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Abstract

A new theory and methodology for the practical verification and synthesis of asyn-
chronous systems is developed to aid in the rapid and correct implementation of com-
plex control structures. Specifications are based on a simple process algebra called
CCS that is concise and easy to understand and use. A software prototype CAD
tool called Analyze was written as part of this dissertation to allow the principles of
this work to be tested and applied. Attention to complexity, efficient algorithms, and
compositional methods has resulted in a tool that can be several orders of magnitude
faster than currently available tools for comparable applications.

A new theory for loose specifications based on partial orders is developed for
both trace and bisimulation semantics. Formal verification uses these partial orders
as the foundation of conformance between a specification and its refinement. The
definitions support freedom of design choices by identifying the necessary behaviors,
the illegal behaviors, and behaviors that are irrelevant. Loose specifications and their
refinements are written using CCS semantics.

Pure CCS has been modified so that all of the common asynchronous hazard
models — delay-insensitive, quasi delay-insensitive, speed-independent, and burst-
mode — can be supported by Analyze. The parallel composition semantics have
been extended to allow conjunctive broadcast communication. These communica-
tion primitives are implemented in a mixed-mode fashion so that pure CCS evalua-
tion or hardware component modeling can be accomplished. A meta transition rule
called computation interference is also implemented to strengthen the correctness of

verifications under labeled transition systems such as CCS.

il



Congruences hold for conformance verifications in Analyze so that hierarchical
verification is supported. A hierarchical top-down directed synthesis procedure is
developed. Process logics are refined for practical applications of labeled transition
systems to circuits and systems, including a new definition for liveness and dead-
lock. The target implementation methodology of this work is a parallel set of com-
municating burst-mode controllers. Burst-mode, developed earlier by the author, is
formalized so that Analyze can verify when a specification obeys all the burst-mode

rules and can be automatically synthesized into an implementation.
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Chapter 1

Introduction

Circuit design has undergone a tremendous explosion of progress in the last decade.
In the early 1980’s fabrication technology with a feature size of five microns permitted
hundreds or thousands of devices to be fabricated on an integrated circuit. Today,
millions of devices can be placed on a single circuit of the same area as the feature
size has shrunk to half a micron or less.

The cost of designing integrated circuits has exploded as well. Modern fabrication
facilities cost millions of dollars, and the man hours required to design a large circuit
can be staggering.

Full custom design cannot keep up with the exponential increase in circuit com-
plexity, as design cost and time to market will also increase dramatically, removing
the market advantage of these designs for manufacturers. The need for improved
tools and technologies that can rapidly produce correct circuits rivaling full custom
performance and area advantages is clear from market and technology trends. The
need for a designer’s workbench capable of synthesis and verification was personal-
ized for me after spending thousands of hours of manual implementation on a large,
full custom, high performance, parallel integrated circuit.

The application of simplifying abstractions that can be upheld in implementa-
tions is the best method for supporting the explosive growth in design complexity.
Increasing the level of abstraction lets a designer concentrate on architectural con-

cepts rather than the micromanagement of devices and low level implementation
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details. The abstractions also facilitate the design automation and formal reasoning
about circuit properties. The digital assumption is the most widely used abstraction
for gates and transistors typically used in VLSI fabrication. Digital design assumes
that the devices exist in one of two states, on or off, at high or low voltages.
Although transistors are not necessarily digital, this assumption can be accurate
for well designed processes and circuits — high gain devices interconnected in a low-
load fashion. These “digital” devices can be connected in such a way as to design
more complex combinational functions that are themselves digital. A combinational
function is one that solely depends on the input set to determine the output function.

This reasoning can accurately be employed for circuit synthesis.

1.1  Asynchronous Design

Many functions cannot be represented in a combinational fashion because they rely
on the history of input sequences. Such logic is called sequential logic. How op-
erations are sequenced provides the first and largest distinction between digital de-
sign styles. There are two fundamental methods of sequencing these circuits — syn-
chronously or asynchronously.

Synchronous digital circuits assume that time is divided into global, distinct,
discrete periods that are controlled by the metronomic tick of a global clock. Control
and data signals are stored and passed in lockstep on fixed intervals as determined
by the clock and its phases. Storage and sequentiality is typically introduced with
clocked latches. All logic functions between the latches must be evaluated during

the clock period or the circuit will fail.
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Asynchronous circuits do not base their sequencing on regular time. Rather,
an interface is defined such that function initiation and completion are explicitly
signaled. These interfaces always embody handshaking to ensure that both the sender
and receiver of the communication are ready. This interface protocol is commonly
referred to as a request/acknowledge handshake. This formal handshake protocol
simplifies the design and verification of asynchronous circuits by breaking them into
hierarchical modules. The difficult task of creating large parallel systems is greatly
simplified since no global analysis is required. Such systems are created by composing
and interconnecting the formal interfaces of parallel modules, and verified by proving
the interface protocols are upheld. The clean, formal interfaces of asynchronous logic
come at the cost of increasing the difficulty of module design as the handshake signals
must be free of all glitches and hazards. Hence the more difficult system design
aspects are simplified by asynchronous circuits, and the easier challenge of module
design becomes more complicated.

Asynchronous circuits are not slaves to a single unifying master (the clock) as are
synchronous systems. Clocked, or synchronous, systems can be easily and reliably
controlled inside an asynchronous formalism. Much of my early asynchronous design
was based on stoppable clocks we termed “Chuck clocks” in honor of their inventor
Chuck Seitz. The controlling asynchronous logic views the clocks as request or
acknowledge handshakes, and the clocked domain can be fully synchronous. Such
mixed mode designs are formally termed self-timed. Some timing analysis must
be done to assure that the asynchronous control is always prepared to accept the
clock handshake given the clock circuit’s known frequency. Other delay models are

introduced in Chapter 3.
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The task of asynchronous controllers is to correctly accept and sequence hand-
shaking signals. Datapath logic must also generate handshakes one of two ways: as
true completion signals generated by side effect from the logic operations, or through
delay elements that model the timing characteristics of the function. Completion sig-
nals are preferable as they accurately model the actual delays in the devices. At times
true completion signals can be generated at very little additional complexity. For
instance, ORing the two bit lines of precharged RAM cells will produce a handshake
indicating the successful completion of the charging and the data valid operations.
A good example of the use of delay approximations comes from Sutherland’s 1988
Turing Award lecture on the micropipeline architectural style [Sut89]. A delay simu-
lates the operational time for each pipeline stage and is used to control the following
stage. Delay approximations permit the utilization of standard (synchronous) dat-
apath components, but the designs will not be as robust. When true completion
signals are not generated, the timing analysis can be done locally; the functional
interfaces remain intact, supporting modular design and verification.

Data transmission is typically carried out using one of two methods: a bundled
data protocol which requires assumptions on the transmission delays of the data
and its associated handshake signals, or with data encoding techniques such as the
dual rail protocol which encodes the completion signal with the data. Bundled
data protocols contain parallel data and handshake paths, and the transmission
delays of the two paths should be equipotential, or nearly identical. The data is then
transmitted before the handshake signal, with the assumption that the handshake
will be observed at the destination following the arrival of the data. This places a

constraint on the drivers, layout, routing, and loading of the signals. Data encoding
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protocols use more than one wire per data bit to encode data validity as well as a
digital value. This method is more robust and simplifies the layout and routing at
the cost of doubling the number of wires required to transmit data.

The asynchronous design style results in the following advantageous circuit prop-

erties:

1. Control is localized, supporting modular hierarchical designs. Some global
circuit issues such as the power carrying capacity of metal lines and timing

analysis are simplified, while others such as clock skew are moot.

2. Power is actively expended only when a module is actively controlling or pro-

cessing information. Well designed modules only consume leakage current when

idle.

3. Performance can be improved as there is no need to wait for a clock edge to
begin processing a transaction, and latency can be the device and ambient min-
imum. Performance estimates and run times for asynchronous circuits result
in average delays for the data values rather than requiring worst case values

for reliability.

4. Asynchronous inputs and interrupts are a natural aspect of asynchronous de-

sign, and will not result in synchronization failures.

5. The circuits are extremely robust because they can adapt to the ambient en-
vironment. Changes in temperature, voltage, and implementation parameters
will not effect the correctness of the circuit’s functions. For example, a hazard

free asynchronous circuit designed in scalable rules can operate correctly in a
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2 micron or 0.5 micron process, at a temperature of 30°C or immersed in liquid
nitrogen, and at varying voltages. Modifying these parameters can effect the

power consumption and performance dramatically.

6. The interfaces can be extremely robust, including the adaption to timed pro-

tocols [MCS94].

7. Fewer constraints may be required regarding the physical placement and rout-

ing of cells, simplifying implementation details.

8. Observability may be easier to achieve using the stuck-at fault model because
a handshake signal that cannot make a transition results in deadlock. While
faults are commonly observable by this method in practice, a more rigorous the-
ory for fault coverage is required for the differing asynchronous design method-

ologies.

These advantages have positive ramifications for increasing the level of abstrac-
tion that is desperately needed for large high performance designs. Certain aspects
of tool development — such as place and route software and timing analysis — can be

simplified. However, several aspects of asynchronous design also present challenges.

1. Hazard free design is a difficult, complex process — particularly when using
unbounded delay models. Synchronous synthesis and analytical tools are typi-
cally not applicable to asynchronous designs because algorithmic assumptions
may require the side effects of a global clock, or they do not avoid or detect
hazards. Asynchronous designs are also more difficult to create using ad hoc

approaches.
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2. Although it is difficult to make accurate comparisons, asynchronous designs are
probably larger, and therefore more expensive to fabricate, than comparable
synchronous designs. Clock lines and drivers are not present in asynchronous
designs. However, most implementations require hazard removal techniques
that add logic gates. The handshake signals also add wires between logic
components. The circuit area of VLSI designs is more sensitive to the wiring
requirements than the number of transistors, and it is difficult to project the
tradeoff between the reduction in wire complexity due to clock removal versus
the increase due to handshake lines. The additional area overhead supposedly
varies from 5%-20% for custom designs, and up to 100% for designs synthesized
using programming techniques. The overhead is much worse for data-intensive
architectures when data encoding techniques (such as dual rail protocols) are

used.

3. The handshake protocol is only effective over short distances, because the delay
of transmitting a signal is usually proportional to the distance of the transmis-
sion. One would not use handshaking protocols for satellite transmissions!
Although functionality is not compromised, there is a significant performance
sensitivity to the placement of modules. There may also be a performance
degradation for level sensitive return-to-zero (or four-cycle) protocols versus
the transition based non-return-to-zero (or two-cycle) protocols when the ad-

ditional handshake cycles cannot be hidden in the computation phase.

The greatest disadvantage comes not from any theoretical disability, but rather

from the serious deficiency in tools tailored for asynchronous design practices and a
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lack of experience and case studies. This deficiency comes in all areas: simulation,
synthesis, verification, and testing. The following sections discuss some of the signif-
icant progress recently achieved in asynchronous theory, architecture, and tools by
a small core of researchers and engineers.

Research into asynchronous circuit design has been carried out sporadically since
the early 1950’s. Most of the modern theory is founded on the early work done by
Huffman, Muller, and Unger [Huf57, Mil65, Ung69]. Although asynchronous systems
such as the Illiac [Geo68] had proven asynchronous technology as a viable approach,
interest waned in asynchronous design. Clocked systems were much easier to design
since hazards did not need to be removed or controlled. The low integration and
complexity of the devices allowed global analysis to be carried out efficiently.

Al Davis, Charles Molnar, Chuck Seitz, and Ivan Sutherland bucked the trend
with their pioneering work in asynchronous systems [Dav77, CM72, MFR85, MC80,
SMSMT79]. Technological trends, including the ever increasing levels of integration
of circuits, and the maturing of logic systems and formal methods have resulted in
a new wave of interest and applicability in these novel circuits.

I studied asynchronous circuits under Al Davis in the early 1980’s and have had
the fortune of learning from Molnar, Seitz, and Sutherland. In the mid 1980’s I joined
a team designing a distributed memory multiprocessor called Mayfly. This gave me
the opportunity to take my asynchronous circuit experience out of the academic
world into industry with the development of a high speed CMOS VLSI communica-
tion coprocessor chip called the Post Office. The techniques at that time for hazard
removal or control required a single input change constraint, large delays, or perfor-

mance inhibiting flip flops [Ung69, CD73]. Since the performance of the Post Office
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was critical to the success of the Mayfly project, an alternative method of producing
low latency control was needed. This led me to develop a new asynchronous control
methodology called burst-mode which was successfully applied in all controllers of
the Post Office.

During the development of the Post Office, interest in asynchronous designs was
widely renewed in the academic community on three different fronts. Circuit design-
ers found it ever more difficult to cope with the global constraints of synchronous
design and had begun to seriously investigate asynchronous approaches. Software
engineers began taking advantage of the modularity of asynchronous circuits to build
program based asynchronous synthesis tools. Logicians and mathematicians discov-
ered that asynchronous circuit design is a natural and useful application for their
theories. The coming together of these three fields has resulted in a new renaissance
of asynchronous design theory.

The next sections present some of the salient achievements of these three groups.

1.2  Circuit Design

One of the most challenging aspects of asynchronous circuit design is the removal
of hazards from circuits. Since all hazards cannot be removed before layout with
unbounded delay models, the ability to control the occurrence of the remaining
hazards is also of paramount importance. The following general techniques have
been applied to the direct layout of asynchronous circuits with attention to hazard

removal and control.
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1.2.1 Asynchronous Finite State Machines

The asynchronous finite state machine (AFSM) based methods take operational
descriptions as inputs and produce circuit descriptions as outputs. These methods
are typically targeted for CMOS design, creating gate or transistor level circuits.
The primary goal of these systems is to produce circuits that are free from as many
hazards as possible through compilation techniques, while also minimizing the la-
tency and area of the implementation. This method is targeted for performance
sensitive applications. While it is not possible to remove all sequential hazards using
the unbounded delay model (see Chapter 3), these methods stand out as producing
systems with the greatest performance with relatively few constraints required for
hazard control.

They achieve the best performance and smallest size of all the design methods
when moderately complex specifications are used. Unfortunately, most of the AFSM
based tools use informal operational definitions such as state graphs, which limits
the ability to reason about complex systems of AFSMs.

Most of these methods have adopted the burst-mode methodology to achieve
higher performance with the smallest exposure to hazards. The most efficient circuits
are typically created from descriptions containing from 5 to 32 burst-mode states.
While these methods are typically used for control synthesis, they can also be applied
to the creation of datapath logic.

The first burst-mode synthesis tool was developed by Bill Coates, Al Davis, and
myself to aid in the design of the Post Office [CDS93a, CDS93b]. The tool was

dubbed the “Most Excellent Asynchronous Tool” (MEAT) after being inspired by
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the movie “Bill and Ted’s Excellent Adventure”. MEAT was used in the development
of 90% of the control modules in the Post Office. A quick introduction to the AFSM
synthesis capabilities of MEAT can be found in Section 4.7.

The MEAT prototype did not remove all combinational hazards. A flaw was
pointed out by Steve Nowick, who in the process proved that the burst-mode method-
ology permits the synthesis of totally hazard-free combinational logic [ND92]. Nowick
also went on to produce a burst-mode synthesis system using local clocks [ND91a]
as part of his Stanford dissertation. This interaction with Stanford also resulted in
another burst-mode synthesis system [YD92].

A widely known method for formalizing and synthesizing AFSMs was developed
by Chu based on signal transition graphs or STGs — which are a restricted form of
Petri nets [Chu87]. This theory has recently been extended to support burst-mode
specifications [Chu93].

Another interesting synthesis system was developed by Luciano Lavagno at Berke-
ley [LKSV91]. This synthesis uses timing analysis to assure that when hazards exist
in the circuit, sufficient delays are added to ensure that they are controlled, so that
they will not occur in the physical design. Beerel and Ming have also developed

analysis and synthesis techniques based on bounded delay methods [BM92].

1.2.2  Architectural Methodologies

Some architectural methodologies are based on design styles which can remove haz-
ards from control logic [Hay81, Hay83, Hol82]. Most of these methods are of re-
stricted applicability, or do not have the performance advantages of the AFSM ap-

proach.
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Sutherland’s micropipeline methodology is the most efficient and successful asyn-
chronous architectural methodology [Sut89]. The micropipeline design style is based
on transition logic where the asynchronous rendezvous, or C-element, is used to
control interaction between hierarchically compositional pipeline stages. There are
no direct synthesis tools based on this technique despite the simplicity of the con-
trol stages. The most impressive successful application of the micropipelined design
style is the asynchronous version of the ARM microprocessor developed by Steve
Furber’s group at Manchester University called AMULET [FDG%93, Pav94]. The
synchronous ARM was the most widely produced RISC processor in the world in
the 1980’s.

1.2.3 Macro Module Based Design

Programming language methods are not targeted for circuit synthesis on the gate and
transistor level. Rather, as in programming language compilers, the program instruc-
tions are compiled into a set of predefined primitive operations [BS89, vBBK*94,
Ebe88, Mar91]. These primitives are a set of asynchronous macro module com-
ponents such as C-elements, TOGGLEs, MERGE elements, and so forth, that are
typically associated with the semantics of the language constructs. The physical
design of these macro cells may require an expert asynchronous circuit designer (or
one of the AFSM based tools of Section 1.2.1). The area and efficiency of the re-
sultant circuits are very dependent on the primitives chosen. Higher level primitives
typically result in larger, slower circuits while lower level primitives normally result
in smaller and faster circuits. A significant advantage of this approach over the other

two is the relative ease of porting the system to other technologies.
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1.3  Silicon Compilation

Software engineers have made remarkable asynchronous circuit synthesis tools us-
ing variants of Hoare’s CSP programming language for specifications [AG92, Bru9l,
Bru93a, GA93, Mar91, vBKR*91, vB92b|. These techniques compile down to prim-
itive agents as described in Section 1.2.3, and interesting academic grade implemen-
tations have been built [Bru93b, MBL*89]. Brunvand’s approach is fully automated,
whereas Martin’s approach is a directed synthesis system and requires further spec-
ification as lower level logic termed production rules. The major drawback of these
methods is that the synthesis steps are deemed “correct by construction” so no
formal verification is carried out between synthesized implementations and specifi-
cations. Deadlock and other properties of a faulty specification may be faithfully
implemented, and the source of such errors will be difficult to discover without veri-

fication formalisms.

1.4 Formal Methods

Circuit simulation is exponential in time on the input set and device delay variations.
Formal proof methods can greatly improve on these results because verification can
be carried out hierarchically, values can be abstracted into functions, and regular
designs can utilize inductive techniques. The increased complexity of VLSI circuits
has produced the demand for logicians to create practical proof systems that can be
applied to complex systems.

Several logic systems have been used to verify hardware, including the Boyer-

Moore Theorem Prover [Hun86] and higher order logic (HOL) [Sys89, GM93, Gra92,
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Mel88, Coh88]. The complex fine-grain logic models have been successful in accu-
rately verifying data path and leaf cells, but are cumbersome for coarser block-level
verifications. Hardware designers and engineers usually consider such formal tools
of marginal use or even an impediment to the design process because of the time,
effort, and theorem proving expertise that is required to utilize such methods.

Success in automating circuit proof systems has been achieved in the asyn-
chronous circuit domain. Ebergen, Udding, and Josephs successtully use trace theory
for the formal design and verification of a class of asynchronous circuits that use the
delay-insensitive hazard model [Ebe91, Udd84, JU90| (see Section 3.2 for a descrip-
tion of the various hazard models of asynchronous circuits). Dill uses a variant of
trace theory to verify circuits using the speed-independent hazard model [Dil89]. His
tool was invaluable for the verification of the AFSMs in the Post Office. Process
algebras, such as CCS and Circal, have recently been applied to the verification of
asynchronous circuits [Bai94, Liu92, MM91, Mol91].

While simulation systems such as VHDL and CSP-based programming languages
have been successfully applied to the synthesis of synchronous and asynchronous
circuits, automated synthesis has not been achieved with systems capable of formal

verification.

1.5 Automated Formal Asynchronous Design

Figure 1.1 partitions the asynchronous design problem space into three columns
corresponding to circuit designers, software engineers, and logicians, listing some of

the top achievements for each group. The Post Office and the asynchronous ARM
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Figure 1.1: Asynchronous Technology Spectrum

at Manchester are engineering feats achieved with almost no tool support by superb
circuit designers. On the other end of the scale, mathematical verification has moved
from the laboratory into practical use as automated proof systems are being used
by engineers for the verification of small circuits and systems. In between is a set of
excellent software and systems people who have produced a set of tools capable of
automating the arduous task of design synthesis.

The goal of this thesis is to merge the best results from circuit designers, soft-

ware engineers, and formal mathematicians to work towards a designer’s workbench
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capable of synthesis and automatic verification of asynchronous circuits in such a

way that large, complex, parallel ICs can be rapidly prototyped and fabricated.

1.6 The CCS Process Algebra
In the foreword to Milner’s book on CCS, C.A.R. Hoare states:

“Concurrency remains one of the major challenges facing Computer Sci-
ence, both in theory and practice. The wide variation in structure and
architecture of concurrent machines is now as great as in the early days
of sequential machines ... Such variation gives rise to confusion and fear

of innovation.

Fortunately, progress in theoretical Computer Science brings understand-
ing in place of confusion, and confidence in place of fear. A good theory
reveals the essential unities in computing practice, and also classifies the
important variations. Such a theory was propounded by Robin Milner ten

years ago in his Calculus of Communicating Systems.”

Hoare’s communicating sequential processes (CSP) and Milner’s calculus of com-
municating systems (CCS) are process algebras, or mathematical systems, that can
model and analyze concurrency. This work has applied CCS to the highly concur-
rent testbed of VLSI circuits, resulting in some practical refinements. CCS is a
theoretically satisfactory as well as a practical foundation for the work in this thesis.

CCS relies on the notion of persistent parts, or agents, that act independently of

each other yet also synchronize. The independence of the actions of agents allows
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them to proceed concurrently, and the synchronization of agents occurs with com-
munication. The atomic actions of a system can be represented by a set of symbols
called labels. These actions can be partitioned into two sets with a “complementa-
tion” operation represented by an overbar, extended such that for action o, @ = a.
Assume that P, (), ... represents processes while a,b, ... (and «, 3,...) represent the

P )

actions of a system. The occurrence of an action is represented as

PLp (1.1)

meaning that as process P performs the action a it simultaneously evolves into the
process P’. These actions are represented as transition relations over the processes,
and if they are all known the behavior of the system of processes is defined.
Communication is defined as a primitive, atomic interaction between processes.
The interaction occurs between a label and its complement. This interaction is
further defined as handshake communication which removes the notion of active
(performers or producers) and passive (media or consumers) pairs. If both the label
and its complement are offered, the communication can occur; otherwise one of
the processes may have to wait. Figure 1.2 shows how processes P and () can
communicate using labels b and ¢. When a handshake occurs, both P and () evolve

together through an atomic event 7 into P’ and Q'

Figure 1.2: CCS Communication Interaction
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The transitional semantics of such a language is termed a labeled transition
system. Since processes are sequential, concurrency arises when independent pro-
cesses are composed in parallel. When modeling asynchronous systems each com-
ponent, be it a state machine, register, RAM cell, ALU, or wire, can be modeled
as a sequential process that may communicate with other processes. However, most
processes can also be decomposed into a smaller set of communicating sequential
processes. For example, a certain ALU process could equally be modeled as a par-
allel set of adder processes. The level of detail of interest will dictate the detail and

hierarchy of the description.

1.6.1 Syntax and Semantics of CCS

CCS is a very simple language in both syntax and semantics. The syntax of a CCS

process 1s described by the following BNF description.

P == Nil
| Q constant
| «aP prefix

| Pi14+Py+---+Pn  summation

| Pi1|Pa|-|Pn composition
| P\L restriction
| P[f] relabeling

The set of actions that an agent can perform is called its sort. The special agent
Nil can perform no actions, therefore it is the deadlocked or stopped process and its

sort is the empty set of actions. CCS is given semantics by induction over the above
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structure for agent expressions. The semantics are in terms of the labeled transition

system, defined as

(S, T, {% :aeT) (1.2)

where S is a set of states (or processes), T is a set of transition labels, and the
transition relation — C S x S for each @ € T. The transitional semantics are
defined by inference from the transition rules of Figure 1.3 where each rule will have

zero or more hypotheses and a conclusion.

Act ——a—r C PP def
T ESE on TEp (A=P)
S ESE S FSF
um, —— a5 um, ————a——
' E+FS3F > E+F3F
. ESE . FSF
oM TR FSE | F oM TP FSEF
ESE P3P
Com; -
E|FLE | F
ESE ESE
Res ————~ (a,a¢ L) Rel -
VAT VA BT B

Figure 1.3: CCS Transition Rules

?

The Act rule, syntactically using the ‘.” operator called prefixing, is the building
block for sequential operations. For example, the agent 7€q.ack.Nil can do a Teq

action, followed by an ack action, and nothing more. The constant rule Con defines

references to processes, so we can now create recursive, nonterminating agents. For
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example, a TOGGLE can now be defined as:
TOGGLE ¥ ¢.3.4.2. TOGGLE (1.3)

This definition says that after the first a input the TOGGLE will produce a b output.
After the second @ transition a € transition is produced. The behavior then repeats.

Nondeterministic choice is modeled by the summation operator ‘+’ using tran-
sitional rules Sum; and Sum,. A process with summation can behave nondetermin-

istically like any of the summands. The C-element can now be defined by:
C-element & ¢.5.%.C-element + b.a.¢.C-element (1.4)

The C-element can behave like either of the two parts; if the a action is taken first,
then it evolves into the agent b.¢.C-element.

Applying the relabeling function f to agent E results in an agent that behaves
like £ where the labels have been changed according to the function f as expressed
by rule Rel. The relabeling function is syntactically expressed as [new/old] where
all occurrences of the label old have been replaced by the label new. Relabeling is
typically applied to library templates (such as AND gates) where the default labels
must be instantiated to the names being used for the specific circuit interconnections.

Concurrent operation is modeled with the composition operator ‘|’

using the
Com transition rules. Signals can transition independently, expressed by rules Com;

and Comy, and signals with the same label can synchronize in an atomic commu-

nication (rule Coms). Restriction, syntactically represented as a set L, is used
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to prevent the restricted agent from actions in the set L, as defined by the side
condition to rule Res. This internalizes labels that can communicate in a parallel
composition by allowing the internal synchronized action 7 to proceed uninhibited,
and prohibiting the independent actions of the labels from rules Com; and Com,. All

communication actions should be restricted in hardware descriptions using CCS.

