translating Concurrent Programs into Delay-
Insensitive Circuits. In IEEFE International Conference on Computer Aided Design:
Digest of Technical Papers, pages 262-265. IEEE Computer Society Press, 1989.

J. A. Brzozowski and J. C. Ebergen. On the Delay-Sensitivity of Gate Networks.
TC, 41(11):1349-1360, November 1992.

Steven M. Burns and Alain J. Martin. The Fusion of Hardware Design and Verifi-
cation, chapter Synthesis of Self-Timed Circuits by Program Transformation, pages

99-116. Elsevier Science Publishers, 1988.

Tam-Anh Chu. On the models for designing VLSI asynchronous digital systems.
Technical Report MIT-LCS-TR-393, MIT, 1987.

Henry Y. H. Chuang and Santanu Das. Synthesis of multiple-input change asyn-
chronous machines using controlled excitation and flip-flops. IEEFE Transactions on

Computers, C-22(12):1103-1109, December 1973.

David Dill. Trace Theory for Automatic Hierarchical Verification of Speed-
Independent Circuits. An ACM Distinguished Dissertation. MIT Press, 1989.

A Grasselli and F. Luccio. A Method for Minimizing the Number of Internal States
of Incompletely Specified Sequential Networks. IEEE TEC, June 1965.

A. B. Hayes. Stored State Asynchronous Sequential Circuits. IEEE Transactions
on Computers, C-30(8), August 1981.

Lee A. Hollaar. Direct implementation of asynchronous control units. IEEE Trans-
actions on Computers, C-31(12):1133-1141, December 1982.

A.J. Martin, S.M. Burns, T.K. Lee, D. Borkovic, and P.J. Hazewindus. ”The Design
of an Asynchronous Microprocessor”. In C.L. Seitz, editor, Advanced Reserach in
VLSI: Proceeedings of the Decennial Caltech Conference on VLSI, pages 351-373.
MIT Press, 1989.

S. M. Nowick and D. L. Dill. Synthesis of asynchronous state machines using a
local clock. In 1991 IEEE International Conference on Computer Design: VLSI in
Computers and Processors. IEEE Computer Society, 1991.

S. M. Nowick, K. Y. Yun, and D. L. Dill. Practical asynchronous controller design.
In 1992 IEEE International Conference on Computer Design: VLSI in Computers
and Processors. IEEE. Computer Society, 1992.

Steven M. Nowick and David L. Dill. Automatic synthesis of locally-clocked asyn-
chronous state machines. In 1991 IEEFE International Conference on Computer-

Aided Design. IEEE Computer Society, 1991.

[14]

L. Lavagno; K. Keutzer; A. Sangiovanni-Vincentelli. Synthesis of Verifiably Hazard-
Free Asynchronous Control Circuits. Technical Report UCB/ERL M90/99, Univ. of
California at Berkeley, November 1990.

Kenneth S. Stevens, Shane V Robison, and A.L. Davis. “The Post Office - Com-
munication Support for Distributed Ensemble Architectures”. In Proceedings of 6th

International Conference on Distributed Computing Systems, pages 160 — 166, May
1986.

Ivan Sutherland. Micropipelines. CACM, 32(6):720-738, June 1989. Turing Award

Lecture.

J. H. Tracey. Internal state assignments for asynchronous sequential machines. IEFE
Transactions on FElectronic Computers, EC-15:551-560, August 1966.

S. H. Unger. A Building Block Approach to Unclocked Systems. In Proceedings of
the 26th HICSS Conference, January 1993. To appear.

S.H. Unger. Asynchronous sequential switching circuits. Wiley-Interscience, 1969.

C. H. van Berkel. Beware the Isochronic Fork. Technical Report Nat. Lab Rep. UR
003/91, Philips Research Laboratories, January 1991.

C. H. (Kees) van Berkel. Handshake circuits: an intermediary between communi-
cating processes and VLSI. PhD thesis, Technical University of Eindhoven, May
1992.

Peter Vanbekbergen, Francky Catthoor, Gert Goossens, and Hugo De Man. Opti-
mized synthesis of asynchronous control circuits from graph-theoretic specifications.

In International Conference on Computer-Aided Design. IEEE Computer Society
Press, 1990.