1.7 Thesis Structure

Chapter 2 uses the fully asynchronous Post Office chip as motivation for higher levels
of abstraction and tools supporting asynchronous design and synthesis. The Mayfly
distributed memory multiprocessor developed at HP is briefly introduced, along with
the role of the Post Office in that system. Some advantages and disadvantages of
the asynchronous implementation of the Post Office are discussed. Some of the
contributions that grew out of this experience of designing an industrial asynchronous
chip are included.

Chapter 3 introduces hazards and how they impact asynchronous designs. Asyn-
chronous delay and hazard models are described. The most common combinational
and sequential hazards are described with examples, including problems with certain
common circuit constructs. Since no synthesis system can be hazard free, techniques
for hazard removal and controlling unremoved hazards are discussed.

Chapter 4 formalizes burst mode, which I developed in the early stages of the Post
Office implementation, in terms of specification and implementation requirements.
This permits the automatic verification of terminal burst-mode specifications for the

synthesis system presented later in this thesis.
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Chapter 5 formalizes the CCS labeled transition system and defines several useful
properties including trace equivalence, bisimulation, determinacy, and confluence.
The weaknesses in trace semantics are pointed out, motivating the need for stronger
bisimulation semantics. A new partial order called conformance is introduced.
Conformance is aimed at hardware verification and is formally applied to trace and
bisimulation semantics formally, and illustrated with several examples.

Chapter 6 introduces Hennessey-Milner process logic and the Modal-u calculus.
Temporal logics are applied to property testing of asynchronous systems, including
a new definition for liveness and deadlock. Other invariant properties that are nec-
essary for complete verification are formalized. A comparison between using process
logics and conformance is made for circuit verifications.

Chapter 7 unifies this work in terms of a prototype software tool capable of auto-
matic verification and directed synthesis called Analyze. The problems in the CCS
notation that prevent CCS from modeling hardware are discussed, including solutions
that extend CCS in such a way that retains its advantages of specification clarity.
New transitional semantics are presented for these changes. The automated functions
of Analyze are discussed. Minimization is an important step of efficient verification,
and a new minimization algorithm is presented for branching time bisimulations.
Computation interference is then formalized. The steps necessary to formally ver-
ify a valid burst-mode specification are shown. The high level top-down synthesis
process 1s then described, including the support supplied by Analyze.

Chapter 8 contains hindsights gained from the development and limited applica-

tion of the Analyze tool, and areas of further research are discussed.
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1.8 Contributions

The major contributions of this dissertation include the following:

1. A software prototype CAD tool called Analyze was developed and described
in this dissertation. It is the first tool to utilize multiple equivalences ap-
propriate for hardware. It also includes all of the common hazard models of
asynchronous circuit analysis and verification. The tool is designed using com-
positional methods and is one or more orders of magnitude faster than the

Concurrency Workbench for comparable problems.

2. A new theory for loose specifications based on partial orders is developed. Par-
tial orders sufficient for verification of asynchronous hardware systems are for-
malized using both trace and bisimulation semantics. Formal verification uses
these partial orders as the foundation of conformance between a specification

and its refinement (possibly as an implementation).

3. Weaknesses in the CCS labeled transition system have been formally fixed with
new transition rules and a meta evaluation rule based on computation interfer-
ence principles which allows direct representation and analysis of asynchronous
hardware modules as CCS processes. Analyze implements these changes in a
mixed-mode fashion, allowing standard CCS transition rules as well as the new

conjunctive parallel composition operator.

4. The burst-mode model remains an important foundation of this work even

though its invention preceded the work in this thesis. The specification and
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implementation requirements are formalized and the requirements for the ver-
ification of terminal specifications is laid out. Completely automating the val-
idation of a burst-mode specification is not always possible because of the

constraints on the environment.

5. A high level synthesis procedure, supported by the Analyze tool, is developed.
These steps can be used to test different approaches and can, with supporting
module layout and place and route software, rapidly produce verified industrial

strength low latency asynchronous systems.

6. New definitions for liveness and deadlock for parallel processes is formalized.
Other logic macros are defined that simplify the process of total verification.
These logics can be applied to a previously available tool called the Concurrency

Workbench.
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Motivation for Analyze

In the late 1970s and early 1980s asynchronous circuits and systems, such as the DDM
machines [Dav77], were built out of small scale integrated components on wire wrap
boards. State machines were built using gates, EPROMs, muxes, and other devices
where the handshake signals were all accessible. Switch and light panels that could
intercept handshake signals and logic probes usually sufficed as test jigs. The added
complexity and inaccessibility of signals in integrated LSI circuits ([Ste84, Hay83])
increased the difficulty of testing and designing asynchronous systems, but their low
level of integration coupled with the modularity of asynchronous protocols made
implementations feasible. Even so, the primary goal of all these circuits was to
demonstrate operational feasibility and supply academic proofs of concept; circuit
performance was not an issue.

However, performance was critical to the success of the full-custom CMOS VLSI
Post Office chip begun in 1987 [SRD86, CDS93b]. The complete chip is the largest
and most complex fully asynchronous integrated circuit in published work. It con-
sists of approximately 300,000 transistors and over 95 different finite state machine
controllers with an external bandwidth of 300 megabytes per second.

I was responsible for the architectural design and implementation of this chip.
The sheer level of integration available coupled with performance requirements cre-
ated problems which could not be hidden by the modularity of asynchronous inter-

faces. Many lessons were learned as design techniques were rationalized, mechanized,
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and formalized. Hindsight proved to be a valuable tutor in many areas, leading to
the more advanced and integrated tool Analyze developed herein.

This chapter uses experiences from the design of the Post Office, including small
design vignettes, to demonstrate the need for the improved methodologies and tools

presented in this thesis.

2.1 Overview of Mayfly and the Post Office

The Mayfly architecture is a general purpose parallel processor, often called a dis-
tributed ensemble architecture [DCH*89, Dav92]. Multiple processing elements (or
PFEs) cooperate to solve single complex problems which have been broken into smaller
parallel computations. There is no globally shared memory. Task spawning and com-
munication between processes on different PEs are carried out via message passing.
The Post Office chip is the communication coprocessor which supports this internode

message passing.

Al Davis General architecture, processor board, & context cache
Bill Coates [-Cache, Post Office interface board, & PO RAM cells
Robin Hodgson Runtime software & debugging

Richard Schediwy | Data cache
Ken Stevens Post Office design & implementation

Table 2.1: Mayfly Design Responsibilities

The Mayfly team consisted of five people with responsibilities as shown in Ta-
ble 2.1. The top level architecture and programming principles were developed by Al

Davis at Fairchild/Schlumberger and Hewlett-Packard in the mid to late 1980s. The
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programming language and compiler is a parallel variant Scheme (a Lisp language)
developed at the University of Utah under the direction of Bob Kessler. The Mayfly
hardware was built at Hewlett-Packard. Figure 2.1 shows the major components of
a single Mayfly PE. A Mayfly PE consists of two Hewlett-Packard Precision Archi-
tecture (or HP-PA) RISC processors. One processor is responsible for executing user
code (the EP or evaluation processor), while the other processor is responsible for
all system overhead (the MP or maintenance processor). MP tasks include setting
up the run list and packetizing messages for delivery. These two processors execute

in parallel.

l——> 1o
EP Context B MP Post  |e— ot
HP-PA Cache HP-PA Office |[e— et
lt—>» PES
¢ | r
I-Cache Data Cache I-Cache

Figure 2.1: Mayfly Processing Element Block Diagram.

The circuits used in the Mayfly design consisted of custom HP-PA processor
chips, programmable logic devices, glue logic, memory components, and the full
custom Post Office chip. Al Davis designed and built the processor motherboard
and novel context cache. Parallel data structure access is facilitated by a 4-page
dual ported data cache, built by Richard Schediwy. Bill Coates designed and built
the instruction cache and Post Office interface board.

The Post Office architecture and communication topology were designed by my-

self [Ste86]. The design was taken from concept to a complete VLSI implementation
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between 1985 and 1991. The Post Office handles all physical communication aspects
of message passing in the Mayfly processor. It includes subsystems for handling
adaptive routing, buffering, transmissions and retransmission, congestion and dead-
lock avoidance. First silicon was complete in February 1991. The final version was
completed at the University of Calgary and fabricated in November 1992.

The topology (shown in Figure 2.2) and architectural design were created during
1985 and 1986. Helios [Kra85], a distributed simulation tool which ran on networked
Symbolics Lisp machines, was used for register transfer level simulations. The Post
Office was implemented as a single VLSI integrated circuit, and was laid out entirely
by hand using the Electric system [Rub87]. I designed and implemented the entire
chip, including the pads, with the exception of the RAM cells and driver circuitry
which were laid out by Bill Coates. Simulations of the layout used COSMOS [Car],
a switch-level simulator. I tested all the fabricated chip fragments on an IMS tester.
The complete chip was tested in a single Mayfly node. Robin Hodgson wrote device
drivers and runtime system software. He tested the Mayfly and first and final silicon
of the Post Office extensively, although I did much of the initial testing of the first
silicon.

The Mayfly interconnection network is a hexagonal mesh wrapped as a twisted
torus resulting in the provably minimal diameter [Ste86]. This creates what is known
as a processing surface. Surfaces have hexagonal boundaries themselves and can be
interconnected by abutment in a hexagonal mesh to form a two-level “recursive”
topology. The Post Office is therefore a seven ported device. It physically connects to
six other adjacent processing nodes in the surface via six 8-bit bidirectional external

ports. There is also an internal 32-bit word-wide PE port through which the Post
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Figure 2.2: Mayfly Interconnection Topology

Office can access the processor cache and local memories for message retrieval and
delivery. The Post Office design permits simultaneous transmission on all seven
ports. Measured performance in a seven node Mayfly prototype indicates that all
six external ports can sustain transfers at an average rate of 50 megahertz, for an
aggregate network delivery bandwidth of 300 megabytes per second.

Performance is critical to the Post Office since communication latency is key to
the distributed memory Mayfly system. Bandwidth utilization of the links between
the Post Office chips must be optimized to achieve a performance that scales with
the architecture. Hence a packet switched system was chosen. Virtual cut-through
[KKT79] was employed because it allows packets to be forwarded to the next destina-
tion as soon as the header is received, resulting in a “pipelined” delivery across many

chips. Packets which cannot be forwarded immediately are buffered centrally in the
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Post Office chip in order to free the external link for other packet traffic. When the
destination ports are free, the packet will be forwarded through one of those links.
Cut-through is not used in the source and destination Post Office chips; the packets
are placed directly into the buffer pool. Although this increases message latency, it
insulates packets from any delays that may be encountered in the software protocols
that load and unload packets from the Post Office and the Mayfly PE. This results
in better utilization on the communication links, and permits the implementation of
the external ports to use the smaller dynamic logic (as opposed to the static logic
required for the PE interface and the central buffer pool and logic).

The Post Office effort was challenging for several reasons:

1. It was a pioneering coprocessor for distributed ensemble routing architectures.
Its design preceded CalTech’s wormhole routing [DS87] and multi-queue archi-

tectures [TF92].
2. The design is massively parallel, with a complex control structure.
3. The Post Office is an asynchronous chip placed into a synchronous environment.

4. It is the most complex fully asynchronous single integrated circuit in published

work.

5. It was built in a commercial environment where performance was an important

aspect.
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2.2 Asynchrony in Mayfly

2.2.1 Features

The Post Office is an island of asynchrony in an otherwise fully synchronous ar-
chitecture. The processors in the Mayfly are synchronous HP-PA machines using
synchronous bus protocols. The decision to design the Post Office as a fully asyn-
chronous part was based on a number of factors, including the robustness of asyn-
chronous interfaces, scalability, and the desire to build a practical, complex device
which is superior to synchronous techniques. The scalability of the Mayfly architec-
ture is probably the single most important argument in favor of an asynchronous
Post Office design. The physical extent of the Mayfly architecture is formally un-
bounded, and the size of an implementation is only limited by the size of the address
word. The current Post Office chip supports instantiations of up to 519,841 PEs.
The ability to arbitrarily scale the architecture poses serious technical problems if a
global clock is necessary to synchronize operations. Clock skew can be a problem in
itself for synchronous design as technology progresses [Bak90]. For extensible sys-
tems such as the Mayfly where the PE count is unbounded, synchronizing all of the
nodes with a single clock becomes intractable.

The robustness of functional, asynchronous interfaces removes the problems of
clock skew and simplifies link arbitration and transfer synchronization. Mayfly pro-
cessors are composed by simply plugging the Post Office links together (subject to
topological constraints). Each PE in the multiprocessor contains a local crystal and
a clock generator that runs at its own clock speed. Processor speeds for communi-

cation between PEs are irrelevant due to the asynchronous interface. One PE in the
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HP prototype running at an internal clock speed of 16 MHz communicates perfectly
well with another running at 64 MHz via the Post Office chips.

Additionally, the arrival times of packets from the external ports and the PE can
be completely random. In a synchronous system, these arrivals would have to be
normalized to the system clock, resulting in slower delivery. Receptive asynchronous
systems begin processing packets as soon as data arrives [NDDH93|. This robustness
of interfaces is also being investigated for commercial applications in noisy environ-
ments [MCS94].

The low power nature of asynchronous architectures was one further advantage
demonstrated in the Post Office. Asynchronous circuits contain fine grain, dynamic
power management due to the handshake protocols. Each idle Mayfly PE requires
30 amperes of current at 5 volts. By way of contrast, the Post Office, which is the

only asynchronous part in the system, uses only 2 milliamps when idle.

2.2.2 Problems

In a clocked system, care must be taken to assure that the clock signal has a short rise
and fall time, that noise is minimized (ringing, overshoot and undershoot, etc.), and
that the clock is driven to the power and ground rails. The same restrictions exist
on the handshake signals in asynchronous systems. Although there are many more
handshake signals than clocks, handshakes are generally localized between pairs of
controllers, on the same integrated circuit, with low capacitive loading. For example,
the clock and drivers inside the synchronous alpha chip are global and highly loaded
taking up 30% of the chip area and nearly 60% of the power, resulting in considerable

technical problems [Com92]. When asynchronous handshake signals are not local,
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such as between processing elements in the Mayfly, care must be taken to assure that
failures do not occur due to violations of the assumption that signals are “digital”.

In the Mayfly prototype, each processor had a separate clock generator and power
supply. Mayfly PEs are easily composable through the Post Office because the func-
tional interface scales well and is not subject to failures due to synchronization,
arbitration, or device speed or clock speed variations. However, communication was
susceptible to failures when (i) voltages varied significantly between nodes, (ii) when
crosstalk was a significant problem, (iii) when the impedance of the drivers and
receivers were not matched such that ringing occurred, and (iv) due to current vari-
ations that cause power supply noise. These faults are all due to physical properties
that violate the digital assumption, and they can be cumulative. As an example, the
request handshake signal, driven from the power supply of one Post Office PE, may
be received by another Post Office chip with a different power supply. If there is a
significant difference in voltages, switching thresholds may not be reached, and very
small amounts of noise on the line could cause the receiver to perceive unintended
changes in the binary value on the line.

Noise perceived as a switch in logic levels on handshake signals in asynchronous
systems and in clocked systems can both result in failures, but they may be more
severe in asynchronous machines. Illegal voltage changes to a state machine can
result in the circuit deadlocking or switching to an improper state. This generally
will result in illegal outputs which can ripple the effect if the outputs are also control
lines. Noise can result in similar effects in the controllers of a synchronous system.

The final version of the Mayfly prototype solved noise and voltage problems

between different processing elements. The most significant design concept was to use
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devices with a high noise margin [WES85], such as Schmitt triggers, on all handshake
lines between ICs (or anywhere noise or slow rise time might cause problems). This
technique increases the immunity of the chips to noise and voltage variations at the
cost of a minor degradation in performance. Other techniques that reduced voltage
variations and noise included wiring a common ground to all the processors, using
impedance matched shielded cable for intra-PE communications, assuring that the
power supplies drive a similar voltage, and lowering the resistance on the power and
ground supply lines.

Asynchronous systems can easily control synchronous systems, and locally clocked
subsystems are common to asynchronous designs [ND91b]. However, due to the un-
yielding global time domain, many difficulties can arise when the synchronous system
is the master of an asynchronous subsystem.

The HP-PA processors in the Mayfly node use a synchronous bus protocol. This
presented a major challenge because the Post Office design had to ensure that the
interface to the local CPU would not cause any synchronization failures. Two major
failure scenarios exist; one of processing interrupts and one of mapping variations in
processing speeds of the asynchronous part to the global clock. There is no guarantee
that interrupts or status communication between the Post Office and MP processor
will be safely aligned with the clock. Spice simulation and performance analysis of
the silicon shows that the worst-case delays of the asynchronous Post Office protocols
are significantly less than the synchronous transfer requirements for both reads and
writes to the PE registers. In practice, none of the communication faults that have
arisen in the Mayfly prototype have been attributed to synchronization failure even

though the potential exists.
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2.3 Post Office Implementation

2.3.1 Datapath Components

The Post Office contains two major logic classes — datapath logic and controllers.
The datapath logic includes the ALUs for routing calculations, counters, adders,
registers, RAM, and so forth. The controllers are all burst mode AFSMs. These
controllers communicate with each other and cooperate to control the datapath logic
using request/acknowledge handshake signals. The AFSMs typically have all haz-
ards removed under the burst-mode hazard model using unbounded delays, and are
described further in Chapter 4.

The primary responsibility of the Post Office is to transport data from one loca-
tion to another. Data paths vary in width from five to 128 bits. The performance
oriented design style uses the bundled data protocol to reduce the area and control
circuitry and achieve greater performance. The bundled protocol assumes that all
the data and associated handshake signals are in an equipotential region where sig-
nal propagation delay is similar for all lines [MC80]. Standard request/acknowledge
handshaking is used with the bundled data protocols. The data signals must be valid
before the request is driven.

Most Post Office datapath logic senses the completion of an operation and then
asserts the acknowledge line, signaling completion to the requester. For example, the
RAM blocks are the size of a packet (1152 bits) organized in 128 x 9 arrays. Write
completion is easily detected by sensing when the word line has been driven. The
acknowledge indicating data validity and precharge status for reading a RAM block

is accomplished by sensing the voltages on a single bit line pair.
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Some datapath circuits and communication lines are also controlled in a clocked
manner with stoppable clocks. The clocks are generated by a burst mode AFSM con-
currently with asynchronous handshake signals with sufficient delay for the clocked
datapath circuitry to complete its operations. The minimum delay of these hand-
shake signals is greater than the maximum delay required by the clocked logic.

The external port interfaces contain two “clocked” counters that track the num-
ber of transfers. A state machine is signaled when the correct number of transfers
has completed to load or unload the RAM and register blocks. The counters are
implemented with eight-transistor two-phase dynamic shift register stages. They are
clocked at the RAM’s access speed (using the bit line or word line completion signals
as the clock). The ports also contain routing ALUs and latches. The control cir-
cuitry “clocks” these ALU circuitry at the same speed as the external asynchronous

handshake transfers across the port.

2.3.2 Arbitration

All control circuitry in the Post Office is implemented with custom AFSMs with the
exception of the arbitration logic which requires analog mutually exclusive behavior
not easily built into state machines using current technology. Arbitration logic must
be used whenever concurrent access to a shared resources is possible.

Standard arbitration serializes access in a nondeterministic fashion. The winner
of the arbitration utilizes the resource while the loser waits until the resource is freed.
An example of this type of arbitration is the serialized assignment of bus mastership.
A second type of arbitration was required in the Post Office, whereby if the resource

is allocated to another user, the loser will proceed with other tasks rather than wait
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for the busy resource to be freed. Nacking or nonblocking arbitration is required
in the Post Office when multiple packets want to utilize the same external port for
packet delivery. When the port is busy, the packet should not wait for it to become
idle; it should be forwarded out a different port or placed in the central buffer pool.

The Post Office contains 13 nacking arbiters. I found this to be an intriguing
circuit with no previous published reference, and posted it as a design and imple-
mentation exercise to our peers who are designing asynchronous circuits and tools
[ND89, JU90]. The circuit in the Post Office consists of a SEQUENCER (built out

of mutual exclusion elements and a few NANDs) and a small state machine.

2.3.3 Features

The Post Office corroborates the benefits of the modularity and composability of
asynchronous circuits, particularly considering that this 300,000 transistor full cus-
tom circuit was designed and implemented by a single individual. The 300 megabytes
per second transfer rate is comparable with communication networks by today’s in-
dustrial standards. The low standby power of the device is an artifact of the chip’s
asynchronous design.

The burst-mode constraint and its associated design tool, MEAT, reduced the
design time of Post Office AFSMs tenfold. When coupled with Dill’s verifier and
the complex gate generator, most of the implemented AFSMs were hazard free,
increasing the confidence in the correctness and robustness of the design. COSMOS
was used to simulate modules as well as the entire chip from pad to pad after I made

minor modifications that allowed it to accommodate an asynchronous regime.
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2.3.4 Difficulties and Design Flaws

The lack of integrated design tools comparable in quality and scope to synchronous
tools became apparent in the Post Office project, as a majority of the implementation
effort was spent on tasks that can be automated. Problems with a “synchronous”
architecture style based on busses also became evident. This section discusses some
of the lessons that were learned in hindsight after embarking on a large asynchronous
VLSI implementation project.

Layout. Completion of the Post Office implementation was greatly delayed by
hand layout. Automated layout of burst-mode state machines is being developed by
Bill Coates and the Stetson project at Stanford University [MCS94].

Hierarchical verification. I was unable to verify the correct implementation of
multiple burst-mode state machine modules using Dill’s verifier. This was partially
due to the lack of tool support for burst-mode and the specification style.

Simulation was the only viable technique to check for correct implementation
of module interfaces and system behavior. Simulation is too weak a technique for
asynchronous circuit certification as the results are only as good as the timing model
and fault coverage of the generated vectors. Pathological failures are difficult if not
impossible to discover using the unit delay simulation model employed.

Formal verification is an improvement over simulation as it can test for invariant
properties which must hold for the circuit to function properly. The most important
invariants are conformance to the specification, safety, deadlock and liveness [Liu92].
Many of these verification tests can be checked automatically and are independent

of any particular circuit implementation.
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Two serious flaws in the Post Office first silicon were missed by COSMOS simu-
lations but would have been detected by the verification tool Analyze. A dynamic 0
hazard existed on the ack line of the external ports at the end of a packet transfer.
This was due to a race in the enable and tristate logic to the bidirectional ack con-
trol circuitry. Fortunately the receiving logic was robustly designed so that it was
not adversely affected by the spurious wobbling of the ack line at the end of the
cycle. A second problem resulted in part of the chip interfaces becoming deadlocked
while other parallel interfaces continued to operate uninhibited. This was not ob-
served in the initial simulations, yet occurred regularly in the first silicon. This error
required an expensive refabrication of the chip because it disabled the chip from
operating correctly once the deadlock had occurred. The source of the failure was
extremely difficult to discover using simulation techniques; it was only found after
several months of work.

Lack of tools. The lack of design and analysis tools resulted in a bottom-up
implementation of the Post Office. Although the register transfer level Helios sim-
ulations were top-down, there was no way to annotate the Helios model or use it
to direct or check the implementation process. The register transfer model did not
specify all interface signals, and efficient VLSI designs also required some modifica-
tions to the initial design. This resulted in some incompatibilities in the interfaces
between several modules which added months of work to the design. Due to design
inertia the incompatibilities were usually “fixed” by adding a “wart” module to the
design which mapped between the interface differences of the modules because this
was simpler than going back and entirely redesigning one or more modules. Design

time, area, and performance suffered from this bottom-up design style. The top down
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synthesis driven nature of Analyze can be the foundation for an effective synthesis
system that documents and verifies changes in a design.

Effect of modifications. Slight modifications to architecture and design choices
can greatly alter area and performance of a chip. The original Post Office design
called for packets half the size of the final implementation. The ballooning packet
size resulted in an incompatible floor plan, and a large, slow spine bus. Fabrication
requirements forced the larger spine bus to be segmented into three communicating
busses. Data for the external ports was extracted from the center of the chip rather
than the edge of the active portion. These flaws added 20-40% overall delay to the
circuit.

Testability. No builtin self-test or scan path analysis method has been developed
for burst-mode state machines. The only method of determining internal state of the
chip under failed conditions was to image voltage changes with a scanning electron
microscope (or SEM). A consistent failure was easily reproduced in the first silicon
with a short test vector, but could not be reproduced by the simulator. 1 was able
to get an image of wire excitations with a SEM by repeatedly resetting the chip and
exercising it with the vectors which caused the failure, thus uncovering the fault.
Two gates in a module were not physically connected in an AFSM even though the
layout tool claimed otherwise. This problem was fixed in the layout tool, and in the
circuit by sputter etching a connection to allow further testing of the first silicon.

Although SEM testing can be used in restricted instances, it is not a general test-
ing scheme. For example, the deadlock occurrence was dependent on event timings,

and was irreproducible under SEM constraints.
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Each large module was fabricated and tested as a separate fragment before com-
posing them to form the complete circuit. The external port interfaces, although
they passed all simulation tests as stand alone devices, did not function properly
when composed together to form the entire chip. This flaw occured due to dynamic
charge storage lossage on an internal node. Dynamic logic was used throughout the
Post Office chip for increased performance and decreased area when static charge
storage was not necessary. When a device remained idle, it was held in the reset
state until its operation was again required. The external port controllers contained
some modulo-n counters which determined when an entire packet had been delivered
[EP92]. These were designed out of dynamic shift registers where one of the bits con-
tained a high voltage and the rest a low voltage. The emergence of the high voltage
from the end of the shift register indicated completion. (The shift registers were
cascaded to multiply the depth for large counts). The reset port of a counter had
been mistakenly connected to the global reset rather than the port idle reset signal.
When the external ports remain idle for large periods of time, the high voltage dis-
sipates. This resulted in the counter never indicating completion. The problem was
discovered through layout inspection, and repaired in the circuit with micro-surgery
by cutting the global reset line with a laser and connecting the port idle reset to the
counter reset with sputter etching.

Unfortunately the application of process logics and formal methods cannot un-
cover dynamic logic flaws. Nor can they be used to weed out circuits with fabrication
faults, which is a second important application of scan path analysis. Builtin self-test
of burst-mode asynchronous systems, an important aspect of commercial designs, is

a topic in need of future research.
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2.4 Summary

Some of the environment, architecture, implementation, features, and flaws of the
Post Office, a 300,000 transistor full-custom chip that serves as a message coprocessor
for a distributed multiprocessor, have been described. The Post Office was fabricated
through the MOSIS service on an HP 1.2 micron CMOS process and has an area of
11 x 8.3 mm. The control portion consists of 95 different asynchronous finite state
machines, most of which operate concurrently and occupy 19% of the chip area.
Datapath circuitry accounts for 45%, pads cover 11%, wire routing occupies 22% of
the chip area, and the remaining 3% of the space is unused on the rectangular 84
pin die.

There are seven complete ALUs for routing calculations. The part scales up to
a distributed processor containing a maximum of 519,841 PEs (limited by the size
of the address word). Each chip has a measured throughput of 300 Megabytes per
second external network bandwidth, plus a local CPU transfer bandwidth of 150
Megabytes per second. Figure 2.3 is a photo of the final silicon.

Testing of fabricated chip fragments was done entirely by myself. Hodgson did
most of the testing of the final silicon once it was part of a Mayfly processing element.
A majority of the tool development (the complex gate tool, MEAT, and COSMOS
modifications) was done by myself during the project as well.

The design effort of the Post Office influenced fresh work in a number of areas and
has contributed significantly to researchers in the asynchronous design community.

Some of these contributions include:
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Figure 2.3: Photo Micrograph of the Post Office

1. T developed a new formalism for state machine design and synthesis called
burst-mode to cope with parallelism and hazard avoidance in Post Office state
machines. This is a significant contribution as it has become the first formal-
ism widely applied for the synthesis of multiple input and output change state
machines. Burst-mode also uses a representation that is natural to engineers.
Because of these advantages, burst-mode specifications and synthesis is gain-
ing widespread popularity in the research and industrial asynchronous design

communities. See under (4,5) below.
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2. The lack of tool support is a major impediment to the acceptance and use of
an asynchronous design style. Burst-mode synthesis was automated with the
MEAT CAD tool. I initiated development on the tool and wrote or redesigned
for efficiency a majority of its code. This tool was one of the pioneering asyn-

chronous synthesis systems.

3. Design vignettes of the Post Office are available to the asynchronous community
for tool benchmarking and design challenges, including a set of Post Office
state machine specifications [Chu93, LKSV91, SMD93], novel CMOS device

implementations, and design problems such as the nonblocking arbiter [JU90].

4. Other design and synthesis projects have been spawned as a direct result of
the Post Office work. This includes research done at the HP science center at
Stanford University. Several dissertations emanate from there [ND91b, YD92,

SMD93].

5. Improved algorithms and methods for hazard-free design have been developed

as a result of this project [ND92].

During the implementation phases of the Post Office project it became evident
that automated synthesis tools are a necessary and viable alternative to hand layout
for low latency asynchronous circuits. Once completed, MEAT produced circuit
designs comparable in area and performance to the hand designs. Dill’s verifier
further aided in the AFSM design as it contributed to the removal of all hazards
under burst-mode in a majority of the leaf cells. The utility of MEAT and the

verifier resulted in a larger portion of the effort to be directed toward the layout and
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simulation of the chip, two additional areas that can be supported by software tools.

The need for a stronger means of assuring correct system behavior became ap-
parent after the first silicon was fabricated and the deadlock was discovered. Sim-
ulation techniques proved ineffective and inefficient in discovering the cause of the
deadlock, motivating a stronger formalism for validating system behavior. Although
formal methods cannot detect all the failures (such as the dynamic logic error) in
the Post Office, the need to make stronger assertions about the properties of a large
parallel circuit is a great motivator for the end goal of this thesis: to produce an
asynchronous workbench capable of the practical synthesis and verification of asyn-

chronous circuits.



Chapter 3

Hazards

“but it has been delayed until [ am indifferent and cannot enjoy it”

Life of Johnson, volume 11, page 262

Boswell 1755

Delays are inherent in signal generation and transmission. A hazard exists in a
circuit if its output behavior depends on both the internal stray delays of the circuit
and on its logic components. A hazard occurs when delays in the circuit cause an
unplanned output transition. When hazards are present in a circuit, the spurious
signal transitions they engender wreak havoc with the chip control logic (and can
surface as deadlock). It is thus of paramount importance that asynchronous circuits
be hazard free. Since every transition in an asynchronous system counts, spurious
hazards become a failure point. Unfortunately creating circuits that are immune
to hazards is one of the most difficult and misunderstood aspects of asynchronous
design.

Hazards fall into two categories: those that can be removed pre-layout by modi-
fying the logic, and those that can only be controlled post-layout by examining and
engineering delays in the physical layout to ensure that the hazard will not occur.
No synthesis methodology can create hazard free systems completely independently of

the physical implementation parameters.

46
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The analysis of the source of hazards and methods of hazard removal is complex
and not well understood by the design community as a whole. This chapter discusses
the various delay and hazard models that are in standard use, categorizes the various
types of hazard that can arise in asynchronous circuits, and where possible, shows
how to circumvent them. Analyze points out hazards to the designer for removal
or control (see Chapter 7). The inability to use syntactic constraints or synthesis
techniques to produce circuits free of all hazards necessitates tools for identifying
hazards that must be controlled during the layout phase. Analyze is the first tool
that can apply multiple hazard models, uses the best methods for spotting them
with multiple equivalences, points out more hazard types than other verifiers, and
supports hierarchical application so that hazard removal can be deferred to a different

environment.

3.1 Delay Models

All logic devices and interconnections introduce stray delays of some magnitude.
The magnitude of the delay can be modeled as taking on any value ranging from
zero to some upper bound. The unbounded delay model assigns an arbitrarily
large value for the upper bound. Any canonical circuit description that is hazard
free using the unbounded delay model can be implemented hazard free in other
technologies, because physical circuits do not exhibit unbounded delays. Engineering
delay models, called bounded delay models, assign discrete upper bounds on delays.
The magnitude of the delays are based on an engineering analysis of the parameters

of a target technology and its variations.
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Well placed realistic delay assumptions can result in much smaller, simpler, and
faster circuits. However, there is a danger that hazard analysis using bounded mod-
els can overlook some hazards because of variations in device performance, circuit
placement and stray delays, and the ambience. This occurs when deviations in the
physical implementation stray outside the parameters of the analysis. Bounded delay
systems must be coupled with the physical technology mapping and device layout
process to ensure their constraints are upheld. This can pose significant difficulty,
particularly when detailed layout and delay information is unavailable. Overstating
the delay assumptions can result in larger, slower circuits, which is also a danger of
the unbounded delay model.

Circuits designed using the bounded delay model may be less robust than those
where all of the hazards have been removed in the pre-layout steps and can only be
completely validated after the circuit has been implemented and shown to adhere to
the delay assumptions. Unbounded delay hazard analysis creates circuits that are
more robust. However, it may not be possible to synthesize the desired functions
free of all hazards in the unbounded model.

A reasonable approach is to make asynchronous circuits as robust as possible
by removing as many hazards in an implementation independent fashion before
the layout steps. Once all hazards have been removed, the implementation stage
must control the hazards by using a bounded delay assumption. This model is used
throughout the thesis, and unless noted all hazard analysis assumes the technology

independent unbounded delay model.
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3.2 Hazard Models

A number of hazard models have been designed to meet varying needs, ranging
from elegant mathematical models to those that are designed for implementation
simplicity. Since the goal of hazard analysis is to create working circuits, one must
be consistent and careful in the use of hazard models and in judging their effect on
the final implementation.

Each hazard model can be used with the unbounded or bounded delay model.
These models assign delay values to devices and interconnections. The intercon-
nections are typically aluminum, polysilicon, or diffusion wires, but may be optical,
infrared, or other communication channels. Accurate hazard modeling requires that
the devices be the smallest canonical function units in the technology, such as transis-
tors, AND and OR gates. Grouping smaller components together as macro devices
can hide hazards internal to the devices, creating an inconsistencies between the
physical circuit and the analysis model.

The delay-insensitive (or DI) model considers delays on the devices as well
as the interconnections. Multiple paths in the interconnection are considered to be
independent.

The isochronous fork assumption® states that the difference in stray delays on
a given set of electrically connected wires is insignificant. Hence a signal driven on
an isochronous wire set propagates across the interconnection in such a way that it

reaches its destination devices “simultaneously”?.

Isochronous means “uniform in time”, or “having equal duration”.

2The probability of two independent events occurring simultaneously is negligible. Their tem-
poral separation could always be measured by a finer instrument. However, for this discussion, two
events are considered simultaneous if their order cannot be distinguished by the logic devices.
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The equipotential region assumption requires that a set of independent wires
has indistinguishable stray delays. This model is similar to the isochronous fork
assumption. If the stray delays and drivers of the independent wires are approxi-
mately equal, and they are driven the same time, then the receivers will not be able
to distinguish a difference in the arrival times of the signals.

The Quasi delay-insensitive (or QDI) model is a DI model where some of
the forked interconnections must be isochronous for the circuit to be hazard free.
Even when the unbounded delay model is used, these circuits are implementation
dependent because a forked signal from a fixed circuit structure in one environment
may be DI whereas it can require the isochronous assumption forcing QDI modeling
in another environment.

The speed-independent (or SI) model assigns all stray delays to the devices,
assuming that interconnections have negligible delays.

The burst-mode model assigns all stray delay to the devices (like the SI model)
and additionally requires each module to be stable after each output burst and before
the subsequent inputs arrive. A module is stable if no outputs or internal signals are
able to make a transition.

The isochronous fork assumption can remove from consideration hazards associ-
ated with stray delay in the interconnections. The speed independent model is similar
to the delay-insensitive model where all interconnections are modeled as isochronous
forks. The equipotential region assumption is typically used to remove from consid-
eration hazards that would otherwise be present in the bundled data protocol. The

burst-mode model allows multiple output change modules to be verified.
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The delay-insensitive model is the most robust and mathematically elegant model
for asynchronous design, but is a mathematical dream as truly DI implementations
are typically unrealizable [BE92]. However, when delay assumptions can be localized
and contained internal to modules whose layout is controlled, building blocks that are
burst-mode, SI, or asynchronous can be supplied which can be assembled according
to DI constraints.

Utilizing a speed-independent or burst-mode model throughout the system results
in better circuit density and performance as is shown through a typical Post Office
circuit in [CDS93b]. There a tenfold reduction in area and twofold reduction in
propagation delay in the example was achieved by convolving a group of macro
module components into a single burst-mode circuit. For area and performance

reasons burst-mode implementations are used throughout this thesis.

3.3 Circuit Hazards

Hazards occur as an interaction between a circuit and its environment. Although
hazards are created by devices and delays internal to a circuit, the way the envi-
ronment interacts with a module can play a major role in the ability to design well
behaved circuits. The interaction of the environment and a circuit is so basic that
all but one class of hazards is defined using environmental constraints.

Circuits that operate in Fundamental mode constrain the environment so that
it must hold the inputs into a circuit stable sufficiently long to allow the changes
to propagate through the logic, produce the desired outputs, and stabilize internally

before a new input set is applied. Asynchronous methods utilize handshake protocols
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to indicate to the environment when the circuits are in a receptive state and new
inputs can be supplied. Detecting receptiveness is straightforward using single input
change (SIC) and single output change (SOC) handshaking. Multiple input change
(MIC) and multiple output change (MOC) handshaking cannot as readily detect
when the input or output change has completed, or allow the environment to restrain
its response until the circuit is receptive. For example, an early response to a partially
complete multiple output change will violate the fundamental mode assumption if
new input signals are presented to the circuit before it has completed the output
change and stabilized.

Hazards can result and operation is ambiguous when inputs are supplied to a
circuit when it is in an unreceptive state. For this reason all but one of the hazards
are defined under fundamental mode constraint. When handshaking protocols are
insufficient to assure receptiveness and circuit stability and this results in hazards,
the layout must be examined to verify that the physical devices have sufficient time
to stabilize before new inputs arrive.

There are two broad classes of circuits which may be designed — combinational
and sequential. A logic function is combinational if its outputs can be determined
solely from the input values supplied. Outputs from sequential logic are a function of
the current inputs as well as the history of previously applied input signals. Sequen-
tial logic requires memory to record the input history because the outputs cannot
be calculated from the inputs alone. The following section defines the occurrence of
a hazard in a circuit. Section 3.3.2 deals with hazards in combinational logic, and

Section 3.3.3 discusses hazards in sequential logic.
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3.3.1 Hazard Occurrences

The occurrence of a hazard can be measured at the output of a logic device. Fig-
ure 3.1 shows the output waveforms of the two classes of hazards, which are classified
solely by the effect of the hazard, not by its cause.

A static hazard occurs when the steady-state output function remains the same
when a new set of inputs is received, but a momentary change occurs in the circuit
output due to internal delays. Static hazards are classified as either static 0 hazards
as shown in Figure 3.1(a) where the steady state is a logical 0, and static 1 hazards as
shown in Figure 3.1(b). A static hazard which doesn’t drive a signal the full voltage

amplitude is called a runt pulse.

S ) — L] I
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Figure 3.1: Hazards Waveforms in Combinational Logic

The second class of hazard, called a dynamic hazard, is shown in Figure 3.1(c).
Dynamic hazards occur when a new set of input values produce a change on the

output, and the output oscillates before settling to the steady state value.

3.3.2 Hazards in Combinational Logic

Combinational hazards in a circuit are transitory if no new inputs are applied until
the circuit stabilizes. Once the circuit has stabilized it will produce the correct

output for the current inputs.
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Logic Hazards

A logic hazard exists in a combinational circuit if, under the fundamental mode
assumption, the delays in the circuit result in a hazard. Logic hazards are the most
commonly discussed cause of combinational hazards. Such hazards are the result of
the particular logic network that is used to implement the output function. Changing
the circuit implementation can remove logic hazards — as well as introduce them.

Unger showed that under a single input change constraint it is always possible to
synthesize all transitions in a combinational circuit to be free of logic hazards [Ung69].
This is accomplished by adding redundant covers, making the implementation larger.
Table 3.1 contains the definition of a contrived specification that demonstrates logic
hazard removal techniques for SIC implementations. Figure 3.2(a) contains the Kar-
naugh map generated from the specification and Figure 3.2(b) shows two implemen-
tations. Both circuits contain the ac and ¢ implicants, and one circuit adds the ab

AND gate by including the dotted interconnections.

B ¥ pzE1,
E1, def cz.az.Fl1s 4+ a. El,
El, ¥ B,
El; ¥ bezaFl

Table 3.1: A SIC Circuit Specification

As can be seen by examining the Karnaugh map in Figure 3.2, there are three
prime implicants, b€, ac, and ab [McC86]. The two essential prime implicants, ac
and b¢, are circled in the K-map. A logic hazard exists in the circuit designed using
only the essential prime implicants. Assume the implementation is in state K1,

(abc:110) and input ¢ arrives. At this point the implicant ¢ is keeping the output
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Figure 3.2: SIC Covering Example

high. The arrival of ¢ turns that implicant off, and the implicant ac on. If b¢ turns
off faster than ac turns on, then a static 1 hazard may occur on the output.

Unger showed that including all prime implicants into SIC combinational logic is
sufficient to remove all its logic hazards. The third prime implicant, ab, is shown in
the K-map with the dashed box, and connected to the circuit with the dashed lines.
During the ¢ transition from state E1, the implicant ab keeps the output z asserted.

Removing logic hazards from combinational logic in multiple input change cir-
cuits is more complex. Including all prime implicants removes all static hazards for
outputs that must remain stable during a properly designed MIC transition, as is
the case in the SIC covering example of Figure 3.2. However, other methods must
be used to assure that no “intervening” implicants are temporarily asserted during a
transition when a signal does not remain stable. Such intervening implicants create
dynamic hazards. For example, from state abc:101 in Figure 3.2 when both signals
a and b change in a MIC transition to state abc:011 a dynamic hazard exists. The
ac implicant will unassert during the transition, whereas the ab implicant can tem-
porarily assert, depending on input trajectories and delays. The hazard occurs when

the ac implicant and the OR gate become unasserted, and then the ab implicant
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temporarily asserts long enough to drive the OR gate. Refer to [ND92] for more

details on designing logic hazard free combinational logic.

Lesson 1 Combinational logic can be synthesized free of logic hazards under the

input and output constraints of burst-mode.

Function Hazards

A function hazard exists in a MIC circuit if and only if an output changes more
than once along a minimum length path of an input transition. Function hazards are
caused by the specified functional behavior of a circuit. Unlike logic hazards, function
hazards cannot be removed by changing the circuit design. This type of hazard does
not exist for SIC implementations, and can only arise in a MIC transition which
passes through a “cube” of multiple states in a Karnaugh map. Unger showed that
with MIC combinational logic, every function with more than one prime implicant
may contain function hazards that cannot be circumvented through logic design
alone.

Even native logic devices can contain function hazards. Figure 3.3 shows the
function specification for a NAND gate. If there is a multiple input change from
ab:10 to 01 as shown by the arrow in the Karnaugh map, then a static 1 function
hazard exists. If the intermediate state ab:11 is reached, the output may temporarily
become a 0, causing the hazard.

The remedies for function hazards include constraints or modifications to the

environment or the circuit behavior, and include:

1. Require that the environment provides the inputs simultaneously so that a

direct jump to the destination state is achieved.
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Figure 3.3: Functional Hazard in a NAND Gate

2. Enforce SIC signal ordering by the environment in such a way that a hazard

free minimum path is taken for the transition.

3. Redesign the specification so that it will work in all environments by removing

the function hazard.

The first two solutions attempt to control the environment so that the hazard will
not occur in practice. Neither is a good solution, and the first is generally unrealiz-
able. The hazard is avoided in the second solution if @ always lowers before b asserts
as the transition will proceed along the path ab:10 — 00 — 01. If the environment
provides the signals in either order in parallel, an expensive SIC sequencing unit
must be designed to constrain the order of the signals from the environment. This
may introduce other hazards as well.

MIC specifications can be designed without function hazards. More restrictive
implementation rules can guarantee that the ab:10 — 01 transition is hazard free.
Burst-mode is such a system because it restrict specifications in such a way that
function hazards cannot arise. As long as the outputs are identical in the cube
covering the transition from the start state up to (but not necessarily including) the

end state, a function hazard will not exist. The ab:10 — 01 transition cube requires
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the states ab {00, 10,11} evaluate to 1 in order to avoid function hazards, clearly an

impossibility for a NAND gate implementation.

Lesson 2 Function hazards can be avoided in MIC circuits by implementation con-

straints.

3.3.3 Hazards in Sequential Automata

Sequential logic is formed by adding memory to combinational logic. Most practical
circuit implementations contain sequential logic. The state machines discussed in this
thesis are low latency Huffman machines unless otherwise noted, whose construction
is shown in Figure 3.4. The sequentiality — and memory — in these circuits is created
by feeding the state outputs back in as inputs to the combinational logic. These
are the asynchronous finite state machines (or AFSMs) produced by MEAT. The
hazards discussed in this section are present in Huffman machines as well as all other

classes of AFSMs using other different memory means such as latches or C-elements.

Y

Y

state

AFSM

‘ \ — X —trigger driver —> 7
Y _: output —|—>

Figure 3.4: Huffman and MEAT State Machines in the Post Office

The hazard discussion of this section assumes that all sequential logic is derived
from combinational logic free of hazards by techniques discussed in the previous
section. However, combinational circuits free of logic and function hazards used as

the building blocks of state machines do not quarantee a hazard free sequential circuit!
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Almost all state machines contain sequential hazards, which are generally caused
by two signals arriving at a decision element from two types of paths: one from
inputs or combinational logic only, and one from a storage signal (a state variable in
a Huffman machine).

The first three classes of sequential hazards that will be discussed in this section
assume deterministic combinational logic operating in fundamental mode. The final
type of hazard, the delay hazard, does not assume fundamental mode and can occur
in both combinational and sequential circuits.

Essential Hazards

Essential hazards can be present in a sequential circuit if and only if from a
starting state, when an input is changed three times, the final stable state is different
from the stable state reached after the input is changed only once. Essential hazards
can lead the AFSM into an erroneous state. This occurs when the input causes a
change in a state variable that leads to the desired stable state. If this state change
is perceived by a second state variable before the input then the second state variable
logic may react to the new state and old input value and switch into an erroneous
state.

Essential hazards are similar to function hazards in that they are part of the
definition of a function and there is no known automated technique for removing
essential hazards, including logic redesign or state variable reassignment.

The TOGGLE element is a classic example of a circuit with essential hazards.
Table 3.2 shows the CCS definition, flow table, and logic symbol of a TOGGLE.
From any stable state, no trio of transitions will return you to the same stable state.

There is a possible essential hazard for each transition. Assume, for instance, that
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a Possible Encoding
0 1 state Y1 Yo

0 1,- 0 00
Td:ef a.b.ae.T 1 01
1 12,b 2 11
3 10
2 3,bc b
a
¢

Table 3.2: The TOGGLE Element

y =b
Yo = a

from state 00 of the flow table the input a has makes the transition 0 — 1, which
should move the AFSM into state 0-1. This is an unstable state, so the state is
changed by moving to row 1. The output b will also change, moving the AFSM into
the stable state 1-1. The hazard occurs when the state change is processed before
the input change in an implementation, sending the state machine through the state
sequence 00 — 1-0 — 2-0 — 2-1 — 3-1, arriving at an erroneous state.
Transient Hazards

Transient hazards exist if from a given starting state, when the input is changed
the second time the starting state is reached but a static hazard is possible on any
of the outputs. Transient hazards occur in a circuit when a state variable change is
perceived by the output logic before the input change is perceived. These hazards
are similar to combinational logic hazards because they are transient. Transient
hazards are also similar to essential hazards because they are part of the function
definition and cannot be removed by logic design; the difference being that the hazard
is produced in the output logic rather than the state logic. This hazard is extremely

common in MIC AFSMs.
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D-trio Hazards

D-trio hazards may occur if from a given starting state, when the input is
changed three times, the final state is the same as the internal state after one change
in the input set, but the second state is different from the initial state. If any outputs

change in those three states, a d-trio hazard can occur.

3.3.4 Delay Hazards

The techniques for defining and synthesizing circuits free of combinational and se-
quential hazards assumes the fundamental mode stability requirement. However,
other than the burst-mode model, none of the hazard models of Section 3.2 assume
the fundamental mode of operation. This inconsistency between hazard definitions
and analysis can result in hazards that slip through synthesis techniques. Delay haz-
ards arise due to this inconsistency and are extremely common in sequential circuits.

A Delay hazard can be present when more than one implicant enables a function
output in any circuit state. The hazard occurs when multiple implicants are to assert
and hold the output high, but only a subset of these implicants stabilize, and the
subsequent inputs unasserts the stable implicants before the unstable implicants have
stabilized.

For example, the SIC circuit of Figure 3.2 from Page 55 has delay hazards. We
will look at the following delay hazard pointed out by Analyze (in the SI analysis

mode) using the circuit implemented with all prime implicants.

;33 Implementation doesn’t conform to specification!

;;; Implementation generates an illegal output!
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HE Illegal Signal: ’z valid spec signals: (b)

D Signal trace: (b ’bc* ’z a ¢ ’c* ’bekx z)

The implementation behaves correctly until it moves into state £1, in Table 3.1.
At this point the ab implicant is unstable but does not assert. When the ¢ input
arrives, the ac implicant also becomes unstable. If the inverter and the b¢ implicant
each make a transition before the ab and ac implicants, then the hazardous output
that is pointed out above occurs.

This example points out that delay hazards can occur even when using the most
restrictive logic class (combinational logic) and environmental constraints (SIC and
SOC). It will also occur in sequential logic and with other environmental constraints,

and can be exacerbated by the addition of coverings used to remove logic hazards!

Lesson 3 Synthesis systems do not remove all sequential hazards.

3.3.5 Example of Hazards in Sequential C-element

The Muller C-element is a standard building block used by many asynchronous
systems. This section points out hazards and problems that may occur even in this
simple component. A CCS specification of the C-element is shown in Equation 3.1.

C-element % a.b.¢.C-element + b.a.¢.C-element (3.1)

The C-element specification conforms to all syntactic requirements for any asyn-

chronous synthesis system, and can be translated into the state graph and Karnaugh
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map shown in Figure 3.5. The standard C-element implementation is shown in

Figure 3.6 and is synthesized from the K-map coverings.

© abyg 01 11
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Figure 3.5: C-element State Graph and K-map

aC

Figure 3.6: C-element AND-OR Implementation and Logic Symbol

This simple circuit obeys all semi-modular and burst-mode constraints. The logic

used in the C-element is free of all combinational and sequential hazards including

logic, function, essential, d-trio, or transient hazards. Assuming that this results in

a hazard free sequential circuit is incorrect. Analyze pointed out eight instances of

computation interference in the circuit caused by delay hazards, resulting in static 1

hazards on the output. Table 3.3 is a transcript of one of the error traces of Analyze

and is used as an example. Inputs ¢ and b became asserted, setting implicant ab.

This asserted the output ¢, which in turn enabled the other two implicants, and

the C-element arrived in state abc:111 in the K-map of Figure 3.5. However, only
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the bc implicant asserted before the b input became unasserted. After arriving in
state abc:101, the implicants ab and be became unasserted, allowing the output @ to
transition, resulting in the occurrence of the static 1 hazard. The other seven delay
hazard errors are similar, and occur after arriving in state abc:111 without all three

implicants becoming asserted before an input changes.

;33 ERROR! Computation interference encountered!
;;; Signal ’c in agent C-ELEMENT*
;3; Trace: (b a ’ab ’c ’bc b ’ab ’bc ’c)

Table 3.3: One of Eight SI Delay Hazard Errors in the C-element

Although the C-element contains eight errors using the SI hazard model, it is
verified in Analyze as correctly implementing the specification under the burst-mode
hazard model. The fundamental mode assumption ensures that the three terms
asserting the output are stable before the next input set arrives. This result is
logical because the hazard definitions, with the exception of the delay hazard, assume

fundamental mode, and the C-element doesn’t have any of these hazards in its design.

3.3.6 Other Potential Faults in the C-element

This section examines other potentially serious problems with the C-element design
of Figure 3.6, which are also common to many asynchronous synthesis systems and
designs.

Figure 3.6 shows that the output ¢ is fed directly back into the circuit as a
state variable. Faster circuit response can be achieved by using state variables as
direct outputs. However, this creates an isochronous fork that conjoins the external

environment and the internals of the state machine, destroying the modularity of
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an AFSM as internal state signals pass directly on to the spatially unconstrained
environment. This is an undesirable location for an isochronous fork for the following

two reasons:

1. The fundamental mode assumption can easily be violated. The environment
can act on the output concurrently with the internal logic of the AFSM re-
ceiving the state change. A quick response from the environment can violate
the stability requirement. Infinitely fast environment response is achieved by
feeding the forked output directly back into the state machine. This always
violates the fundamental mode assumption and nearly always results in circuit
failure. Analyze can detect when a direct output to input connection results

in circuit failure, but post layout timing analysis must still be carried out.

2. Global circuit analysts ts required. As can be seen from Figure 3.6, the forked
signal € is passed directly to the environment as well as internal to the circuit
as a state variable. The modularity of the circuit is compromised as the load on
the state variable depends on the external circuits it drives and their placement.
Timing analysis of the C-element and its environment is required to assure
fundamental mode is not violated by the fork. Kees van Berkel showed that
even when the output of a C-element passes through logic, and the load on the
output is greater than the feedback delaying the signal externally, it still can

fail as a result of this fork [Rob61, vB92a].

These problems can be controlled and localized by buffering forked outputs that
feed back as state variables. That is one function of the driver box in Figure 3.4.

This solution usually comes at the cost of a slightly larger and slower circuit, but
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can improve performance when the outputs are heavily loaded (but this depends on
the circuit environment). Localizing the fork using the above technique is essential
if the circuit is to be used as a building block in a macro module library.
Burst-mode implementations permit the rendezvous operation of the C-element
to be convolved into AFSMs. This can result in better aggregate performance, as
well as the removal of the isochronous fork on the signal outputs. For these reasons

C-elements were rarely used the Post Office designs.

3.4 Specification Complexity and Hazards

The difficulty of implementing a circuit free of hazards increases rapidly with the
complexity of the behavior. As implementations grow over 32 minimized burst-
mode states, the additional coverings required to remove logic hazards create delay
hazards. The likelihood of delay hazards increases with the complexity of a design.
Conversely, Very small specifications — those consisting of less than 5 minimized
states — are usually undesirable because of the logarithmic scaling of the binary
state representation.

The difficulty of building large hazard-free implementations arises mainly due
to the difficulty of removing hazards from the feedback signals. As the number of
state variables and logic devices that must share the feedback signals increases, so is
the probability of creating hazard-free covers greatly reduced due to the difficulty of
covering all cubes and assuring there are no interfering covers [ND92].

Some synthesis systems attempt to reduce the number of dedicated state variables

by feeding the outputs back into the circuit as state variables [Chu87, Chu93]. This
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results in isochronous forks, with their attendant analytical problems, at nearly all
outputs! This trick can decrease the number of dedicated state variables (since the
outputs need to be produced in any case), but the total number of feedback signals
(state variables) usually increases dramatically. The probability of sequential hazards
(essential, transient, and d-trio), as well as delay hazards, may increase by adding
to the total number of state variables, particularly when the excitation pattern of
many of the state variables is inflexible.

AFSMs in the Post Office were all characterized by burst-mode state machines.
Given a correctly constructed burst-mode description and system behavior, MEAT
and other synthesis tools can generate physical device descriptions suitable for in-
tegrated circuit fabrication. A graphical burst-mode description that will easily fit
on a piece of paper is typically very easy for engineers to specity and understand
(its appearance is similar to a Mealy state machine), and is usually of the correct
implementation complexity for automatic implementation (from 5 to 32 minimized

states).

3.5 Hazard Summary

General implementation independent techniques for hazard removal in MIC combina-
tional circuits have only recently been developed. There is no method of syntactically
restricting specifications or designing them in such a way as to remove all sequential
hazards using the implementation independent unbounded delay assumption. For
example, simple asynchronous building blocks such as the TOGGLE cannot be syn-

thesized without hazards using current technology, and the C-element can only be
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designed hazard free with great effort®. That few combinational asynchronous cir-
cuits can be built without hazards has been the topic of some recent papers [Mar90].
Brzozowski and Ebergen discussed the delay sensitivity of asynchronous implemen-
tations, and proved that it is theoretically impossible to design many simple circuits
without hazards using logic gates [BE92]. This results in the following rule of thumb

of asynchronous design:

Observation 1 Hazard free sequential circuit synthesis is not always possible, and

hazard free systems are extremely rare.

Applying the Speed-independent hazard model with unbounded delays reveals
that transient, essential, and delay hazards abound in sequential asynchronous cir-
cuits that are built from locally hazard free combinational logic. Table 3.4 lists
the hazards discussed herein and the current ability to guarantee that synthesized

circuits are free of such hazards.

Guaranteed Hazard Free Synthesis

Hazard Type Circuit Class
logic hazard combinational most circuits
function hazard  combinational most circuits
essential hazard sequential semi-modular circuits
transient hazard sequential semi-modular circuits
d-trio hazard sequential semi-modular circuits
delay hazard no circuits

Table 3.4: Hazard Free Circuit Classes

Automated techniques are available that can synthesize most combinational cir-

cuits free of all logic and function hazards. There may be some simple constraints

3A hazard free DI implementation of the C-element exists, but is a mystery to me how it was
coined!
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that assure, for example, that a function hazard is not contained in the specification.
There is only a limited class of circuits that is guaranteed to contain no sequen-
tial hazards. These circuits, called semi-modular circuits, were described by Muller
[Mil65]. Such circuits are confluent in every state (see Section 5.3.2). There is no
class of circuit that can be synthesized with modern techniques that is guaranteed
to be free of delay hazards.

A lot of confusion has resulted both within and outside the asynchronous com-
munity regarding claims of so-called hazard free synthesis systems. Although these
systems may remove certain classes of hazards based on the fundamental mode as-
sumption, such as logic hazards in combinational logic, no system is capable of gen-
eral hazard free circuit synthesis under the implementation independent unbounded
delay models. Because bounded delay models require implementation dependent in-
formation, they are difficult to evaluate without the circuit layout and parameters.
More rigorous and honest reporting must be employed regarding the assumptions
used, the weaknesses, and constraints of synthesis systems because it is unlikely that
there can be a single hazard model that can be applied from high level descriptions
on down to circuit implementations. For example, the DI model, although math-
ematically elegant and useful for coarse high level evaluation, cannot be applied
to physical implementations. Other hazard analysis, removal, and control methods
must be used at the physical circuit level. The way in which any particular synthesis
methodology treats this dichotomy of hazard modeling must be made evident.

The following actions are necessary to design safe burst-mode circuits, which like

any other class of circuits cannot be guaranteed to be synthesized free of all hazards.
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Action 1 Synthesis systems can be created which remove combinational hazards and

most sequential hazards.

e Designing sub-circuits free of all combinational hazards may or may not in-

crease the likelihood of a final hazard free implementation.

e Many sequential circuits can be synthesized hazard free, but not all hazards

are removed by synthesis constraints.

e Function hazards can be avoided with implementation and specification con-
straints. This step must be a pre-synthesis procedure because modifying the

circuit structure or state assignments cannot remove such hazards.

Burst-mode was developed to assure that designs are free of function hazards and

to aid in the development of compact, low latency hazard free AFSMs.

Action 2 Hazard analysis is required following circuit synthesis to point out where

delay hazards and unremovable sequential hazards exist.

e It may not be possible to specify certain behaviors without sequential hazards

(such as the TOGGLE).

e Some or all potential sequential hazards (such as essential hazards) may not

be present in a particular design.

e No synthesis tool creates hazard free sequential circuits.

Essential and transient hazards will not be present in an implementation where

there is no buffering or inversions of the input signals. However, this logic constraint
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is impossible in practice and some of the unremovable hazards due to the behavior of
the specification will occur. Delay hazards are always possible even after removing

all other hazards.

Action 3 Hazards may be removed using techniques unique to the implementation

media.

Hazards that were not removed in the specification and synthesis stages can be
flagged for special treatment and removal. Section 3.7 discusses two techniques used

in the Post Office design for removing hazards from synthesized logic.
Action 4 Remaining unremoved hazards must be controlled in the circuit layout.

When hazard removal fails, hazards can be controlled at the time of circuit lay-
out because hazards are created by stray delays. Implementation technology and
layout may require additional investigation to assure that the requirements of the
assumptions made by the hazard models used in verifying an implementation have
not been violated. For example, the isochronous fork assumption has resulted in real
circuit failures [Mar89]. Flagging potential hazards in a circuit for special layout

consideration allows one to:

1. attempt to create a layout where the delays will not result in a hazard, and

2. analyze the layout to assure this is the case.

The design methodology of the Post Office successfully took this approach to
controlling hazards. Hazards in the AFSMs were all localized to the state machine
itself where hazards are easily controlled. Model assumptions such as the isochronous

fork and fundamental mode were also restricted to local areas whenever possible.
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3.6 Controlling Hazards

All hazards are not removed during circuit synthesis under the unbounded delay
model using any of the hazard models presented in Section 3.2. Further, all these
hazard models, with the exception of the DI model, contain abstractions which
remove certain hazards from consideration. Care must be taken in the layout to
assure that the hazards that remain or have been removed from consideration do not
occur in the circuit.

Since hazards are caused by stray delays, engineering techniques exist which can
organize the delays of a circuit to preclude the occurrence of the hazards. Controlling
of hazards is implementation dependent and if the circuit is implemented in another
technology or with different parameters the hazard may not be controlled using the
same techniques. Logic or electrical circuit diagrams are not proof that a hazard
is controlled — the physical properties of the devices and layout must be examined.
Technology mapping that does not add additional hazards only prevents the increase
of layout restrictions. Technology mapping does not control the potential problems
that already exist and must be passed information regarding these hazards for reliable
implementations to be created. Even so, the layout restrictions for asynchronous
circuits are much looser than for synchronous circuits. Implementations can also be
made smaller and faster, as will be shown in Section 3.7.2, if some knowledge of the
actual delays of the physical device are considered since no physical devices used in
circuit fabrication actually demonstrate unbounded delay.

Many synthesis systems control hazards by adding delay to the output of the

state logic [Ung69], a solution which is not satisfactory for low latency circuits. A
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better solution (used in the Post Office) is to use careful layout and circuit design
coupled with an inequality timing analysis to assure that the hazards will not occur
given the delays in the circuit. Unger presented an inequality on page 179 of [Ung69]
which assures that hazards caused by delays hidden with the fundamental mode
assumption are controlled. A similar inequality was used in the Post Office and is

described in [Ste92].

3.7 Hazard Removal

This section presents two methods used in the Post Office to remove hazards once
state machines have been synthesized with MEAT. These techniques have some weak-
nesses since they may not remove all hazards, have not been automated, and will
not work for all classes of logic or circuits. Further study is necessary to generalize,

strengthen, and automate these techniques.

3.7.1 Signal Reordering

Figure 3.7 shows the MEAT implementation of the Post Office state machine SBuf-
Send-Ctl. Refer to Section 4.7.1 for an explanation of this circuit and its specification.
This circuit contains a transient hazard because the Reg-Send output combinational
logic can process a change in the Y0 state variables before noting the change in the
Begin-Send input signal if the inverter is slower than the OR gate, causing a static 0
hazard. The hazard path is indicated by the dotted line, and occurs in state 2 of the

specification (in Figure 4.4) as Begin-Send becomes asserted.
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Figure 3.7: SBuf-Send-Ctl Circuit with a Transient Hazard

The first hazard removal technique reorders the sequence that signal transitions
are evaluated by adding inverters to a signal path. The transition on Begin-Send
must arrive at the Reg-Send logic before the Y0 state logic to remove the hazard.
“Double inverting” Begin-Send to the Y0 state logic forces the output logic and state
blocks to evaluate input transitions in a fixed order using burst-mode or SI analysis
so that the Begin-Send is accepted by the Req-Send logic prior to the Y0 logic.

Figure 3.8 shows SBuf-Send-Ctl with the hazard removed by adding an inverter
to double buffer the Begin-Send signal. Removing the hazard in this manner comes
at the cost of additional inverters and a slightly larger circuit. Output latency is not
usually increased by this method of hazard removal if the hazard is static, as is the

case in this circuit.
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Figure 3.8: Burst-mode Hazard Free SBuf-Send-Ctl Logic
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3.7.2 Complex Transistor Gates

Races between gates can be removed by combining the gates into a single complex
functional unit designed with transistors. Such transistor structures are referred to
as complex gates. This is the second hazard removal technique used in the Post
Office. The rules for creating these complex gates are part of a tool I developed that
interfaces with Electric [Rub87] and produces transistor schematics. Applying the
AND-OR implementation of the C-element shown in Figure 3.6 to the complex gate
tool produces the single complex gate in Figure 3.9.

This implementation is free of all hazards using SI analysis. The delay hazard in
the circuit of Figure 3.6, caused by unequal delay of the three AND gates, is removed

by convolving the independent gates into the single complex device.
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Figure 3.9: Complex Gate CMOS Transistor Implementation of C-element

Another example of complex gate hazard removal is demonstrated with the PE-
Send-Ifc AFSM. This state machine controls the external handshake lines on the
PE port when an outbound packet is being loaded into the Post Office registers.
This state machine is fairly complex, and is not shown here in its entirety. A piece
of the burst-mode specification is shown in Figure 3.10(a). The MEAT implemen-
tation for the TAck signal requires seven AND terms. Only the two terms active

in this transition are shown in Figure 3.10(b) using the canonical AND-OR gate

implementation.
(2 L
JRA-IQ Yoy o1
1TAck 10F ° |’ 0101 o .
e Ra-1Q—>0 |
TReq 010

TAck = YOx Rd-1Q xTReq + Y1x Rd-IQ xTReq
SG Segment AND/OR Implementation with Hazard

(a) (b)

Figure 3.10: PE-Send-Ifc Hazard
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The dynamic 1 hazard present in this implementation is shown by the signal
values on the wires in the figure. This hazard exists because a term (in the bottom
AND gate) can become temporarily asserted during the input and state change burst.
The top AND gate becomes asserted and remains stable. If the top AND gate is
significantly slower than the bottom AND gate, and the Y1 logic is slower than the
inverter, then the bottom AND gate can turn on then off before the top AND gate

ever fires, producing the hazard as the output can bounce 0-1-0-1 before stabilizing.

YO -

TR. RA-IQ
Vi eq Q-

0 10= TACk
RIIQ
TReq —
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Figure 3.11: PE-Send-Ifc Hazard Removal with Complex Gate

Combining the two AND gates into a single complex gate removes the hazard
and the final circuit is smaller and faster. Figure 3.11 shows the complex gate used
in the Post Office chip. This gate was created by the MEAT back end complex gate
generator. As can be seen, the complex gate removes the hazard because the TAck
signal cannot be pulled low until both the Y1 and Rd-IQ signals have changed.

Note that this hazard exists in the sum-of-products form because the combina-
tional logic is not entirely hazard free for MIC logic. The bottom AND gate becomes

asserted because it is an “intervening” gate that turns on at an intermediate part
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of the MIC transition. This hazard may be removed with careful synthesis and ad-
ditional logic and states. This example shows that extra logic required to remove
hazards in the sum-of-products form may not be necessary if the function will be
implemented as a complex gate.

The example of Figure 3.2 confirms that at times the additional coverings are
necessary to create a hazard free complex gate implementation. Using only the
essential prime implicants ab and ¢ produces a complex gate of Figure 3.12(a) that
does not remove all of the hazards in the complete circuit as the inverter delay creates
static hazards on the output. No hazards are introduced with complex gates, and

the circuit of Figure 3.12(b) is a hazard free implementation.

-
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c— - T
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Figure 3.12: Hazard Free SIC Circuits as Complex Gate

3.8 Summary

This section presented a description of delay models and hazard models commonly

used to describe and analyze asynchronous circuits. The definition and causes of
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common hazards and their avoidance was also presented with examples. Most haz-
ards are defined based on a fundamental mode requirement, yet most hazard analysis
models do not use the fundamental mode stability requirement.

Hazards cannot be removed from all circuits in a technology independent man-
ner. Specification and synthesis procedures can be used to automatically synthesize
combinational circuits free of all but delay hazards. Sequential circuits cannot be au-
tomatically synthesized free of hazards under the unbounded delay model. For some
circuit specifications, hazard free implementations have been proven impossible, and
for others hazard free synthesis cannot be accomplished with current technology.
Many instances arise due to the divergence between hazard definitions that assume
stability and analysis methods which do not. Hazards are sensitive to circuit struc-
tures, and AFSMs of moderate complexity with fewer implicants and state feedback
signals typically ease hazard removal while allowing low latency.

Analysis tools are necessary to identify unremoved hazards by a posteriori evalu-
ation. Two methods for removing hazards following circuit synthesis were presented.
When the hazards cannot be removed with these and other techniques, delays in the
physical layout must be organized so that the occurrence of the hazards will be pre-
vented. Assumptions of the hazard model must also be verified. Delay inequalities,
like the one used with the CMOS AFSMs in the Post Office implementation, can
ensure that the remaining hazards have been controlled.

Delay-insensitive macro module synthesis systems use many components, such as
the C-element, that contain hidden isochronous forks and hazards. However, when
the hazards and forks are localized to AFSMs then compact, low latency burst-mode

designs can be synthesized which are as reliable and robust as DI circuits.



Chapter 4

Burst-mode and AFSM Circuit Synthesis

Key to any hardware design is the correct construction of physical devices. A major
challenge in creating the final circuit is the process of unifying the physical behavior
of components with a suitably abstract concept of the desired external operations.
Burst-mode simplifies this process by restricting specifications in a way that makes
them easier to build correctly as it tends to more closely match the designer’s mental
model of the hardware. One of the most significant contributions of burst-mode is
the ability to design hazard free multiple input change combinational logic.

This chapter begins by discussing burst-mode specifications in Section 4.2 fol-
lowed by the implementation and specification requirements. The specification re-
quirements are formalized in terms of CCS. This formalism allows the verification
of a CCS agent description as a valid burst-mode specification which is suitable for
implementation by MEAT or other tools. If behavioral descriptions can be validated
then the synthesis process can formally prove correctness from a high level specifi-
cation on down to the specification of each state machine. These specifications can
then be passed directly to MEAT or an analogous tool to generate masks which are

ultimately fabricated. This chapter concludes with a design example from the Post

Office.

30
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4.1 Burst-mode

Before building the Post Office I had designed many small asynchronous systems,
and one moderately sized asynchronous integrated circuit [Ste84]. However, the
complexity, low latency requirements, and inherent parallelism of the Post Office
made most of my previously used asynchronous design styles impractical. While
single input change (or SIC) techniques were well developed, they were not directly
applicable to Post Office control due to the amount of parallelism present. When
several inputs to a SIC AFSM may change simultaneously, they must be filtered or
combined with input conditioning which makes the design more difficult, and area
and performance suffer. Some MIC techniques overly restricted the arrival time of
signals. The stored state model I used previously for integrated circuits was a fairly
unrestricted multiple input change (or MIC) model, but its implementations were
also very large and the response time was slow [Hay81]. Other MIC methods required
inertial delays (delays that can filter out small duty cycle transitions) or delays on
the feedback lines which were also unsuitable for performance oriented designs.

My solution for implementing low latency state machines designed for parallel
process forking and synchronization was to invent the burst-mode design style [Ste92,
CDS93a). Performance was further improved by transforming sum-of-products de-
scriptions into complex gate CMOS implementations. Burst-mode permits a re-
stricted form of MIC signaling which supports hazard free sequential logic and sim-
plifies the implementation of hazard-free combinational logic in asynchronous finite

state machines. It also results in small, intuitive specifications.



CHAPTER 4. BURST-MODE AND AFSM CIRCUIT SYNTHESIS 82

There existed a serious lack of design tools at the start of the Post Office project.
Our tool set consisted of only a hand layout editor and design rule checker, and
register transfer level architectural simulator. The need for some synthesis tools
became more evident as the project wore on. I could spend a week or more designing,
laying out, and checking a single burst-mode state machine. This time would double
if errors were found, and the hand process was highly error prone.

I produced a tool that would take sum-of-products function specifications and
produce a CMOS complex gate implementation. The tool produces a COSMOS ntk
format file, or a schematic in Electric which can be printed.

Following the success of the complex gate tool, I approached Al Davis with the
concept of writing a burst-mode synthesis tool as there were no tools available at the
time which fitted our needs. Davis, Coates and myself then embarked on the MEAT
tool to automate the synthesis of low latency AFSMs.

This prototype tool greatly decreased design time and opened up other design
issues which had previously been hidden by the complexity of hand AFSM synthesis.
David Dill had just completed his dissertation at this time and we were fortunate
enough to get one of his students, Steve Nowick, to modity his trace structure verifier
to model burst-mode AFSM verification. We could now synthesize and verify AFSM
modules! Nowick also discovered a problem with our synthesis approach which could
generate hazards under certain circumstances. This discovery and the algorithm to

avoid the hazard were key contributions to his thesis.
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4.2 CCS Burst-mode Specifications

Easily specifying and exploiting parallel operations is highly desirable for asyn-
chronous state machine controllers because concurrency is “free” in hardware if the
components must exist for behavioral reasons. There is no cost other than complex-
ity of control and increased power consumption for operating transistors in paral-
lel. Invoking operations in parallel and synchronizing multiple process completions
should be as natural as sequencing for these systems. The distinguishing feature
of burst-mode is its ability to control parallel activity while constraining it to ease

implementation complexities and testability.

Rule 1 Input bursts and output bursts may not overlap

Figure 4.1: Burst-mode Conceptual Model

The most salient feature of burst-mode specifications is the constraint that in-
puts and outputs are separated into distinct stages of parallel activity as shown in
Figure 4.1. When this cannot be accomplished, the specification must be decom-
posed into a multiplicity of communicating AFSMs. The standard syntax for CCS
and the Concurrency Workbench does not allow a convenient burst-mode syntax.
All orderings of signal interleavings must be expressed explicitly. For large bursts,
this can be very tedious and error prone. The following definitions describe an ex-

tended notational convenience that will be used for burst-mode behavior. It is used
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throughout the remainder of the text and by the software analysis and verification

tools developed as part of this thesis.

Definition 1 For aq,---,a, € A,n > 1, where «; are all distinct, the input burst
(a1, -+, a,).P is a set of events defined recursively as follows:
O0.P ¥  ERROR
(a1).P def oy.P
(a1, -+, ap).P def i<i<n Qi(Q1, iy, iy, ap) P (n>1)
Definition 2 For ag,---,a@, € A,n > 0, where o; are all distinct, the output
burst (ag,---,a,).P is C the set of events defined recursively as follows:
Or = p
(@1, @) P ¥ Y@@, g a, )P (n>0)

A notational extension is applied to CCS in this thesis (by Definition 10) where
the set of names A is defined as inputs and the set of conames A is defined as actively
driven outputs. Input bursts will only contain input signals, and output bursts will
only contain output signals. The input burst is further restricted to be a nonempty
set of transitions. A second important concept of burst-mode is that the order and
time of arrival of events in a burst are unconstrained.

The C-element or rendezvous is a good example of a simple multiple input change
burst-mode state machine. The two inputs, @ and b arrive in a burst. The order and
time of arrival of these two signals is unconstrained. After the inputs have arrived,
the output ¢ will be driven, and the circuit will then accept another input burst. The
extended burst-mode notation described in Definitions 1 and 2 is compared against

CCS syntax in Table 4.1 for the simple C-element.
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C-element Specifications
Burst-mode: C-elt & (a,b).c.C-elt
“Standard” CCS: C-elt € a.b.e.C-elt + b.a.c.Celt
Barrier synchronization: C-elt & (A|B|S)\{p, ¢}
A g.a.p.A

B ¥ 40758
def _

S = 799gppC

c ¥ zs

Table 4.1: Different Burst Specification Styles

Standard CCS syntax requires that all signal interleavings be explicitly stated,
including all the parallel choice space. This results in a specification with n! signal
traces, where n is the number of signals in the burst. Bursts quickly become ex-
tremely difficult to specify correctly and hard understand in the pure CCS notation.

A general solution using standard CCS notation and “barrier synchronization”
doesn’t require enumerating all of the signal interleavings but requires n + 2 agents.
Each of the signals in the burst are placed in a separate agent and the signal is
bounded by synchronization signals which enable their transition, g, and signal the
transition has fired, p. This is clearer than enumerating the interleavings, but such
descriptions are difficult for systems to evaluate compositionally due to the local
nature of the parallel compositions of interdependent processes it requires. Barrier
synchronization also results in an unsatisfactory circuit definition because it relies
on CCS handshake synchronization that results in computation interference (as with
signal ¢ in Table 4.1) or multiple outputs driving the same signal (as with signal p).

See Section 7.2 more details on correct circuit constructions in CCS.
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Lesson 4 Segregating inputs and outputs allows clear, concise control of parallelism

from a sequential agent.

Lesson 5 The behaviors of most native elements used for asynchronous design such
as the C-element, MERGE, TOGGLE, etc. segregate inputs and outputs.

4.3 Fundamental Mode Requirement

Multiple output change circuits lose the verification simplicity and some of the ro-
bustness of delay-insensitive and speed-independent circuits. Figure 4.2 is an exam-

ple of such a circuit.

Figure 4.2: Burst-mode AFSM with Output Burst

Box E2 of Figure 4.2 has two inputs @ and b, and two outputs  and d. Assume
that the non-inverting buffer has the obvious behavior where a transition on the
input will be followed by a transition on the output. Also, assume that E£2 has the

following behavior with an output burst:
E2 ¥ b.(¢,d).a.d k2

The environment should provide a transition on signal b, at which point the
input burst is complete. The output burst will then be enabled to fire. Assuming an

unbounded gate delay model, £2 can produce a transition on signal € at which point
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the buffer can then produce a transition on signal a. This results in computation
interference because F2 has not completed its output burst and is not in a receptive
state for the a transition.

Thus MOC burst-mode circuits are not in themselves either speed-independent
or delay-insensitive modules. However, if the stability function of fundamental mode
holds, as is typically the case, then all outputs (¢ and d) in the burst will fire before
the next input arrives. Burst-mode assumes fundamental mode as an engineering
abstraction that is relatively easy to uphold and is more consistent with hazard
definitions.

AFSM E?2 may be placed in a different environment from Figure 4.2. If a tran-
sition on signal ¢ will not be generated until after both signals € and d have been
driven and accepted by the environment there will be no computation interference.
Therefore it is possible to place burst-mode machines in an environment where they
can operate in a delay-insensitive or speed-independent fashion.

The window of vulnerability to computation interference is very small in Huffman
machines. For example, in the Post Office design, none of the state machines required
extra delay to ensure that fundamental mode delay assumption hold. Some methods,
such as the 3-D method [YD92], have been developed which reduce the window to
where it is practically nonexistent if the complexity of output generation is similar

for all signals.
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4.4 Burst-mode Specifications

Burst-mode specifications in the Post Office design used a graphical representation
which was a variant of Mealy state graphs. This format has the advantage that it
is familiar to hardware designers and is a simple way to encapsulate concurrency,
communication, and synchronization. Further, these specifications can easily be
mapped to a textual format for synthesis tool input (such as MEAT or Stetson).

Although there are explicit rules for the correct construction of a burst-mode
specification, the above mentioned tools do not enforce or check many of the con-
straints. Ensuring that the behavior, properties, and most burst-mode specification
rules are correct is left as an exercise for the designer. This can result in physical
implementations that will not operate predictably.

The remaining sections of this chapter will discuss the burst-mode requirements,
and formalize them so that burst-mode AFSM specifications can be proven correct
in a larger synthesis system. The mechanism for this is developed later in this thesis.
The correct specifications can then be passed to an AFSM synthesis and layout

system.

4.5 Burst-mode Implementation Rules

Burst-mode transitions can be defined in terms of flow table specifications. A flow
table is a two dimensional array structure which captures the internal and external
states of a circuit [Ung69]. The rows of the table correspond to the internal state of
the circuit, and the columns to the state of the inputs. Table entries are ordered pairs

containing the next state and current output information. When the next state in an
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entry corresponds to the current state, the flow table is in a stable state; otherwise
the current state is unstable and an internal state transition will occur. A simple
way of understanding the flow table is to note that horizontal movement within a
row represents changes in the values of input signals, while vertical movement within

a column represents a state transition.

Definition 3 Let P = {0,1}. Fach state machine contains an input set Zof I,
variables where the value of I,, € P. Fach state machine also contains a set of

output signals Oof O, variables where the value of O, € P.

IB
Definition 4 An input burst IB for the transition 0B consists of the nonempty set

of input signals ¥V I € T which change value during the transition.

IB
Definition 5 An output burst OB for the transition 0B consists of the set of output

signals ¥ O € O which change value during the transition.

Definition 6 A burst-mode state machine BSM,
IB

(S, S0,Z, 1o, 0,0y, {?)E) :IBC T ANOBC O}, consists of

o a set S of states, where Sy ts the initial state.
o a set Zof inputs, where Iy is the initial values of the inputs.

o a set Oof outputs, where Oy is the initial value of the outputs.
1,
e « transition relation oB C S x S potentially for each value of IB and OB

where IB is the input burst and OB s the output burst.

Rule 2 FEach input burst must contain at least one signal transition. An output

burst may be empty.



CHAPTER 4. BURST-MODE AND AFSM CIRCUIT SYNTHESIS 90

The signals in the input burst may not be empty as at least one input must change
for a transition to occur. The values of the inputs and outputs are significant, as
these values are mapped to voltages in an implementation. The typical method for
representing transitions in a burst-mode description include up or down arrows for
the value transition of an input or output. For example, signal ¢ changing from
high to low is represented by | a. This can be textually represented as a~ (and T a

represented as a).

Definition 7 The entry point of a transition corresponds to the location in a flow
table with the initial row (state) and input (column) values before any inputs in the

transition have occured.

Definition 8 The exit point of a transition corresponds to the location in a flow
table within the initial row (state) of the transition. The column value consists of
the final state of the transition where all inputs in the burst I € IB have their new
values.

1B
Rule 3 Given the set of burst-mode transitions T = {g :IBCZI ANOBC O},

VT, € T the exit point of T; must have the equivalent column location (input values)

of an entry point T;. Further, the destination state of T; must be equivalent to the

starting state of T; and T; # Tj;.

Rule 4 The entry point E; must be stable. Further, all flow table states in the cube
covering entry point to but not necessarily including the exit point of the transition
must be stable and will contain the same output values and state markings as the

entry point.
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Rule 5 The exit point will contain the destination state marking. The marking
of the exit point will contain either the same output marking as the entry point
or the marking of the new output values following the completed output burst. If
the implementation uses a single transition time implementation technique, then all

signals in the input burst can be don’t cares in the exit point.

Burst-mode is defined using closed flow tables. State transitions are defined with
input and output signal transitions that are segregated into independent bursts of
activity. Requirements for filling in flow table values are described which eliminate
function hazards, and do not allow the state change or output burst to proceed until
the input burst is complete. The output burst can change concurrently with the
state change or may be delayed until the state change is complete. The choice is
left to the designer, and results in a slight tradeoff between performance, area, and
possibly the ability to remove hazards.

Each input burst results in a particular path through the flow table and AFSM
state space, starting at the stable entry where the burst begins. At least one input
change is required to generate a transition as there is no clock. The circuit remains
in stable states, and state changes in the flow table can only move horizontally until
all inputs in the input burst have been accepted. At this point a state change and
output generation may occur.

The exit point of a transition in a primitive flow table always moves to a new row
of the flow table forcing a state change. Minimization of the flow tables can result
in merging of rows (or states in the AFSM), and may result in transitions which

remain in the same state (or row of the flow table). These rules apply to minimized
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as well as primitive flow tables and may further restrict the way a state machine is

minimized.

Theorem 1 Function hazards in combinational logic are not possible in burst-mode

design.

Proof A function hazard can only exist for a transition A — B iff there exists
a minimum length path between A and B where the output function value changes
more than once. According to Rule 4 and 5, all outputs and state variables can only
change following a completed input burst, or in state B for outputs. Hence there is
no possible minimal path that can contain multiple function changes. a

Exact, minimal, hazard free sum-of-products circuit implementations can be
found for incompletely specified boolean functions generated from burst-mode spec-
ifications. Function hazards will not exist in the combinational output or state logic
produced by MIC burst-mode specifications. All variants of static and dynamic haz-
ards can be removed from the combinational logic necessary to build burst-mode

state machines.

Rule 6 The burst-mode stability requirement does not allow a new input burst to

arrive until the output burst has completed and all circuit elements have stabilized.

As shown in Section 4.3, this stability requirement is necessary for MOC circuits

to avoid hazards and computation interference.
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4.6 Burst-mode Specification Rules

This section describes the rules for correct construction of burst-mode state machines.
A state graph interface was used in the Post Office, but the specifications were not
checked for correct usage and construction. The formalizations that follow allow this

checking to be automated with CCS specifications.

Rule 7 All inputs and outputs must strictly alternate between rising and falling

transitions for any valid path of input bursts in the state machine.

The necessity to unambiguously mark transitions from the state of signals in the
input set causes transitioning inputs and outputs to change an even number of times
when there are loops in the state graph. Transition levels and voltage initialization
values are necessary for burst-mode because it describes hardware implementations.
Signal @ becoming asserted from a low voltage to a high voltage is represented with
Ta in graphical specifications used in the Post Office. Some mapping from a more
abstract model, such as CCS or one based solely on transitions, must be carried out
before a circuit is implemented. In general, the transformations required can double
the size of the specification (such as for the C-element description of Equation 3.1),

but it is generally an easy transformation.

Rule 8 V1,1 € T if the entry point of transition T; is equivalent to the entry point

of transition T then IB; € IB; and IB;  IB;

No transition burst is a sub-transition of others from same starting state, and

unspecified signal transitions are illegal.
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Rule 9 V T,,T; € T, if the entry points of the two transitions are equivalent then
there must be at least one pair of inputs ¢ € IB; and j € IB; such that t # j and the
environment will not provide both ¢ and j. Otherwise, the state machine BSM must

operate in single input change mode.

When multiple edges exit a single state, there must be at least one pair of mutually
exclusive signals for all pair of edges exiting the state [Mil65]. If there is no pair of
mutually exclusive signals for all pair of edges then the state machine can only operate

in single input change mode. This constrains the behavior of the environment.

r2/|n2 drl/|nl
i‘rl/ial tr?/TnQ trl/Tal){TrQ/Ta? Trl/Tn} irQ/ia?
3) S(2) QYA J(0), (4), (5 ) (6
fri/tal  (r2/in2  Jr1/lal  [r2/]a2  [r1/{nl 1r2/ta2

Figure 4.3: Nacking Arbiter SIC State Machine Specification.

The state machine for the nonblocking (nacking) arbiter of Figure 4.3 used in the
Post Office is an example of a state machine that must operate in SIC mode because
the environment permits both r/ and r2 to transition concurrently. These signals
are passed through a SEQUENCER which converts MIC signals into SIC signals.

Nondeterministic behavior is not possible in a burst-mode state machine. How-
ever, nondeterministic behavior can be achieved when mutual exclusion elements
(MEs) are used to condition inputs to a state machine, such as by using the SE-
QUENCER to condition the 7! and r2 signals to the nonblocking arbiter. MEs are
analog devices, and are the only “library” device that may be required to implement
burst-mode control functions. They are easily fabricated in most VLSI technologies,

requiring 12 transistors in CMOS.
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4.7 Post Office Design Process Example

The implementation of control circuitry consisted of the following steps once the
MEAT toolset was in place. The behavior and algorithms of the Post Office had
been simulated at the register transfer level. The control behavior was converted into
burst-mode state machine specifications. Each state machine specification was fed
into the MEAT tool. Individual AFSM implementations were verified with a version
of Dill’s verifier which had been converted to the burst-mode model. If hazards were
found, they were removed if possible via complex gates and inverter restructuring,
and the circuit was reverified. The final verified hazard-free burst-mode sum-of-
products form was fed into the complex gate tool which would generate schematics.
Each state machine was then laid out by hand from the schematics and simulated
with COSMOS.

Datapath circuitry, such as latches, shift registers, and ALUs were designed and
laid out in a similar fashion to synchronous components. They were simulated with
SPICE and COSMOS. These were then composed with the controlling state ma-
chines, and the large blocks were simulated with COSMOS.

The datapath and burst-mode AFSM blocks were interconnected to form larger
asynchronous modules. No verification was possible at this point with our toolset
for two reasons. There was no intermediate form that could compare the top-down
register transfer level design simulation with the bottom-up physical implementation.
Further, even systems of state machines could not be verified with Dill’s verifier. This
was due to both the bottom-up design style and differences in the burst-mode model

and his verification tool.



CHAPTER 4. BURST-MODE AND AFSM CIRCUIT SYNTHESIS 96

The stock version of COSMOS could not be used to simulate the entire Post
Office chip. The event queue was designed such that new events could not be injected
between cycles. A COSMOS cycle is not complete until the circuit has stabilized —
there are no more pending events in the event queue. This behavior models a clocked
system, where the circuit must stabilize between each clock phase. Asynchronous
event injection between COSMOS cycles was necessary in certain situations in the
Post Office. For example, state machines continuously attempt to forward centrally
buffered packets out available ports. If the destination ports are busy the packets
cannot be forwarded; the state machines loop continuously attempting to forward
the packets. I modified COSMOS to allow asynchronous events, at which point it
could be used to simulate the entire Post Office chip, including the pads. This was
a critical aspect of the design process because it was the only method available for
validating the implementation. Fortunately COSMOS was efficient enough to permit

the pad to pad simulation of the entire circuit.

4.7.1 Asynchronous State Machine Design Example

The state machine from the Post Office chip called SBuf-Send-Ctl will be used as
a design example. This state machine initiates the forwarding of a packet that has
been placed in the central buffer pool out an idle port. This is one of the burst-mode
examples I made publicly available which have been used as synthesis benchmarks
by tool designers [Chu93]. Reported implementations of this state machine gener-
ated from other toolsets can be found in [LKSV90, ND91b]. When I designed this
circuit, the first step was to create the burst-mode specification of the state machine

graphically, which can be seen in Figure 4.4.



CHAPTER 4. BURST-MODE AND AFSM CIRCUIT SYNTHESIS 97

Tdeliver

Tlatch-addr
tidle*

Jdeliver

Thegin-send

Jack-send
Jlatch-addr

Jidle*

Jbegin-send

Tsend-pki Jack-send
tTack-send ldeliver
Isend-pkt deliver  tack-send

Jsend-pkt

Tlatch-addr

Figure 4.4: SBuf-Send-Ctl Burst-mode Specification

The graphical representation of the specification was then converted into a tex-
tual description suitable for input to MEAT. The :fsm directive names the state
machine, and the :in and :out directives declare the names of the input and output
signals of the state machine. The remainder of the text describes the behavioral
specification. Transitions are specified as a four-tuple following the :state directive.
The current state appears first, followed by the input burst in parenthesis. The
next state is entered followed by the output burst in parenthesis. The conjunction

¢k

of signal transitions in a burst is represented with the “*’ symbol, while disjunctive

choice is represented by the ‘4’ symbol. Active high transitions on signal a (shown
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as Ta in Figure 4.4) are textually entered as a, whereas low transitions on a, (| a)

are textually entered as a~. The textual conversion is as follows:

:fsm SBuf-Send-Ctl
:in (Rej-Pkt Begin-Send Ack-Send)

:out (Latch-Addr IdleBAR Reg-Send)

:state 0 (Rej-Pkt)

1 (IdleBAR * Latch-Addr)
:state 1 (Rej-Pkt™)
)

:state 2 (Begin-Send)

N

(
(
(
(
(
3 (Latch-Addr~)
:state 3 (Begin-Send™)
4 (Reg-Send)
:state 4 (Ack-Send)
5 (Reg-Send™)
:state 5 (Ack-Send™)
0 (IdleBAR™)
:state 4 (Rej-Pkt)
()
:state 6 (Rej-Pkt™ * Ack-Send)
(
(
(

(@]

7 (Reg-Send™ * Latch-Addr)
:state 7 (Ack-Send™)

2.()
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MEAT is executed to process the specification contained in the file. The sum-of-
products sequential logic required to produce the outputs is generated, along with
necessary state variables used for feedback. MEAT produced an implementation for
SBuf-Send-Ctl that required two state variables, Y0 and Y7. An edited transcript of
the MEAT session follows. (The user was required to enter the maximal compatibles
in the version of MEAT used to design the Post Office. See [Ste92, CDS93a] for more

details on MEAT.)

> (meat "sbuf-send-ctl.data")

Max Compatibles: ((0 5) (1 2 7) (3 4) (6))

> Enter State set: ((0 5) (1 27) (3 4) (6))

SOP for "Y1":
18: REJ-PKT + Y1+BEGIN-SEND~
SOP for "YO":
28: BEGIN-SEND + YO*ACK-SEND™ + YO*REJ-PKT
SOP for LATCH-ADDR:
12: Y1*YO
SOP for IDLEBAR:
30: BEGIN-SEND + YO + Y1
SOP for REQ-SEND:
12: YO*BEGIN-SEND™

HEURISTIC TOTAL FOR THIS ASSIGNMENT: 100
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The combinational logic generated from the above transcript is free of hazards.
However, hazard free implementations cannot be guaranteed with sequential logic.
Hazards due to the feedbacks in sequential logic were removed whenever possible in
the Post Office design. The Post Office design style localizes unremovable hazards
internally to the AFSMs. The unremovable hazards can be verified and analyzed
using the physical properties and variations of the devices and layout, rather than
an asynchronous analysis using unbounded delays. This can result in faster, smaller
circuits with functionally correct asynchronous interfaces.

The MEAT generated circuits in the Post Office, including the one in this design
example, were all verified to determine if hazards existed in the implementation, and
if they could be removed by design tricks. Following is the transcript of the verifica-
tion of SBuf-Send-Ctl using Dill’s verifier ported by Nowick for burst-mode AFSMs.
The verifier reads the specification and then calls MEAT to generate the implemen-
tation using the verifier-read-fsm command. The definition of the specification
is placed in the global variable *spec*, and the implementation in *impl*.

Dill’s verifier assumes that each combinational function, including signal inver-
sion, utilizes distinct devices. Hence, in the example, a separate inverter is created
for the begin-send signal to the Y1 and Req-Send logic. This multiplicity of phys-
ical instances of the “same” signal nearly always results in hazards in burst-mode
speed-independent analysis. Merging all inverters with the same source signal to-
gether, and fanning the output of the single device to the destination logic blocks
typically removes these hazards and creates a smaller faster circuit. In this example,
the two Begin-Send inverters are merged, and their output fanned out to both logic

blocks. The merge and fanout operations are executed in the verifier by issuing the
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merge-gates function below. The verify-module function is then called to analyze

the circuit for hazards:

> (verifier-read-fsm "sbuf-send-ctl.data")

Max Compatibles: ((0 5) (1 2 7) (3 4) (6))

> Enter State set: ((05) (1 27) (3 4) (6))

> (setq *impl* (merge-gates ’(1 11) *implxk))
> (verify-module *impl* *spec*)
10 20 30 40 50

Error: Implementation produces illegal output.

The verifier points out an implementation error, a transient hazard [Ung69]. Two
transformations were used in the Post Office project to remove hazards. The removal
of this hazard with signal reordering is described in Section 3.7.1 by the addition
of an inverter using the verifier’s connect-inverter function. The circuit was then

verified free of hazards as shown with the following transcript.

> (setq *impl#* (connect-inverter 1 7 *impl*))
> (verify-module *impl* *spec*)
10 20 30 40 50 60 70 79 states.

T

The implementation has now been verified as hazard free. The next step was

to lay out the circuit in an efficient manner. All Post Office state machines used
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ack-send —q
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begin-send —q

. . > Y0
begin-send %q‘ YO0 —|
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Figure 4.5: Complex Gate Schematic for SBuf-Send-Ctl YO0

complex gates to reduce the area and possibly increase performance of the circuit.
The complex gate tool evaluates the equations for each state variable and output,
and a schematic for each complex gate is generated. Figure 4.5 shows the complex
gate generated by this tool for the Y0 state variable logic. The circuit was then laid
out using in Electric.

The final layout of each cell, subsystem, and the entire chip were checked by sim-
ulation. The SBuf-Send-Ctl layout was extracted from Electric as a COSMOS ‘ntk’
file. COSMOS test vectors were hand-generated from the burst-mode specification
and the layout was simulated in COSMOS. This state machine was then intercon-
nected as part of a larger Post Office subsystem and simulated by COSMOS, and

ultimately as the complete chip.
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Since no behavioral model or interface description existed for blocks larger than
single state machines, the simulation vectors were tested and developed concurrently
with the circuit design and layout. The vectors did a poor job of fault covering and
behavioral testing of the larger function blocks. In retrospect, a better effort in this
area could have helped with the design modeling and testing of the implementation.

The layout of SBuf-Send-Ctl used in the Post Office chip is shown in Figure 4.6.
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Figure 4.6: Layout of SBuf-Send-Ctl

4.8 Summary

Burst-mode is a multiple input and output change AFSM constraint system devel-
oped as part of the Post Office project. The primary advantages of this system is the
guarantee of implementations free of function hazards, a formalism for MOC AFSM
verifications, and the ability to synthesize compact circuits such that hazards can
be localized. Hence macro module components or entire systems can be designed as
networks of burst-mode state machines, and the architectural and design techniques

are not restricted. However, the layout of the individual burst-mode state machines
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must be controlled if all hazards cannot be removed. Burst-mode is a significant con-
tribution to the asynchronous design community. A number of different burst-mode
design styles have emerged since the MEAT tool including a locally clocked system
[ND91b], 3-D system [YD92], and an STG based system [Chu93].

In any sequential circuit, stability cannot be forced between input changes and
state changes, so sequential delay hazards may exist, although burst-mode can re-
duce the occurrence of such hazards. Verification can be used to point out where
unremovable hazards exist, and where timing inequalities must hold. None of the 95
different burst-mode state machines in the Post Office required any additional delays
or logic to assure the timing inequality would hold under worst-case analysis. How-
ever, in a less constrained layout environment such as programmable logic devices,
where the locality of AFSMs may be difficult to enforce, the inequality may not hold
and additional delays may be necessary.

The MEAT synthesis software and a set of Post Office burst-mode AFSMs have

been available to the research community via anonymous ftp since 1989.



Chapter 5

Hardware Equivalences Formalized in CCS

Defining and calculating equality between agents is fundamental to applying formal
methods to circuit verification, yet formalizing practical equivalences between asyn-
chronous agents is a formidable challenge. Recent developments have resulted in a
number of theories and languages that can be used to specify and then calculate
equivalences between a component and its specification.

A circuit is usually viewed as a “black box” (or package) and its specification
only describes the necessary observable behaviors. Any design that conforms to this
specification could be inserted into the package and function correctly. Making the
specifications as “loose” as possible without compromising the design requirements
allows designers more freedom of implementation. Requiring that a component and
its specification have equivalent behaviors is usually too tight a requirement and one
that does not concur with the black box philosophy. Further, it almost always results
in slower, more complex, and more expensive circuits.

Three techniques have been used by researchers to prove that different circuit
implementations can match a loose specification. One method composes the mirror
image (inverse) of the specification with the implementation and then checks for
equivalence and illegal communication behavior between the specification and im-
plementation. The second approach uses preorders rather than equivalence testing.
Preorders permit the implementation to have more behaviors than the specification,

and ensures that the required behaviors are present. The final method uses modal

105
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logic equations as behavioral tests.

Probably the first generally useful tool for asynchronous circuit verification was
developed by Dill [Dil89]. Here verification is achieved with trace theoretical prin-
ciples coupled with specification mirroring for implementation flexibility. Mirroring
can result in errors if handshaking occurs between the inverse specification and the
implementation when the implementation responds too quickly, and interference is
not detectable. Trace theory, mirroring, and the complexity of the model Dill uses
limit the usefulness of the verifier; for example, complete traces are not employed.
Ebergen developed a verifier based on trace semantics for delay-insensitive implemen-
tations [EG93]. The delay-insensitive model, although extremely useful for protocols
and high-level circuit verification, cannot verify gate level implementations nor many
of the common hazard models. The general purpose Concurrency Workbench [Mol91]
supports more powerful equivalence theories, but none of the equivalences or par-
tial orders introduced before this thesis are directly applicable to verifying hardware
components.

This section reviews the most important equalities used in CCS and by modern
asynchronous verifiers and formal languages. CCS is introduced as a useful language
for defining equivalences, representing, and reasoning about circuits. A set of partial
orders, called conformances, are then described. The inadequacy of trace based
semantics is demonstrated. A new conformance is introduced based on bisimulation
semantics. The conformances presented here are used as the foundation for the

prototype synthesis and verification tool discussed and built as part of this thesis.
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5.1 Advantageous CCS Properties

CCS is a formalism for reasoning about complex parallel systems [Mil89]. The pri-
mary advantages of CCS over other formalisms are very significant. The following
is a short summary of the aspects that are most useful for modeling parallel asyn-

chronous hardware, and why the work in this thesis is based on CCS.

e Simplicity. CCS utilizes a sparse “object oriented” notation where interfaces
and components can be described independently [SABL93]. The object ori-
ented approach allows one to describe complex systems as a set of parallel

agents. CCS contains only five constructions, and six distinct transition rules.

e Unique Minimal Representation. CCS has a unique, canonical minimal
state representation for any behavior. This precision simplifies the application
of CAD tools and transformation into other formats such as BDDs and burst-

mode.

e Hierarchical Representations. Hierarchy or structure in a formalism must
accomplish two conflicting requirements: (a) hide the complexity of the un-
derlying behavior, and (b) retain all behaviors of the lower levels that directly
affect the behavior at higher levels. Requirement (b) limits the amount of sim-
plification that can be accomplished. Precisely modeling this tradeoff is key to
CCS transition rules. Internal transitions are represented by the special sym-
bol 7 in CCS. These 7 transitions have a unique set of rules that differ from

other actions and support observational equivalences.



CHAPTER 5. HARDWARE EQUIVALENCES FORMALIZED IN CCS 108

The ability to model hierarchy from first principles is a major strength of
CCS over other formalisms. Many rivaling formalisms such as Petri nets treat
structure and hierarchy vaguely. Others, such as trace systems, ignore too
many behavior in the lower levels of the structure (as will be shown later in

this chapter).

¢ Equational Reasoning. The sound semantics and combinators in CCS allows
it to embrace most (if not all) of the common equalities that have been formally
defined for finitely branching sequential processes. This allows one to explore
the utility of different formalisms, such as trace and bisimulation theories.
The axiomatization of the language supports the implementation of automatic

support tools such as the Concurrency Workbench.

e Formal Logics A rich set of equational reasoning and logic systems exist for
analyzing the properties of CCS agents. This includes Hennessey-Milner logic
and the Modal-g calculus [Sti91]. These can be applied directly to specifica-
tions to verify certain behavioral aspects before carrying out the implementa-
tion process. See [Liu92] for some applications of these logics to asynchronous

systems.

CCS has found many direct applications. Perhaps the most successful have been
verifications of complex protocols [Bre90, Bru92, Par87]. Since asynchronous circuits
communicate via handshaking protocols, their correct interaction can be viewed as a
form of protocol verification. However, the constraints of hardware implementation

require some modifications to CCS as will be discussed in the following chapter.
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5.2 Notational Definitions

This section defines the formalisms and terminology that are applicable to the labeled

transition system used in this thesis.

Definition 9 A labeled transition system, (S,T, {(L:te T}), consists of

o a set S of states
e a setT of transition labels

e « transition relation 5 C S x S for each t € T.

Definition 10 The labels (or actions) in labeled transition systems are defined as
follows:
e Input action name a € A (where the set of names A are inputs T ).

o Output action coname @ € A (where the set of conames A are outputs O).

By convention, a = a.

The set of labels L = AU A.

T & L, where the label 7 (taw) is the invisible internal action.

The sort L(P) of an agent P is its set of observable input and output actions.

The actions of a system are: Act = LU {7}

The ability to specity a port as an input or output is essential when modeling
hardware. Therefore, the labeled transition systems used here are extended to assign

directionality to names and conames. The set of names A of a system consist of its



CHAPTER 5. HARDWARE EQUIVALENCES FORMALIZED IN CCS 110

inputs, while the set of conames A contains the outputs of a system. The normal
convention is followed by assuming that placing an overline over a label produces
the label of its handshaking partner, even for outputs (0 = o). The labels £ of a
system is the union of its inputs and outputs, which includes the observable actions
(signal names) of the external ports of a hardware block or agent. Restricting the
labels to the observable external (input and output) actions that the system can
perform yields its sort. The set of actions Act the system can make consists of the

sort together with the silent internal action 7.

Definition 11 Agents sets (or hardware components) are defined as follows:
o P is the set of agents P,(),.... By convention, I refers to an implementation
agent and S to a specification agent.
o & is the set of agent expressions F,F, ...

o P is derivation closed over the set of £

Definition 12 Let P be an agent. If P=5P', then o is an action of P and P' is an

a-derivative of P.

Definition 13 P is derivation closed if V P € P and ¥V a € Act, whenever

P3P then Pl eP

This thesis uses agents and agent expressions as behavioral descriptions of hard-
ware components. This restricts these expressions to finite systems where P is deriva-
tion closed over the set of £. There is usually no loss of generality with this assump-
tion, and it eases certain proof obligations. The a-derivative of an agent is always

another agent.



CHAPTER 5. HARDWARE EQUIVALENCES FORMALIZED IN CCS 111

When P is minimized, there is a single agent expression per state and the size
of € is equivalent to the state size. The labeled transition system of Definition 9
takes T' to be the actions Act and S to be the minimized agent expressions €. The
semantics for agent expressions includes the definition of each transition relation —
over &.

This defines the standard CCS labeled transition system. The following defini-

tions simplify reasoning about the observable actions an agent can make.

Definition 14 If s € Act” is an action sequence of an agent, then S is defined to
be the projection of s on L*, i.e. 5 is the sequence obtained from s by deleting all

occurrences of 7. If s & L™ then § = e.

If a system can perform the sequence of actions s, then s is the observable se-
quences (inputs and outputs) of that sequence. For example, if s = in 7 oul then
5 = in out. Both s and s may be empty. It is convenient to define a new transition

relation = which allows the invisible 7 transitions to be abstracted away.

Definition 15 [fs € Act* then 5= oy ...a, € L* and PP’

i P(5)" (D) (D) 23(5) P!

Definition 16 Ifs =y ...q, € L* then PSP’
iff P(S)*3(5) (D) 3B(5) P, Ifs=c then = = (5)*

The shorthand P= stands for P=P' for some P'.
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There is no direct control over 7 actions in the = transition as they have been
filtered from consideration. If an action sequence s contains explicit 7 actions they
must be filtered out as is done in Definition 15, removing any contribution to the
transition.

Note in particular that in Definition 16 the sequence s cannot contain any 7
actions. However, any number of 7 actions may occur in the transition before and
after each action aj. Because the internal 7 transitions are ignored in this transition
relation, the agent can utilize internal actions to choose different destination states.

def

For example, assuming £ = {E3;,E3,}, E3; = @.E3;, and E3, def

= T.E31—|— b.E31,

then both E3; 4 E3; and E3; 4 E3, are valid transitions.
Definition 17 If s = ay...a, € Act™, then P’ is a s-descendant of P iff P:;>P’.
Definition 18 The s-descendant of an agent P is a T-descendant iff s € 7*.

The agent P and its 7-descendant P’ can be the same agent. This occurs when
s € Act” and s =e.

Consider the labeled transition system
(&, Act™, {= 1 s € Act™}) (5.1)

based on sequences of visible actions rather than just single transitions. This results
in a notion analogous to that of an a-derivative of an agent. This labeled transition
system is a conceptual extension of a standard system based on s-descendants. It is
an extremely busy system. Its main advantage is one of notational convenience in

describing observable trace based systems.
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5.3 Equivalences and Agent Properties

A central aspect of a formal verification system is the power of the equalities used.
CCS can choose from a lattice of formalisms upon which one can base verifications,
ranging from very strong (strong bisimulation) to very weak (trace equivalence). See
[vG90b] for an excellent paper on the semantics of equalities. Figure 5.1 shows a
lattice of some of the relative strengths of some practical equalities that may be used

for circuit verification. Trace based systems are the weakest in use and bisimulation

the most sensitive.

Bisimulation Semantics

Ready Simulation Semantics

Failures Trace Semantics
Failure Semantics Simulation Semantics

Complete Trace Semantics

S

Trace Semantics

Figure 5.1: Lattice of Equality Relations

This section will cover the traditional trace systems and bisimulation based mod-

els and explain their appropriateness to hardware verification.
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5.3.1 CCS Equalities

Trace Equivalence

Trace theory equates agents whose sequences of observable actions are the same.
Complete traces must be used to assure accuracy under this model. This is the
coarsest equivalence and is the least able to distinguish differences between agents.
It equates more agents than other equivalences used in practice. The definition for

trace equivalence follows.

Definition 19 Agents P and () are (weakly) trace equivalent, written P =, (),
iffV s € L P= if and only if Q=

As can be seen, this equivalence completely abstracts away the internal actions
of agents. Information is not available about derivative actions nor concerning the
effect of internal choices. Most trace systems can not even represent internal 7
transitions. Perhaps the biggest problem with trace based systems is their inability
to detect deadlock. Nonetheless, trace theory is used to verify asynchronous hardware
[Dil89, Ebe88, Udd84]. Additional tools must be applied to verify other requirements.
However, by adding the additional notational strength of bisimulation, one can get
these capabilities in a single tool.

Bisimulation

Observational equivalence in CCS equates processes whose externally observ-
able behavior is identical. The behavior of a system then becomes precisely what
can be observed from the outside. Milner’s conceptual idea of observational equiva-
lence is similar to the “black box” specification where details of the implementation

are unimportant if it conforms to the required external behavior. However, internal
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actions can modify the state of a module and cause a change the observable behavior
of the box, so the definition of observation equivalence requires 7 transitions.

The notion of (observational) equivalence was formalized by Park as bisimulation
[Par81]. Agents P and () are equivalent if, for every action «, every a-derivative of
P is observation equivalent to some a-descendant of (), and similarly with P and
() interchanged. Bisimulation gets it name from the back and forth nature of the

definition. The following two varieties of bisimulation can be found in [Mil89].

Definition 20 Agents P and () are strongly bisimailar, written P ~ ()

ffVae Act
(i) Whenever PP’ then, for some Q', Q—Q' and P' ~ Q'

(ii)) Whenever Q=Q' then, for some P', P=5P' and P' ~ Q'

The notion of strong bisimilarity is not appropriate for our observational model
as it requires internal actions of each agent to be matched by the other agent, even
when the outcome is observably irrelevant. For example, a.7.5.Nil £ a.b.Nil. Strong
bisimilarity is, however, a foundation for many definitions, including our desired

formulation of (weak) bisimulation.

Definition 21 Agents P and Q) are (weakly) bisimalar, written P ~ ()

ffV.ae Act
(i) Whenever PP’ then, for some Q’', Q:&>Q’ and P' ~ Q'

(ii) Whenever Q—=Q' then, for some P', P=P' and P' = Q'
In this thesis, bisimulation and equivalence between agents both refer to weak

bisimulation (also known as weak equivalence). Weak bisimulation satisfies the no-

tion of equating agents whose observable actions are indistinguishable. However,
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weak bisimulation is not a congruence, and so equivalent agents cannot be substi-
tuted safely. However, when the agents are initially stable (having no 7-derivatives)
bisimulation is a congruence. See [Mil89] pages 111-113 for further details.

Branching time bisimulation is a second notion of bisimulation equivalence
developed by van Glabbeek [v(G90a]. This definition is slightly finer than Park’s
definition found in Milner. The agents a.(P + 7.Q)) + a.Q) = a.(P 4 7.Q)) cannot
be distinguished by external observation, and hence are observationally equivalent.
However, due to their significantly different derivation trees and internal branching
structure, (the a-derivatives of the two sides are different), they are not considered
equivalent in branching time bisimulation.

Branching time bisimulation contains some nice reasoning properties and sim-
plifies some of the analysis algorithms. Hence the tool developed in this thesis is
based upon van Glabbeek’s branching time bisimulation. Branching time bisimu-
lation is slightly finer than bisimulation because it can detect the difference of the
above nondeterminate action. Note that the type of nondeterminism nondetermin-
ism necessary to create a detectable difference between bisimulation and branching

time bisimulation unlikely to occur with asynchronous control.

5.3.2  Predictability

The predictability of hardware, engineered components, and systems is of paramount
importance. There must be a means for fabricating devices that will perform identi-
cally to previously built devices. Engineers also wish to test these devices for correct
operation, or design self testing circuits. Many circuits require strong predictability

— for the same input sequences the same output behavior is expected every time.
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This stronger formulation of predictability has been formalized across agents as the
determinate property, and when applied to hardware components is conceptually

similar to declaring a component deterministic.

Definition 22 P is strongly determainate if, for every derivative () of P and

Y a € Act, whenever Q = Q' and Q=>Q" then Q' ~ Q" where ~ is strongly bisimilar.

This requirement states that the same experiment should always yield the same
result. Consider the agent E4 def a.B.P + a.y.QQ (whose derivation tree can be seen
as the right tree of Figure 5.5(a) on page 126). This agent expression is not strongly
determinate because it has two a-derivatives to states which are not strongly equiv-
alent. As with strong bisimulation, strong determinacy is not useful for engineered
systems. For example, the agent expression E5 def a.(B.P + 7.Nil) is strongly deter-
minate, but results in unpredictable behavior! After the a action, the agent E5, at
its own choice, can decide to deadlock or accept a 3 action and evolve into agent P.
(The derivation tree of E5 is similar to the left derivation tree of Figure 5.5(a) on
Page 126 where v is replaced by 7.)

By abstracting away from the internal 7 transitions a preferred notation of de-

terminacy can be defined.

Definition 23 P is (weakly) determinate if, ¥ s € L* whenever P=P' and

P=P" then P' =~ P"

Intuition tells us that an unpredictable system should not be determinate. This

is true with (weakly) determinate systems. For example, the unpredictable agent
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expression E5 is not determinate. Hence this is the definition used in this thesis and

any subsequent reference to determinate systems will refer to weak determinacy.

Proposition 1 Determinacy is preserved by bisimulation; that is if P is determinate

and P =~ () then @) is determinate.

Proof  Milner [Mil89] page 234. 0

Unfortunately, determinacy is not preserved over the summation and compo-
sition operators of CCS. By restricting the syntax, determinacy can be preserved
over composition and summation. However, the restrictions required to guarantee
that determinacy is preserved by composition disallows communication between the
parallel agents. This restriction would result in an unusable syntax for modeling
parallel hardware. Thus we cannot be assured that a system built out of predictable
determinate components (such as AND gates) will itself be predictable and determi-
nate. This necessitates additional analysis of circuits designed from multiple parallel
components when predictability is important.

There is a special type of determinacy, called confluence. The notion of conflu-
ence is one where if there are multiple possible actions, then the occurrence of one
of the actions will not preclude the occurrence of the other actions. This is a notion
that is similar to the semi-modular property developed by Muller [Mil65].

Similar to bisimulation and determinacy, there are strong and weak forms of
confluence. For observational reasons, the work in this thesis is primarily interested

in the weak form of confluence.
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Definition 24 P is (weakly) confluent if for every derivative ) of P the following
diagrams can be completed such that if the top and left hand derivations exist then

the bottom and right hand derivations can be inferred.

Q: = = Q: = =~ Q2:a>

(i) (it) (iii) (a # f) (iv)

2

>
U

2

Confluent agents preserve determinacy over composition when all communicat-
ing actions are restricted. The set of confluent hardware components is extremely
limited. However, confluence does have an application in burst-mode state machines
as will be discussed in Chapters 4 and 7. For further details on determinacy and

confluence, see [Mil89).

5.4 Hardware Conformance to Specifications

We now have enough notational strength to define when an implementation con-
forms to a specification. Conformances are not equivalences, but they determine
when an implementation is an acceptable construction of the specification.

Part of the designer’s art is to utilize the unspecified state space in such a way
as to produce pleasing designs. Good specifications will maximize the unreachable
state space without overly restricting the environment and implementation behaviors.

This allows implementations to accept inputs which won’t be provided by the circuit’s
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environment, and to generate outputs from unreachable states. Such specifications
are sometimes called “loose” specifications.

Conformance should be as “loose” as possible — equating as many agents to
a specification as possible — without violating the requirements set forth by the
specification. Conformance defines the appropriate restrictions applied between the
specification and an implementation. The possible set of implementation action
sequences can be restricted by the specification, which knows exactly when input
and output actions are permissible.

The implementation must be capable of all behaviors dictated by the specifica-
tion. Further, the implementation must not show any illegal behaviors within the
reachable state space. In particular, any outputs the implementation may gener-
ate must be matched by the specification. Freedom of implementation is possible
because the behavior in unreachable states is completely unrestricted.

Ignoring unreachable behaviors is axiomatized by the equational law shown in
Proposition 2. When [, is an implementation agent, it allows the agent expression
a.l to be discarded because it is an unreachable input expression. This results in
a preorder between specification and implementation because the valid behaviors of

an implementation can be greater than those of the specification.
Proposition 2 a.ly + I, = S iff L = S and a € A and S#

The specification defines the contract between an implementation and its envi-
ronment. The agreement is twofold. First, the environment agrees to only provide
input signals in the restricted ordering designated by the specification. Implemen-

tations are nearly always capable of accepting inputs which will not be provided by
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the environment. Since these agent derivations will not occur by definition, they can
be ignored. This is important as it results in a “don’t care” freedom for the designer
of the implementation to exploit. Secondly, for valid inputs, the implementation will

provide outputs precisely as specified.

5.5 Trace Conformance

Definition 25(¢) assures that under Trace Conformance, the implementation can
match the behaviors of the specification. This requirement is identical to Trace
Equivalence in Definition 19. Further, all states for which the agents are trace
equivalent, the outputs must also match the specification exactly. Definition 25(¢z)
assures that for any sequence that I and S can perform, the output sequence will

match exactly.

Definition 25 Implementation I is Trace Conformant to specification S, written

as I =; S, iff Vse L and Vie A
(i) Whenever S= then [

(it) Whenever S and IZ then S

The simple FIFO example of Figure 5.2 will be used to demonstrate the intuition
behind Trace Conformance. Assume that we want to see if a two place FIFO is a
valid implementation of a one place FIFO. The specification of the single FIFO cell F

in Figure 5.2 is defined as F &' in.oul.F. Assume also that the cell F; Figure 5.2(a)

has the same behavior.
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m -~ F = 1 P out in -+ F P out

(a) (b)
Two Element FIFO/Hybrid  Single Element FIFO

Figure 5.2: Conformance Example with FIFO Buffers

Example 1

Trace conformance was defined as an operation on possible derivative sequences.
If the traces of length three are examined for the single FIFO element F, and the
two element FIFO implementation, (F[t1/out]|F[t1/in])\{t1}. The specification has
a single valid trace — in out in. If we look at the two element FIFQ, it has one
additional trace of length three, as shown in Table 5.1.

1: in in out
2: in out in

Table 5.1: Traces of Length Three for the Two Element Hybrid Circuit

Using the one place FIFO as the specification, the two place FIFO implementa-
tion can be checked for conformance. Definition 25(¢) requires that the definition
have the same behavior (traces) as the specification. The second trace in Table 5.1
is equal to the specification’s trace, so that part holds. Next all traces that are
unreachable can be discarded because of input restrictions. The two element FIFO
can accept two inputs before producing an output as shown in the first trace of Ta-
ble 5.1. However, the environment is restricted by the specification such that after
presenting in, it must wait for out before it can supply another in signal. Since a

second input will never be produced by the environment without first consuming an
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output, this trace can be discarded. This leaves the single trace which matches the
specification, showing that for traces of length three or less, the implementation is
trace conformant.

Figure 5.3 represents the same behavior as specified by the circuit diagrams of
Figure 5.2 with state graphs (or the derivation trees of a labeled transition system).
This representation has a more intuitive representation and simpler analysis methods
than the traces of Table 5.1. The trace structure can be created from the state graph
of Figure 5.3(b).

O—0 O—0= —0

oul '-_qut
(@) (b) _
FIFO Specification FIFO Implementation

Figure 5.3: Two FIFO Derivation Trees

Trace Conformance verifies that the implementation has the same descendant be-
haviors as the specification, and that there are no illegal output behaviors. State 0
of the specification and implementation in Figure 5.3 both have the same derivative
behaviors — they have in-derivatives that move to state 1. From state 1, the speci-
fication has an out-derivative, which moves the specification back into state 0. The
implementation also has an ouf-derivative, which moves it back to the initial state.
However, the implementation also has an in-derivative which the specification does
not have. Since this is an input that will not be generated by the environment the
transition can be ignored. State 2 is circled with a “cloud” indicating it is unreach-
able. This verifies that for all traces the two element FIFO is Trace Conformant to

a single element FIFO.
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This example can also be conceptually verified by examining the traces as regular
expressions. The regular expression for the specification’s traces is (in out)*. The
regular expression for traces of the two element FIFO is (in(in out)?out)*'. The
definition of trace conformance restricts the regular expression of the implementa-
tion resulting in the mapping of (in(in out)?out)* — (in out)*. The internal term
(in out)* is removed, which corresponds to the removal of state 2 in Figure 5.3. Since
the traces for the specification and the restricted behavior of the implementation are
equivalent, as (in out)*, the implementation conforms to the specification.
Example 2

Suppose that the behavior of box F; in Figure 5.2 is redefined. Is this implemen-
tation Trace Conformant with the specification when F, def in.(out.out.F1+ out.Fy)?

1: in in out

2. in out in
3. in out out

Table 5.2: Traces of Length Three for the Two Element FIFO

Table 5.2 shows the traces of length three for the new system. Verification can now
be applied to the new system to determine whether or not it is trace conformant to the
specification. The specification’s trace is present as the second trace in Table 5.2, so
Definition 25(¢) holds. Next, for all reachable traces (or states), the implementation’s
output behavior must match that of the specification. Initially the specification
can do no output; this behavior is matched by the implementation. Because the

specification does not allow the environment to produce two adjacent in transitions,

IThe ‘?” symbol indicates that the expression will be matched zero or one time.
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the first trace in Table 5.2 is thrown out as unreachable. Let s be the trace in,
which is a valid trace for both the specification and implementation. Then, let trace
t be oul oul. The trace = is possible for the implementation. However, since =
is impossible for for the specification, this implementation is not trace conformant

with a single FIFO. This erroneous trace can be seen as the third trace in Table 5.2.

Figure 5.4: Derivation Tree of FIFO-like Structure

The derivation tree of the new FIFO structure is shown in Figure 5.4. Notice
that the same required derivative structure of the specification in Figure 5.3(a) is
present in the new FIFO structure’s states 0 and 1. The in transition to state 2
and the “clouded” region can be thrown out because it is unreachable. Observe that
there are two oul transitions possible from state 1. Assume the ouf transition to
state 4 is taken. From there, it is possible to take a second out transition to state 0,
which is violates conformance. Thus this implementation is not trace conformant to

the specification.

5.5.1 Suitability of Trace Conformance

Trace conformance is generally unsuitable for verification because of some undesirable

equational laws arising from its inability to distinguish between agents. Proposition 3
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contains some equational laws in trace systems that cause problems with circuit

verification.

Proposition 3

(1) a.(P+Q)=a.P+a.Q
(2) P+7.Q=P+Q

(3) 7P =P

(4) (P+Q)R= PR+ Q|R

« « « « T « 0 « « «
5/\v  |s~ 54| s 5 Nil g
(a)

Figure 5.5: Weaknesses in Trace Analysis

These behaviors can result in equivalences between derivative trees which are
undesirable for circuit verification. Trace conformance or trace equivalences cannot
distinguish between the pairs of derivation graphs in Figure 5.5. Trace models are
generally insensitive to the branching structure of agents. They cannot determine
when choice is made by a system as shown in Figure 5.5(a) and (b). Likewise, they
cannot determine if deadlock has occurred as shown in Figure 5.5(c). The derivation
trees in (a) are an example of Proposition 3(1), and the trees in (b) are an example
of Proposition 3(2). The fourth law can be derived from the first two.

Because of their insensitivity to the branching structure of agents, trace verified

systems can deadlock when interconnected. Assume that two components have the
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branching structure as shown by the left tree of Figure 5.5(b) and they are inter-
connected and communicate on labels § and 7. Deadlock will occur if one agent
decides i1t will communicate on # and the other decides it will communicate on ~.
The traces of the system will contain complete traces, as well as the truncated ones
when deadlock occurs, resulting in a “verified” system. This problem is exacerbated
by the hide operator of trace systems which discards interconnectivity information
because all sources of the problem have disappeared once this operator has been
applied! When used this way the hide operator is similar to CCS restriction, but
it merely influences the traces that are possible, rather than introducing a silent
internal action which can effect the external observable actions.

Three questions will be answered at this point. Why would one use trace based
systems at all, given such serious flaws? Is there a way to strengthen trace systems
to allow them to detect deadlock and to be more sensitive to the branching structure
of agents? Lastly, are there other approaches which will give more confidence in the

results — effectively disallowing the equational laws in Proposition 37

5.5.2  Strengthening Trace Verifications

There are two ways to strengthen trace semantics. The first is to use complete
trace semantics, which represent complete executions. In the case of recursive or
nonterminating processes, the complete traces would be infinite. If a regular expres-
sion can be generated, as was done in an example above, then infinite sequences can
be represented with a finite representation. However, complete traces are still not

strong enough to detect deadlock.
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A second technique which strengthens trace semantics is to add failure sets.
Generally, traces only allow the observation of executable sequences. Failure seman-
tics require that one can additionally determine which operations cannot occur for
each possible trace. Failure semantics adds the ability to observe some information
about the internal branching structure of agents. The CCS definition of a failure,

sometimes called testing equivalence, is defined in [dNH83] as follows:

Definition 26 A fatlure is a pair (s, L) where s € L™ is a trace and L C L is a
set of labels. The failure (s, L) belongs to an agent P if there exists P’ such that

(i) P=P

(ii) P'p

(iii) ¥ a€ L, Ph

Failure semantics is extremely busy, as many potential failures must be associ-

ated with each partial trace. Some of the failures of the example of Figure 5.2 on
page 122, with boxes F and F; using the same definition, are shown in Table 5.3.
Note that the failures for the trace in are different, yet it has been shown that the
implementation conforms to the specification. Hence there needs to be some the-
ory for what constitutes a significant difference in failure traces if they are used for

conformance.

Specification Implementation
(e, o) (e, o)

(in,in) (in,€)

(in out, out) (in out, out)

Table 5.3: Failures for Some Matching Traces of the FIFO Example
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The most interesting feature of failures semantics is that it is the weakest verifi-
cation which can test for deadlock. However, it still doesn’t significantly distinguish
the branching structure of agents. Figure 5.6 shows two agents which cannot be
distinguished with failure semantics. See [v(G90a] for a more detailed presentation

on equivalences and their comparative concurrency semantics.

Figure 5.6: Weaknesses in Failures Semantics

5.5.3 Trace Failure Example

The most widely used verifier in the asynchronous community can be attributed to
Dill [Dil89]. It was used in the development of the Post Office. Dill’s verifier uses
modified trace semantics to overcome some of the aforementioned weaknesses in trace
theory. Because of the complexity of complete trace semantics, they are not a part
of his verifier. Dill uses a failures theory in his verifier, which allows it to distinguish
certain classes of the derivation trees in Figure 5.5, but other branching structures
such as shown in Figure 5.6 cannot be detected.

An example of the faults that can occur with trace verification is shown. Suppose
that a 4-cycle MERGE element is to be built that responds to either an a request
or a b request (which are mutually exclusive processes) and produces a request to a

third component via a ¢ output. The CCS description of the specification is shown



CHAPTER 5. HARDWARE EQUIVALENCES FORMALIZED IN CCS 130

in Equation 5.2 as agent E6Spec. Assume that the circuit E6 that is implemented
behaves as shown in Equation 5.3. In other words, this process requires that after
an a handshake, the b handshake must follow, but after a b handshake, either may

proceed.

E6Spec def a.c.a.c.E6Spec + b.¢.b.2.E6Spec (5.2)

E2 ¥ 02.a.2.02.02E6 + b.e.b.T.E6 (5.3)

The E6 circuit was verified against E6Spec using Dill’s burst-mode verifier (ported
by Nowick for the burst-mode Post Office application). The input file is shown in
Figure 5.7. The circuit that is passed to the verifier is shown in Figure 5.8. This
circuit contains two state variables and the output. The description of the circuit is

defined as Vi & B+ Yy x A+Yi x A, Yo A4+ Y, x B, and C € Y; x Yy + 7 x Yo

:in (a b) ;list of input variables
:out (c) ;list of output variables
:init-state O ;initial state (optional)
:state 0 (a)

1 (¢)
:state 1 (a~)

0 (c™)
:state 0 (b)

2 (c)
:state 2 (b™)

0 (c™)

Figure 5.7: E6 Circuit Description for Dill’s Verifier
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Figure 5.8: Falsely Verified Circuit E6

Dill’s burst-mode verifier incorrectly indicates the circuit is a faithful implementa-
tion in 79 states. This is most likely due to one of two problems with trace verification
methods — an incomplete trace model, or the mirroring of the specification to form
the implementation.

Analyze (see Chapter 7.5) points out eight failures in this circuit using its trace
conformance verification mode. Computation interference, which is considered an
implementation failure, occurs after the a©a<ca trace. There is also a deadlock
after this trace, which doesn’t allow the ¢ signal to assert in response to the a input.

This occurs when the Y; x @ AND gate is unstable? producing a high output, and

2A gate is considered unstable when changes in the inputs will result in a change on the output
that has not yet occured.
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the Y7 OR gate is unstable producing a low output. If the AND gate goes high first,
the Y; output may remain high, produce a runt pulse, or a static 1 hazard. If the
OR output changes first it may stabilize the AND output low, produce a runt pulse,
or other races that could result in oscillation.

For this analysis the AND and OR gate specifications are modeled so that when
they are unstable, they cannot accept an input that disables the pending output
until after the output has changed and the gate stabilizes. This results in the dead-
lock as neither the Y7 AND nor the y;a OR gate can fire. From the deadlock, the
output ¢ cannot be produced, resulting in a verification error with the complete trace

semantics of Analyze. This complete analysis is reached in 74 states.

5.5.4 Are Trace Systems Useful?

From the preceding section one could wonder if trace based verification is useful at all
given such serious flaws in complexity and analytic coarseness. Trace based systems
are too casual, and seem to be overly complex when complete trace and failures are
employed. However, experience with Dill’s verifier showed the effectiveness of such a
tool, and gave good insights into what could be accomplish with Analyze. There are
also some mitigating factors which can make trace based systems attractive, which
will be discussed in this section.

An asynchronous circuit consists of basic building blocks which are composed in
parallel to build larger circuit modules. The building blocks for low latency circuits
proposed by this thesis consist of two types of components; asynchronous finite state

machines and the nondeterministic, analog mutual exclusion element.
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As discussed in Chapter 4, AFSMs are restricted in such a way that they are
implementable without combinational logic hazards, and that sequential hazards are
controllable. These restrictions require that inputs and outputs occur in bursts, and
that any choice by the environment be mutually exclusive. These restrictions also

make AFSM modules easier to verify.

Proposition 4 A minimized burst-mode specification will not contain any 7 transi-

tions.

Proof  For a 7 transition to exist in a minimized agent, there must be a
transition P - P’ where P % P'. Since burst-mode AFSMs partition activity into
distinct input and output phases by Rule 1 on page 83 the 7 transition must be
part of an input or output burst. By Definitions 1 and 2 each input or output burst
must be confluent. Hence by Definition 24(z) no transition P = P’ can exist where

PP O

Proposition 5 If agent P is determinate and has no 7 transitions, then it is also

strongly determinate.

Proof  Weakly determinate definitions allow 7 transitions to be ignored be-
cause they use the transition ) = Q' where s € L*. Since there are no 7 transitions,
Q = Q' is equivalent to ) = Q' by Definition 16. Definition 22 states that strong
determinism is operational on all derivatives ) of P. Since determinacy is closed
under derivation all s-descendants will be derivatives of P. Therefore, only the direct
a-derivatives of () need to be tested, not the s-descendants, making Proposition 5

hold. O
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Proposition 6 Burst-mode AFSMs are determinate.

Proof  Follows from Definitions 1, 2, 23, and 24. O
Proposition 7 If P and () are determinate, then P =~ Q) iff P =; Q

Proof  Milner [Mil89] page 234. 0
It one is to build burst-mode AFSMs then they must be determinate. If the
AFSM and its specification are determinate, then trace equivalence suffices as a
verification tool! Further, the determinate check can be simplified because it can use
strong determinacy, which is a much simpler operation on labeled transition systems.

When the agents are minimized this operation is linear on the state space.
Proposition 8 Trace semantics are not sensitive to determinate agents.

Proof  To be sensitive to determinate systems, one must distinguish between
transitions of the type shown in Figure 5.5(a). Trace semantics are not sensitive to
determinacy because they cannot distinguish between a.(b.Nil+c¢.Nil) and a.b.Nel+

a.c.Nul O
Proposition 9 Trace semantics cannot distinguish internal T choices.

Proof  From Definitions 16 and 25. O
Trace semantics can distinguish neither nondeterminate nor 7 transitions. This
has two ramifications. Firstly, a stronger semantics must be used to verify that a
burst-mode state machine meets its determinate requirements. Section 7.7 discusses
some of the extra constraints necessary to prepare state machines for synthesis. CCS

semantics has sufficient power to verify determinacy properties.
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Secondly, a burst-mode specification can be turned into a trace determinate
specification — which removes all 7 and nondeterminate transitions — because 7
actions are indistinguishable using trace semantics. The result allows simple state-
by-state matching between the specification and the implementation. If the imple-
mentation is determinate, then trace and bisimilar verifications can be done with
linear complexity on the number of states in the specification. Further, all unreach-
able states in the implementation are never generated or visited under compositional
analysis as is done in the tool developed in this thesis. Additionally, the internal
structure of the implementation, including hidden internal transitions, can be pre-
served over this process, with the unreachable states excluded. This enables the
structure of the circuit to be preserved so that the features and capabilities of CCS
are not lost in the process.

The good news is that burst-mode state machines can be verified efficiently using
trace formalism. Further, many large computational blocks can be determinate, so
they too can be efficiently verified. A good example is the register bank in the
asynchronous AMULET CPU [PDF*92]. However, a purely trace-based system is
not capable of proving the determinate property, a essential step in verifying correct
burst-mode specifications (to be pointed out in Section 7.7).

Unfortunately, there are many computational blocks which are nondeterminate
due to data dependencies and/or shared resources. The overheads of trace verifica-
tion can be extremely high for nondeterminate blocks. For example, many required
trace transitions from the current implementation state may not be present when
verifying the trace conformance of a nondeterministic system against its trace deter-

minate specification. This is not an error unless the trace is not possible from any
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state in the specification. Hence, incomplete trace logs must be stored and matched
against completed traces during a verification run to determine if the trace is possi-
ble from another state. Only at the end of a run can one determine if the run was
successful. This overhead is not present in the logic conformance definitions which

follow.

5.6 Logic Conformance

Trace verification has some serious weaknesses because it
e cannot discern determinate systems.
e cannot detect deadlock.
e equates too many branching structures of agents.
o is inefficient for verification of nondeterminate agents.

These are serious weaknesses, as verifications with trace systems cannot detect
some of the faults in real circuits, such as those discussed in Section 2.3.4. Particu-
larly crippling is the inability to detect deadlock. Although many of these concerns
are not present in small AFSMs, they commonly occur with larger composed systems
with data dependencies or shared resources. These systems are the ones which are
too complex for designers to analyze in their heads, and where formal methods and
automation must be applied. (Although the compositionality of asynchronous cir-
cuits alleviates the difficulty of composing systems, there are still ample possibilities

for design errors.)
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A better conformance definition should have the same properties and equational
laws as observational equivalence. The definition of this conformance follows, and is

called “observational conformance”, or logic conformance.

Definition 27 A binary relation LC C P X P over agents is a logic conformation
between implementation I and specification S if (I,5) € LC then ¥ a € Act and

V Be AU{r} (outputs and 7) and ¥ v € A (inputs)
(i) Whenever S5’ then 3 I' such that ]:&>], and (I',S") € LC

(it)  Whenever 157 then 3 8" such that SZ8" and (1',5") e LC
(iii)  Whenever 51" and S= then 3 S' such that S=5" and (I',5") € LC

Logic conformation is similar to trace conformance, but it is more sensitive to
the branching structure of agents. There is also the back and forth comparison
between the implementation and the specification which are necessary for a bisimilar
relation. Deadlock is detected and must be equal to deadlocks in the specification.
Definition 27(:¢) requires that all outputs and 7 transitions are bisimilar to the
specification. This assures that there are no hazards in the implementation and
that it produces precisely what the specification dictates. The difference between
bisimulation and logic conformance is that inputs not supplied by the environment
and their derivative agents (Definition 27(722)) can be ignored as per Proposition 2.

The back and forth bisimulation nature of Definition 27 assures that Proposi-
tion 3(1) on page 126 does not hold. It also catches any dynamic and static hazards
the circuit may produce. Clause (22) checks for correct 7 operation and assures that
Proposition 3(2) doesn’t hold. Without this clause, the 7 transition in IMPL the

example in the following section would be ignored. This would make IMPL Logi-
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cally Conformant to SPEC, a case which surely should not hold because IMPL can

deadlock while SPEC cannot.

5.6.1 Logic Conformance Example

Assume agents E7 and E7Spec are defined as follows:

E7Spec def a.b.E7Spec (5.4)

def

E7 % a.(7.Nil + b.ET) + b.Nil (5.5)

The transition graphs of these agents is shown in Figure 5.9. The implementation
E7 is trace conformant to E7Spec, but has no logic conformation. The conformation
set LC starts as a cross product of all ordered pairs of the implementation E7 and
specification E7Spec in the order (E7,E7Spec). There are six such pairs in £C —
(0,0)(0,1)(1,0)(1,1)(Nil,0) and (Nil,1). The last two pairs can be immediately
discarded. The pair (1,0) can also be thrown out as the implementation doesn’t
simulate the specification — it does not have the = transition. The pair (0,1) can
likewise be thrown out. The implementation can match the specification’s transition
requirements through the transitions E7Spec-1 LR E7Spec-0 and E7-0 2 Nil. Since
the pair (Nil,0) ¢ LC, the pair (0,1) cannot be in £C and is also thrown out.

Only the pairs (0,0) and (1,1) remain to be checked. The implementation sim-
ulates the specification’s a transition and requires that (1,1) is in £C. The same
occurs for the a transition of the specification. Since the b transition is not a valid
transition of E7Spec, Definition 27(7:%) is vacuously true. In checking the pair (1,1),

note that a bisimulation from state 1 to state 0 exists between the implementation
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b b
Nil O D— Nil O

a a

(a) (b)

E7 E7Spec

Figure 5.9: State Graph of Example ET

and specification on label b. Definition 27(¢¢) requires that the implementation’s 7
transition is bisimilar to the specification. The only 7 transition in the specification
that matches E7-1 5 Nil of the implementation is E7Spec-1 §> E7Spec-1. Since the
pair (Nil, 1) is not in £C, the pair (1, 1) is also thrown out. Because (1,1) is thrown
out so is (0,0). LC is empty, showing there is no logic conformation between E7 and
E7Spec.

If the 7.Nil agent expression were not part of E7 then these agents would be
logically conformant. Secondly, if the b input were changed to an output b, then E7
is no longer trace conformant to the specification because there is an output possible

in the initial state before an a input has arrived.

5.6.2 Properties of Logic Conformance

Because the definition of Proposition 27 uses sets, there are many possible solutions,
including the empty relation £LC = e. Therefore, this definition must be put into
a different form which will be the largest conformance. This is done by examining

some of the properties that are preserved by various operations on relations.
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Proposition 10 Assume that each LC; (i = 1,2,...) is a logic conformation. Then

the following relations are all logic conformantions:

(1) Idp (2) £C, LC, (3) User £C;

Proof

(1) The identity can be defined as a relation R = {(z,z) : (z,z) € R}

Suppose that for some P, (P, P) € LC. Each action P = P', P 2 pr

, and

P 2 P! from Proposition 27 can be equaled by the same action, so P :&> P,
P L P and P2 P all hold. Since (P, P) € LC,(P',P') € LC.

(2) The composition of two binary relations is defined as the relation
Ri1R2 = {(z,z) : for some y,(z,y) € Ry and (y,z) € Ra}

First the most general case is exercised, going from right to left. Suppose
that (P, R) € LC; LCy. Then for some Q there must be (P, Q) € L£C; and
(Q.R) € LCs.

Let R = R'. By Definition 27, since (Q, R) € LC.,

Q2 Q and (Q.R) € LC

Since (P,Q) € LCy,if Q = Q', 3 P’ such that

~

P = P and (P,Q) € LCy
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From Definition 15, Q = @' can be rewritten as Q) 7o} Q.

Also, since (P,Q) € LCy,if Q = Q" then we have some P” such that
P = P and (P", Q") € LCy
Therefore, if () N Q"' then there exists a P such that

P I P"and (P",Q") € LC

A~

By Definition 15 P 2L is equivalent to P :&> Since (P, Q") € LC; and

P §> P" then there exists a P where if () T—*>Q”’i> Q"" then
P % P//// and (P////’ Q////) E Ecl

By similar reasoning, since (P"",Q"") € LCi, there exists a P’ such that if

Q T_*)Q///ﬁ)Q////T_*) Q/ then
PE P and (P,Q) € LC

Since @ e ()’ is equivalent to ) :&> Q' and if Q :&> Q' and (P,Q) € LC4
then there exists P’ such that P :&> P and (P,Q") € LC.

Hence (P, R') € LCy LC; from right to left

Going from right to left for 3 and ~ transitions uses the same structure as above.

Going from left to right for 3 transitions also follows the same structure.

The v transitions are what create the partial order. Any transition in R will

have similar transitions in () and P as shown above. Likewise, any transition
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in ) will have a similar transition in P. However, input () transitions may
exist in P that do not exist in @), and likewise for () and R. Using similar
reasoning as above, suppose (P,R) € LC;LC;. Then (P,Q) € LC; and
(Q,R) € LCs.

Let P 5 P'. If there is no transition QQ = then we are done. If Q = then
Q= Q' and (P,Q) € LC.

IfQ = Q and R 7z> then we are done.

Definition 16 allows ) = @’ to be rewritten as () N @Q". Since (3 transitions
include the 7 transition, and all 3 transitions hold between P, () and @), R, the
above reasoning can be used to deduct that since (Q, R) € LC, and if Q = Q’

and R = then there exists an R’ such that
R=2 R and (Q,R') € LC,

Hence (P, R') € LCy LC;

(3) For all £C;, the largest set is created by the union of all such sets. If this were
not the case, a pair would exist (P, Q) € U,;c; £C; that forced (P',Q)") ¢ LC.

But if that were the case, (P, Q) would not be in £LC.

Definition 28 Implementation I is logic conformant to specification S, written
I = Sif(1,5) € LC form some logic conformation LC. This may be equivalently

expressed as = = U{LC : LC is a logic conformation}
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Proposition 11
(1) =, is the largest logic conformation

(2) =, is a partial order

Proof

(1) By proposition 10(3), =, is a logic conformation and includes any other such

conformation.

(2) Reflexivity: For any P, P =; P by Proposition 10(1).
Transitivity: If P =; @ and ) >=; R then (P,Q) € LC; and (Q,R) € LC;
for logic conformances £Cq, LCy. Therefore, by Proposition 10(2),
(P,R) € LC1LCy,andso P =; R.
Antisymmetric: f P =) () and () =; P then P =~ (@ (bisimilar equivalence)

by the definitions of Bisimulation and logic conformance. P >; () does not

imply ) =, P. For example, let E8-0 4 1. E8-0 and E8-1 &' ¢.E8-1 + b.E8-1.

Clearly E8-1 >, E8-0 and E8-0 %, E8-1

Definition 29 Define the function F, over subsets of binary relations over agents
P x P such that if R C P x P, then (P,Q) € F(R) iff Va € Act andV¥ € AU{r}

and Vv e A
(i) Whenever SS5S" then 3 I such that I=1' and I'RS’

(it) Whenever 151 then 3 S’ such that S:ﬁ>5' and I'"R S’
(iii) Whenever 151" and S= then 3 S such that S=S' and I'R.S’
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Although F operates on any R, it is used in such a manner that it succinctly

defines logic conformance.

Proposition 12
(1) F is monotonic. If Ry C Ry then F(Ry) C F(Rs)

(2) LC is a logic conformance iff F C F(LC)

Proof (1) follows directly from Definition 29, and (2) reformulates Defini-
tion 27. a
R is called a pre-fized-point of F if R C F(R). Also, R is a fized-point of F if
R = F(R). Therefore logic conformations are exactly the pre-fixed-points of F, and

it will be further shown that =;, the largest pre-fixed-point, is a fixed-point of F.

Proposition 13 Logic conformance is a fized point of F, hence =; = F(=;). Logic

conformance is likewise the maximum fized-point of F.

Proof  Since =, is a logic conformation, =; C F(>;) by Definition 29. Because
F is monotonic, F(=;) C F(F(=1)), so F(=) is also a pre-fixed-point of F. Since
= is the largest pre-fixed-point of F (from Proposition 11), it includes F(>=;), so
F(=1) C =. Therefore =; = F(;). Because =; is the largest pre-fixed-point, it is
also the maximum fixed-point of F. a
Because =; is the maximum fixed point, logic conformance can now be defined

as follows:
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Definition 30 Logic conformance between implementation I and specification S

is written as I =; S and holds iff ¥V a € Act andV 3 € AU{r} and Vy€ A
(i) Whenever S35 then 3 I' such that ]:E>], and I' =; S’

(it)  Whenever IS0 then 3 " such that S:ﬁ>5’ and I' =; S’

(iit)  Whenever 151 and S= then 3 S such that S=S" and I' =, S’

Proposition 14 if P =; Q) and () =; P then P ~ ()

Proof Follows from Definitions 21 and 30 O

5.7  Summary

Two formalism have been presented, based on trace and bisimulation semantics,
for comparing circuit specifications and implementations. Informally, these are de-
signed to maximize the implementations that will conform to the specification while
retaining the correct operation as far as the model’s capabilities allow.

Trace conformance is useful for simple cases where the circuit implementation
is determinate. Then verification can be done linearly on the state space of these
processes. An additional feature is that trace equivalence also implies the preferred
notion of logic conformance when the specification and implementation are determi-
nate. For these simple examples, logic conformance is no more complex to calculate
than trace conformance, and can be done linearly on the state space as well.

For the more difficult cases of hierarchical, complex, or nondeterminate logic, the
trace model becomes slow and inefficient. Trace verification of these models can also
validate circuits which will not operate as desired. logic conformance contains suf-

ficient rigor to verify circuits hierarchically, while catching hazards and inconsistent
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behavior caused at any level in the hierarchy. The computational complexity of logic
conformance is significantly less than that of complete trace failures testing. When
no 7 transitions exist, the check is linear on the state space in time.

Several attempts at creating loose specifications have been made in the theoretical
community [CS90, DHWT91, FM91, Lar89, Xin92|. These groups have used partial
orders to achieve the looseness (or partiality) of specifications for behavioral systems.
Some of the partial orders include % bisimulation, divergence preorders, and network
preorders. Although these may have practical applications in some areas, none are
appropriate for asynchronous hardware verification. Practical applications have also
been applied by using a “mirroring” or inversion operation on the specification and
composing that with the implementation. The goal of the mirrored specification is to
supply a restricted environment for the implementation. These methods either place
constraints on systems which are unreasonable, hide hazardous behavior, or are not
“safe” as they permit hazards and illegal transitions to occur in the implementation
with handshaking communication.

A significant contribution of this thesis is the definition of a generally applicable
approach to loose behavioral specifications called conformances. A conformance is a
partial order which restricts the behavior of an implementation to contain at least
all the behaviors of the specification, and to exclude any bad behaviors. Definitions
for trace conformance and bisimulation (or logic) conformance have been presented.

A second contribution to the asynchronous community is the ability to apply a
larger range of equivalence formalisms to verification, as only trace based systems
have previously been available. The tools developed with this thesis include verifi-

cation based on trace and branching time bisimulation formalisms.
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Proving pre-congruence on the conformance partial orders results in many ad-
vantages for hardware synthesis. The primary advantage is that conformance now
supports compositional (or substitutive) replaceability between specifications and
their looser implementations. This allows systems to be hierarchically synthesized
in a top-down fashion, where conformance only needs to be proven at each level in
the hierarchy.

Many safety features cannot be verified hierarchically, so good global planning
is still necessary to achieve the full potential of the tools. Good planning is also

necessary to hide the explosion in complexity due to parallelism.



Chapter 6

Practical Applications of Process Logics

Process logics can verify that a behavior holds invariantly across a set of states.
Such invariant analysis is analogous to simulation, but circuit simulation only tests
the timing and threads of behavior explicitly exercised by the simulation vectors.
For instance, deadlock might be discovered using simulation, but with invariants
the deadlock property will or will not exist be found to exist. Temporal logics can
be used to prove that the existence of behavioral invariants and properties that are
essential for reliable circuit implementations.

This chapter applies process logics to the practical verification of behaviors and
properties of asynchronous circuits. First Hennessey-Milner logic and the modal-u
calculus are introduced. Invariant properties are then broken into two categories as
they relate to circuit descriptions — application independent and application specific
formulae. Independent formulae are generic for all circuit implementations, while the
application specific properties rely on the circuit specification and implementation.
Deadlock and liveness are the independent invariant properties of primary impor-
tance. Some new definitions of these properties, analogous to the liveness definition
or Petri net theory, are developed here. They are more appropriate definitions for
parallel VLSI than the forms typically used with temporal logics. New application
specific invariants are presented and some old forms are strengthened so that they
are appropriate for hardware. Finally, an example of applying temporal logic as a

conformance verification is presented.

148
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6.1 Hennessey-Milner Logic

Hennessey-Milner logic (HML) is a process logic that applies the following logic for-
mulae to labeled transition systems [Sti92]. Recall the definition of labeled transition
systems from Definition 9: (P, Act, {5 : a € Act}) where = maps to the agents in

P x P. Terms in Hennessey-Milner logic are defined as:

Au=T|-A| ANA | (a)A (6.1)
where

e 1" is a constant representing a true formula
o —A negates the formula A
e AAA is the conjunction of two formulae

e (a)A is the modalized term where the formula A holds after some action a.

A modalized operator is a formula that makes an assertion about a changing
state. A common set of duals apply, including =T def F, the disjunctive operator
=(=AA-B) &' AVB, and a second modalized term —{a)-A 4 14] A. Each agent has
its own HML system because formulae are parameterized by an action set. The
action set of the formulae should be a subset of the sort of the processes being
analyzed.

HML is applied to express conditions on the behavior of agents, which can be

formally defined by the satisfaction relation ‘="
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Definition 31 The satisfaction relation |= between terms in a process logic A €

PL and the agent set P € P is defined by induction on the structure of formulae as:

(1) P E T VP
(i) P | -A P A
(1)) P Nerd ffViel, Pl A
(iv) P &= (a)A  iff 3 P where PSP and P' = A

Consequently, the derived dual operators introduced above can also have the
satisfaction relation defined. Of particular interest is the modalized term [a]A. For

this term

P | [a]A iffV P'whereP= P'thenP’ |= A (6.2)

Note that the modal equation [a]A can be vacuously true. If the a action is not
possible from P, then the equation is satisfied. If the action is possible, then the
equation is true if and only if for all actions P-5P’, A is satisfied by all states P’.
Agents can now be tested for satisfaction of specific properties using HML. For
example, Table 6.1 shows various property and behavioral tests for the standard

C-element definition C & ¢.0.2.C +b.a.c.C.

C E [eJF C cannot make a ¢ transition
CE(a)T C can make an a transition
ClE ()T C can make a b transition
CE (a)(b)(T)T C can make a, then b, then ¢ transitions.
C | [a]FA[B]FA[E]F C is deadlocked (false)

C | (a)TABFA[E]F C can only make an a transition (false)

Table 6.1: HML Formulae Testing a C-element
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Such tests can be used to examine specifications of asynchronous circuits [Liu92].
Notational extensions can be used which clarify the meaning of a modal formula
and reduce the chance of an error. Multiple actions can be placed inside a single
modal formula which can greatly clarified formulae for testing the C-element and

other processes.

Definition 32
(a,0)4 ¥ (a)AV(b)A

and dually,
[a,b,7]A ¥ [a] AA[B]AA[E]A

Further, the ‘=’ character can be used to substitute for any action of an agent.

Definition 33
(—)4 = Vvaeac{a)A
(—a,b)A £ WWaedct and aap(a)A
and dually,
[-]A = Avaeacla]A
[—a,b]A o Avacact and azaplc]A
At times a weaker transition rule may be desired when reasoning about circuit
behaviors. Rather than using the relation = over P for modal formulae, the weaker
transition relation :a>, defined in Proposition 15, can be used. For such transitions,
the modal formula [a]A is replaced with [[a]]A and (a)A is replaced with ((a))A

where the abbreviations preserve their duality.
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6.2 Modal-x Calculus

All interesting hardware agents are reusable and thus have recursive definitions in
CCS. An agent set R (R C P) is called a fixed point of the function Fif R = F(R).
For example, the behavior of a C-element keeps repeating itself so a fixed point of
the C-element can be expressed with the following formula in which C is the fix point

variable.

C = (a)(B)(e)C (6.3)

There may be many solutions or no solution for a fixed point formula. However,
if a fixed point variable is prefixed by an even number of negations, minimal and
maximal solutions are guaranteed to exist [Tar55]. Therefore, forms with an odd
number of negations are not interesting. Multiple solutions can exist because a
property (or formula) is associated with a set of states. When multiple solutions
exist, the sets form a lattice with unique minimal and maximal solutions. There
is no quick way to compute all the fixed points of an equation — all possible sets
of states must be examined. However, there are efficient algorithms for finding the
minimal and maximal fixed point solutions. Luckily these are the ones in which
all of our characterizing properties can be expressed. The maximal fixed point is
calculated by iteration starting with all states in the system, throwing out states
that are necessarily false. The minimum fixed point iteration starts with the empty

set and includes the states which are necessarily true.
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Modal-p extends Hennessey-Milner logic with fixed points:
A = HML | min(X.A) | maz(X.A) | X (6.4)

where X is a fixed point variable. These fixed point variables allow properties to
be tested as invariants across the entire set of states in an agent. Two standard

branching time temporal logic operations based on fixed points are the box ‘0’ and

diamond ‘7 operators [MP92, And93].

Definition 34 The always operator O is defined as

0P ¥ max(X.P A [—]X)

Definition 35 The possibility operator < is defined as

OP ¥ min(X.P Vv (=)X)

The O (BOX) macro assures that the property P holds invariantly across all
reachable states from a process if Process = OP. The & (POSS) macro holds when
any state in the system reachable from the process has property P. These operators
are duals of each other in the sense that P = == P. Other useful macros that have
been applied to circuit verification include the EVENTUALLY and PATH macros
(which are also duals) [Liu92, LABS93]. EVENTUALLY ensures that there is at
least one state on every trace that contains property P, whereas the PATH operator

verifies that the property P holds on each state in at least one trace.

Definition 36 The eventually operator EVENTUALLY is defined as
EVENTUALLY P ¥ min(X.P v [-]X)
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Definition 37 The path operator is defined as

PATH P & maz(X.P A (—)X)

Refer back to the example in Table 6.1 on Page 150. Note that the HML test for
a deadlocked C-element only assures that the initial state does not deadlock (much
like a simulation test). The modal-g macro from Definition 38 can be applied to

prove that the circuit does not contain the “temporal logic” deadlocking property.

Definition 38 A process contains the complete deadlock property if it is satisfied
by: O[-]F or its dual -(0(=)T)

This formula is satisfied if there is any state in the system where no action is
possible. Hence the system can become stuck where it cannot make any moves at
all. The Concurrency Workbench can be used to test this and other properties using

the modal-p formulae presented throughout this chapter.

6.3 Application Independent Invariant Properties

Application independent invariant properties do not rely on an agent’s sort or struc-
ture. The properties presented in this section are essential for well defined circuit

specifications.

6.3.1 Deadlock

The complete system deadlock expressed in Definition 38 is too restrictive to be useful
for most hardware implementations that employ parallelism because it requires that

an agent can arrive in a state where no action can be performed. The definition of
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a live system in Petri net theory more closely models the hardware designers mental
model of a deadlock [Pet81].

For example, assume a handshake interface is implemented as shown in Figure 6.1.
Upon receiving a request, the circuit can move into state 1 where it will handshake
correctly by responding with an acknowledgment, or it will nondeterministically
move to state 2 where it will accept any number of requests but will never respond

with an acknowledgment.

req

/)
ack

Figure 6.1: Weakly Deadlocking Handshake

This agent does not contain the complete system deadlock of Definition 38. How-
ever, this agent does contain a deadlock on the ack signal, because it is possible to
arrive in a state where the circuit will no longer issue an acknowledgment. The

following more useful definitions of deadlock for parallel systems are proposed:

Definition 39 A process P € P contains a deadlock if 3 a € L(P) which allows
P to satisfy the following formula:
DEADLOCK o % ©O[o]F

Definition 40 A process P € P contains a strong deadlock if 3 o € L(P) which
allows P to satisfy the following formula:

def

SDEADLOCK a % ©PATH|[a]F

The stronger and weaker forms of deadlock in Definition 39 and 40 are similar.

The states that satisfy deadlock are a subset or equal to the states that satisfy strong
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deadlock for any process. They both assure that it is possible to arrive in a state
where the action being checked cannot occur, nor can the action occur in all states
that are reachable from that state. These deadlock definitions are weaker than the
Petri net definition since they test liveness of labels rather than transitions. The
stronger version is satisfied if there is some path where the action a cannot occur,
whereas the weaker version is satisfied only if there is no reachable state where the
action can occur. Strong deadlock considers livelock because it may be possible that
some path is always taken which never allows a label to be exercised. The stronger
deadlock may be satisfied for nondeterminate agents, and so the weaker version is
typically used. However, for individual burst-mode AFSMs the stronger version
should be used.

This definition of deadlock is an important invariant test, because dead branches
of a parallel circuit can be extremely difficult to detect using simulation techniques.
An example of such a failure can be shown with the distributed arbiter example taken
from [SABL93]. The distributed arbiter is specified as shown in Table 6.2. This defi-
nition does not contain deadlock since DINode £ DEADLOCK «, ¥ a € £(DINode).
The possibility of livelock results in the strong deadlock property holding for the sig-
nals grant, done, and ack because DINode = SDEADLOCK grant. This livelock
occurs when the token never chooses to serve the user interface of the arbiter, result-
ing in starvation.

Again, suppose that one of the nodes of the distributed arbiter uses a different
definition for the interface, where the ack signal has inadvertently been left out, and
the definition for ‘Interface’ is replaced with the definition of “Lamelnterface” in

Table 6.3. The module interfacing with the lame arbiter interface will wait for the
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Interface el req.ok.grant.done . ko.ack Interface + 7o.Interface
Token = tin.(ok.ko.tout. Token + no.tout.Token)
DINode & (Interface | Token)\{ok, ko, no}

Table 6.2: Distributed Arbiter Definition

ack handshake which will never occur, resulting in a partial system deadlock. This
type of deadlock occurred in the first silicon of the Post Office [SDC93], resulting in
months of work to discover the cause of the flaw. Unaffected portions of the chip
continued to function properly, while an entire logic block was deadlocked. The weak
form of deadlock detection from (Definition 39) detects this situation as can be seen

by the satisfaction Lamelnterface = DEADLOCK ack.

Lamelnterface & req.%.gmnt.done.E.LameInterface + mo.Lamelnterface

Table 6.3: Erroneous Distributed Arbiter Interface

6.3.2 Liveness

A new definition for liveness of agents in labeled transition systems is proposed. This
definition is intended for complex parallel systems and is an application independent
invariant that can be automatically checked for any process. A live process must
be capable of exercising every label in the process from every state in the process.
This definition is similar to that of liveness in petri nets [Pet81]. Strong and weak
liveness definitions using modal-p calculus are presented in Definition 42 and 43.
The new liveness definitions are the duals of the deadlock definitions as can be seen

by examining Definition 39 and 40. Hence a system that is live will not contain
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deadlock, and a system that contains deadlock will not be live, and only one of the
tests is required to assure the live and deadlock free properties of a process.

The strong definition of liveness requires the strengthening of the EVENTUALLY
macro of Definition 36. Note that strong modalities (such as [—]X) are vacuously
true when no label maps the the label argument. For example, the test O[a](b)T
will satisfy any process that cannot do an a action, including the agent Nil. Hence a
stronger version of EVENTUALLY, defined as EV in [Liu92] is required. This defi-
nition ensures that the argument to the fixed point variable using a strong modality

must contain at least one label or it will fail.

Definition 41 The eventually operator EV is defined as

EV P ¥ min(X.P Vv ([-]X A(=)T))

Definition 42 A process P € P is live if V o € L(P), P is satisfied by the following
formula:

LIVE o ¥ 00(a)T

Definition 43 A process P € P is strong live if V. o € L(P), P is satisfied by the
following formula.

SLIVE a ¥ OEV(a)T

The strong definition of liveness proves that not only can every signal in the
system be exercised from each state, but that it must also be fair in that no activity
can preempt the occurrence of other signals. The possibility of service may exist,

but the signal also may never be served.
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For example, all of the signals in the distributed arbiter of Table 6.2 are live.
However, the grant, done, and ack signals are not strongly live. The blocking na-
ture of the arbiter allows paths to be chosen which can continually select the token
interface over the user interface of the arbiter, resulting in livelock. This is proven
by the tests DINode |= LIVE grant and DINode = SLIVE grant.

As a final example, a FIFO storage management controller explained by Dill
et. al. in [DNS92] was specified using CCS in [LABS93]. The CCS specification
is shown in Table 6.4. The circuit does not contain a complete system deadlock
as proven by Definition 38. However, both the live and strong live definitions from
Definitions 42 and 43 prove that the € signal can deadlock (CSM (= LIVE 7). A
transition occurs in this design on €/ when an illegal access has occurred through
the controller — either an under or overflow of the FIFO. If the €rr signal cannot
occur, then the controller is correctly specified in that aspect. This circuit will be

examined further in Section 6.4.3.

CSM £ (W |E|C0|S)\{down,up,f,nf,e,gS,pS}
W def wr.nf.gS . wp.din.pS.wa. W

def cr.ne.gS.dout.down.pS.ca.E
S L U80S
co ¥ down.eFNil+ up.Cl + nf.CO + .CO
Cl ¥ down.CO+ up.C2 + nf.Cl +7e.Cl
2 X down.Cl 4 up.C3 + nf.02 + we.C2
3 ¥ down.02 + up.eFF.Nil + £.C3 + we.C3

Table 6.4: Specification for FIFO CSM Controller
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6.4 Application Specific Invariant Properties

Application specific invariant properties are dependent on the structure and behavior
of a circuit. There are three main classes of specific invariant properties which must

be tested for complete verification.

1. Behavioral
2. Operational safety

3. Conformance

6.4.1 Behavioral Proofs

Before embarking on the implementation of a process, the specification should be
tested for its behavioral requirements. The interface specification for a circuit typi-
cally dictates these requirements. Behavioral testing is also required when a complex
operation has been abstracted out of a higher level specification. Behavioral proofs
of CCS processes are typically made using modal-p calculus. A good treatment of

using modal-y to test the behavior of asynchronous circuits can be found in [Liu92].

6.4.2 Logical Conformance

Conformance proves that an implementation or more detailed specification contains
all of the necessary behaviors and none of the illegal behaviors of the specification.
This is probably the most critical verification step. Conformance is automated in
Analyze when the sorts of the specification and implementation are equivalent.
Unfortunately conformance alone may not be sufficient to guarantee an opera-

tional circuit, even when the top level behavior has been correctly specified. Certain
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assumptions of correct component interfacing and utilization may need to be explic-
itly tested because (1) shared components are accessed in a distributed fashion, or
(2) the safe usage details are not contained in higher levels of the specification. The

temporal logics of the following section fulfills these verification requirements.

6.4.3 Operational Safety Proofs

Operational conditions, (often referred to as safety constraints), must be met in the
design of a circuit. These safety conditions are typically implementation dependent.
For instance, when a shared bus is used, operational safety conditions require mutu-
ally exclusive access. Three types of safety conditions in asynchronous circuits will
be discussed here. Modal-p formulae are presented along with a proof technique that
can verify safe operation.

Access Violations

Access violations occur when a component is improperly used. For instance, the
FIFO controller of Table 6.4 contains an up/down counter with a legal range of
values equivalent to the number of slots in the FIFO buffer. Illegal counter access
occurs when the counter holds the value zero and a request is made to count down
resulting in FIFO underflow.

This type of illegal access violation can be proven by adding a test signal to the
specifications. The signal €7 (or L) is placed as a response to unsafe access in
Table 6.4. Applying the process under question (CSM) to the NOTPOSS formula
of Definition 44 with the error label (€77) is sufficient to prove that the controller

correctly accesses the counter so that FIFO over and underflow cannot occur.
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Definition 44 Signal o cannot occur in process P if P satisfies the following for-

mula:

def

NOTPOSS o« = O[o]F

Since CSM = O[erT]F the safety condition holds and the &7 signal can never
occur. Explicitly testing for most types of illegal access is not necessary when us-
ing Analyze. The NOTPOSS test in this circuit is redundant if the down.err.Nil
actions are removed from C0 and wup.€rr.Nil is removed from C3. Analyze can then
automatically detect when the E or W interfaces attempt to count down or up in an
illegal state.

Mutual Exclusion

Safety conditions are violated when illegal access occurs to a restricted or shared
process. This safety condition can typically be verified by proving mutually exclusive
access to the process. The modal formula of Definition 45 verifies that the two signal
arguments do not have mutually exclusive transitions — there is some reachable state
where both a and 3 can transition. This equation has a dual in Definition 46 that
proves that for all states in the system the two signal arguments enjoy the mutually

exclusive signal transition property.

Definition 45 Signals a and [ have concurrent transitions in process P € P if

P satisfies the following formula:
CONCURRENT o 8 % O((a)T A (8)T)

Definition 46 Transitions for signals o and 3 are mutually exclusive in process
P € P if P satisfies the following formula:
MUTEX2 o 8 % O([o]F V [8]F)
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Refer to the distributed arbiter definition of Table 6.2 on Page 157. When a token
arrives at a node the controller must either handshake with the module interface or
pass the token on to an adjacent node in a mutually exclusive fashion. Applying the
formula DINODE = MUTEX2 grant tout proves that the grant signal is mutually
exclusive with the fout signal. The same invariant holds between the done and
tout signals. Data input and output on the bidirectional link of the CSM circuit of
Table 6.4 on Page 159 can likewise be proven mutually exclusive.

The above formulae have a drawback in that they only assure that the two signals
have mutually exclusive transitions. This is sufficient for transition (or 2-cycle)
signaling protocols, but not for four-cycle protocols, where there must be a mutually
exclusive region between the two signals. The formula in Definition 47 assures that
the two signals are mutually exclusive between pairs of transitions. This is formula
must be used when a mutually exclusive region is required, as is the case with four-

cycle protocols.

Definition 47 The signals a and 3 define a mutually exclusive region in process

P € P if P satisfies the following formula:
MUTEX4 o 8 ¥ ma(MJX .[a]MJA A [BIM4B A [—a, BIM4X)

with
max( MJA.[BIF N [—a]M4A N [a] M4X)
maz(M4B.[a]F N [—-B]M4B N [B]M4X)

A specification of the analog mutual exclusion element (or ME) commonly used in

asynchronous design is shown in Table 6.5. The above macros can be applied to this

definition, so MESpec  CONCURRENT r! r2 and MESpec = MUTEX4 al a2
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proves that the inputs are concurrent, and that the outputs have a four-cycle mutu-

ally exclusive region.

MEifc = r.g.a.r.a.p.MEifc
MESem & g.p.MESem
MESpec % (MEifc[r!/r,al/a] | MEifc[r2/r,a2/a] | MESem)\{g, p}

Table 6.5: Mutual Exclusion Element Specification

Handshake Protocol

The final type application specific invariant checks for violations of the asyn-
chronous handshake protocol, either due to a delayed or improper response, or a
hazard. The following two equations are the basis for strong and weak forms of
the handshake protocol verification. Testing both two and four cycle handshak-
ing is identical because the order of signal transitions remains the same in either
method. Hence a single equation can be used for both protocols. The formulae in

Definitions 48 and 49 verify the handshake protocol.

Definition 48 A process obeys the handshake protocol for the signal arguments o

and (3 when the following modal formula is satisfied:
HANDSHAKE o 8 % max(X.[B]F A [-a]X A O(a)T

A la]max(Y-[a]F A [—B)Y A [F1X A O(8)T))
Definition 49 A process obeys the strong handshake protocol for the signal ar-

guments « and 3 when the following modal formula is satisfied:

SHANDSHAKE o 8 %' maz(X.[8]F A [—a]X A EV(a)T

A la]mas(Y.[o]F A [-B]Y A [8]X A EV(8)T))
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Examining these equations shows that they are defined using mutual recursion.
Assume that req is substituted for « and ack for 3 in Definition 48. This formula
requires that in every state of the system the ack signal cannot occur until a req
signal occurs, and there must be a path from every state that allows the req signal
to occur. After the req occurs, the same test is applied to the ack signal, disallowing
any req signals until the acknowledgment has occurred. Note in particular that if
a process has a path where no acknowledgment can be made for a request (or vice
versa), the handshake protocol is incorrect, and this formula will not be satisfied.
The strong formula of Definition 49 is similar to the weak formula, except that the
appropriate handshake response must occur on every path.

These two definitions strengthen the CYCLE definition found in [LABS93] that
can be vacuously true when the appropriate response is not possible. For exam-
ple, CYCLE is satisfied by the Nil process, the process of Figure 6.1, and Ta-
ble 6.3 whereas none of these are satisfied by the HANDSHAKE and SHANDSHAKE
macros. Such vacuously true results imply that the nonfunctional circuits are correct.

The handshaking formulae presented in this section can be strengthened further.
Handshake signals, once offered, cannot be retracted. Hence handshake signals must
be persistent [Mil65]. Definition 50 tests persistence by verifying that for all states

where an « action is possible, that action must remain possible until taken.

Definition 50 Process P € P is persistent if V.o € L(P) the following formula is
satisfied

PERSISTENT o &' 0()T = max(X.(a)T A [—a]X))
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The persistence property must be tested separately when using the handshaking
definitions in this section. Unfortunately the persistency formula from Definition 50
cannot be applied directly to an implementation agent. Loose specifications permit
a large set of “don’t care” states in an implementation agent that typically will not
satisfy Definition 50, invalidating the results. However, this definition can be applied
to verify the persistence of specifications.

The transfer of bundled data back and forth between two components is typically
integrated into the handshake protocol. The handshake formulae can be expanded
to include a trio of signals, for the request, data transfer, and acknowledge, as is

done in Definitions 51 and 52.

Definition 51 A process P € P obeys the 2-cycle bundled data handshake proto-

col for signal arqguments o, 3,y € L(P) when the following modal formula is satisfied:
BDHS a8+ % max(BDHSX.[3,4]F A [@]BDHSA A &{a)T A [—a] BDHSX)

with
maz( BDHSA.[o,v|F A [B]BDHSB N O(3)T A [—B]BDHSA)
max( BDHSB.[a, B]F A [v]|BDHSX A O()T A [—v]|BDHSB)

Definition 52 A process P € P obeys the 2-cycle strong bundled data hand-

shake protocol for the signals o, 3,y € L(P) when the following formula is satisfied:
SBDHS a g~y &

maz(SBDHSX.[3,7]F A [0]SBDHSA A EV{a)T A [—a]SBDHSX)
with

maz(SBDHSA [or, 4]F A [B]SBDHSB A EV(B)T A [—B]SBDHSA)

maz(SBDHSB.[a, B]F A [y]SBDHSX A EV(¥)T A [—v]SBDHSB)
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Definitions 51 and 52 can be modified to verify various types of four-cycle hand-
shake protocols.

The specification of the FIFO storage management controller of Table 6.4 con-
tains data transfers labeled as din and dout. These transfers are controlled by
the c¢r/ea and wr/wa request acknowledge pairs. Since the handshake protocols
CSM = HANDSHAKE ¢r ¢a and CSM = SHANDSHAKE ¢r €@ and the persis-
tency properties CSM = PERSISTENT ¢r and CSM | PERSISTENT @a can be
verified, the read interface of the FIFO obeys the correct bundled data protocol. The

same properties hold when testing the write interface.

6.5 Conformance Applications

The modal-p calculus, used extensively for application specific invariant verifications
in Section 6.4, can be used to verity circuits. For example, the verification of a C-
element implementation can be carried out with the modal-g formulae in a speed-
independent (shown in Table 6.6) and burst-mode (Table 6.7) fashion. The circuit is
not being verified against the specification per se, but against a set of formulae that
are constructed to model the critical behavioral aspects of the specification. In that

sense the modal formulae themselves specify the desired behavior.

max(SICO.((a))T A [[a]]SICL A (BT A [[B]]SIC2 A [[€]]F)
max(SICL. ()T A [[B]]SIC3 A [[€]]F)
max(SIC2.((a))T A [[a]]SIC3 A [[€]F)
max(SIC3. (TN A [[€]]SICO)

Table 6.6: Modal-p formulae for SI C-element Verification
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max(BMCO0.(a)T A [[a]] BMCL A ()T A [[6]]BMC2 A [[€]]F)
max(BMCI. (6)T A [[6]]BMC3 A [[€]]F)
max(BMC2.(a)T A [[¢]]BMC3 A [[]]F)
max(BMC3. (@)T A [[€]](min(BMC3X.BMCO V ([7]BMC3X A (7)T))))

Table 6.7: Modal-p formulae for Burst-mode C-element Verification

The formulae presented here are not as rigorous as verifications based on the
conformance equations of Sections 5.5 and 5.6. However, the burst-mode formulae
in Table 6.7 are more rigorous than the speed-independent formulae because they
verify signal persistence. This is done with the strong modalities of the (a)T" and
(b)T' transitions in formulae BMCO, BMCI, and BMC2. The strong modalities
assure that the associated label is persistent because it must always be capable of
making a transition in the states that satisfy the formulae. Persistence of burst-
mode AFSMs is relatively easy to verify because the stability requirement walks the
7 transitions after the output burst. The speed-independent formulae do not assure
that persistency is retained in the circuits, although a more complex set of equations
could be used which does verify this constraint. Since persistence is a necessary

condition for an AFSM, the SI formulae by themselves are incomplete.

6.6 Performance of Analyze

Although it may be possible to automatically derive modal formulae from specifi-
cations that are sufficient to verify the behavior of an implementation, this method
is fairly inefficient as will be shown with a simple example that is comparable with

other applications.
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bi C-ELEMENT

(' ANDNBOOO[ab/c] \
| ANDNBOOO[c/b, ac/c] \
| ANDNBOOO[b/a, ¢/b, be/c] \
| ORNBO0OO[ab/a,ac/b,be/c,c/d] \

) \{ab,ac, bc}

Table 6.8: CCS Description of C-element Implementation

Table 6.8 shows the CCS definition of the AND-OR implementation of the C-
element shown in Figure 3.6 on Page 63. The definitions of the AND and OR gates
are library definitions which were not included for clarity. The gates are nonblocking
definitions, indicated by the “NB” in the component name. Nonblocking gates allow
inputs into an unstable device to change so long as the changes will not invalidate
the pending output. For instance, as soon as one input into an OR gate asserts, the
device becomes unstable until the output fires. Further input transitions are allowed
without requiring the output to fire so long as at least one input remains asserted.
The numbers ‘0" or ‘17 at the end of the definitions represent the initial voltage states
of the inputs and output. Signal names in these devices start with a, b, and so on
through the alphabet, with the last signal name being the output.

Note that this direct definition of the C-element will not parse correctly using the
parallel composition of CCS because of the speed-independent “broadcast” nature
of the interconnection in the ¢ and b inputs and ¢ output. Hence analysis of this
device in the Concurrency Workbench requires the circuit to be parsed in Analyze
first. Once the correct definition is loaded into the CWB from Analyze, Table 6.9

shows the performance of the verifications in the CWB and Analyze.
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Delay Analyze: CWRB:

Model Conformance Modal-p
Speed-independent | 0.2 sec (8 errors) | 2 sec (False)
Burst-mode 0.2 sec (True) | 9 sec (True)

Table 6.9: Performance of Analyze and Modal-p Verifications

Verifications in Analyze are much more efficient than those using modal-g on the
workbench as can be seen from Table 6.9. The difference is even more significant
when one realizes that the workbench takes 193 seconds just to parse the C-element
description, a number which is not included in the table! Analyze requires 0.6 seconds
to parse the C-element description that is subsequently loaded into the CWB. Due
to the compositional nature of the Analyze conformance verifications, this is three
times as long as the combined parsing and verification time of 0.2 seconds.

Note that the run time for Analyze is the same whether the verification is true or
false, but there is a significant difference in the run times using modal-u calculus. In
the CWB, as soon as a formula will not satisty the process, false is returned. When
conformance does not hold, the current version of the Analyze prototype continues
to evaluate the entire state space and produces a list of the failures. This points out
the circuit failures, but requires a full run time.

The results using Analyze are also more accurate than the modal-y formulae. For
example, the speed-independent equations do not ensure that the implementation
is persistent as the input signals need not remain enabled. Further, the modal-u
expressions are not automatically generated at this time, although they could be

automatically produced from a specification with the proper tools.
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There are several arguments against using modal formulae for specifications given
the current software technology. Evaluation of modal equations can be quite time
consuming with the currently available tools. For example, 401 CPU seconds were
required to satisfy process CSM = SHANDSHAKE ¢r @@ on the Concurrency Work-
bench. Typically, adding fixed point constraints results in slower satistaction results
(which is one reason why the persistence property is not included in these macros).

Modal formulae are more difficult to understand than CCS and other represen-
tations. However, there appear to be a few standard tests and styles for those tests
which can be made quite readable [Liu92, LABS93]. Therefore, constructing tailored
macros and formulae shouldn’t be overly difficult given a library of case studies and
some basic intuition. “Object oriented” representations in temporal logics are also
less obvious than with CCS specifications. Hierarchy and structure is not modeled
well with these formulae, so synthesis and decompositions are problematic. Finally,
the problems to be presented in Section 7.2 must be addressed to accurately model
hardware, as even in the above example the modal calculus could only be used after

circuit description was parsed by Analyze.

6.7 Summary

Temporal logics are an attractive means of testing invariant behaviors of a system.
Formulae were presented in this chapter further support the verification tool Analyze
by verifying invariant properties of specifications and implementations that cannot
be tested hierarchically or are necessary properties of a specification. This chapter

continues with the approach in [Liu92, LABS93] where there is a certain class of



CHAPTER 6. PRACTICAL APPLICATIONS OF PROCESS LOGICS 172

properties, such as liveness, which must hold for all specifications and implementa-
tions. Once the basic properties hold, there are a number of additional tests which
may be required to verify correct specifications.

The formulae presented in this thesis make the following contributions.

1. A new definition for the “liveness” of circuits was developed for labeled tran-
sition systems. This definition is also the dual of a new “deadlock” definition.
Conceptually a circuit is live if from every state each action can be exercised.
Conversely, a deadlock exists in the circuit if a state can be reached where some

actions can never occur.

2. A set of modal formulae were created or strengthened that raise the level of
abstraction for design testing. These formulae can be expressed as macros and
applied to specifications for satisfaction. Most of the formulae are dependent
on the sort of the processes, while others also require knowledge of the access

assumptions of various modules.

There are only a few types of tests that are necessary for verification of most
circuits. Most of the formulae have been developed for both transition and
level based asynchronous handshake, as well as bundled data protocols. These
formulae, applied in concert with Logic Conformance, are sufficient to prove a

specification will be functional.

Temporal logics have two main drawbacks. First they are quite inefficient on the
currently available software tools. Second, many of these formulae are only valid
when applied to specifications because the unreachable states of an implementation

usually invalidate the results.



Chapter 7

Synthesis and Verification using Analyze

“If every tool, when ordered, or even of its own accord, could do the work
that befits it ... then there would be no need either of apprentices for the

master workers or of slaves for the lords.”

Aristotle

Verification consists of using formal models to prove that the properties of one
specification are equivalent to the properties of another. Additional flexibility and
simplicity of implementations can be achieved if the specifications are “loose”, which
can be achieved by including information regarding behaviors which are necessary,
illegal, and irrelevant. These properties can be expressed in a number of ways in
CCS, including labeled transition system semantics and partial orders such as logic
conformance, or temporal logics as was presented in the previous chapter.

The assumption that one of the specifications describes a physical circuit rather
than an interface behavior requires modifications to the standard CCS model. The
abstractions must be useful in that they simplity reasoning about the circuit, but
they must also be accurate or no benefit will accrue from the verification process.
Other techniques such as CCS with priority choice [Cam91] and TCCS [MT90] were
investigated. None of these extensions to CCS resolved all of the issues, and they
required specifications that are much more difficult to understand. The extensions

applied to CCS as part of this thesis are accurate and simple to use.

173
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This section describes a prototype software tool called Analyze that was devel-
oped as part of this thesis. Formal methods used in this tool can make at least three

major contributions toward aiding engineers design circuit implementations.

1. Formally prove properties of a specification so it is well characterized before

attempting an implementation.

2. Formally verify equivalence between an implementation and specification to

assure a faithful implementation.

3. Aid the designer in structured hierarchical design practices to achieve verified

top-down implementations.

These three issues, and their embodiment in a prototype tool, are covered in this
chapter. Impediments to reasoning about certain hardware implementation levels
and asynchronous hazard models in CCS are discussed. Changes to the restriction
and parallel composition operators are implemented that empower CCS greater flex-
ibility for reasoning about asynchronous hardware. The relation of minimization to
verification is described, and an efficient minimization algorithm is presented. The
necessity of observability of agent expansion is presented in a discussion of “compu-
tation interference”. Detecting interference is required for accurate verifications, and
is used to drive high level synthesis. The verification of correctly constructed burst-
mode specifications developed. The usage of the software tool is then introduced
and a small example session is presented. Finally the high level synthesis process is

described.
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7.1 The Concurrency Workbench

The Concurrency Workbench, or CWB, is a software tool which implements CCS
semantics as described in Milner [Mol91]. It also includes many equivalences, some
partial orders, and a set of formal logics which have been integrated into the CCS
labeled transition system.

The CWB is extremely useful for reasoning about asynchronous circuits. Ying
Liu’s thesis is a good initial reference on how the CWB can be applied to reasoning
about asynchronous circuits [Liu92]. The CWB is also vital to the synthesis and
verification approach presented in this thesis as general formal logic formulae and

fixed point calculations cannot be entered into Analyze.

7.2 Problems with CCS and the Workbench

CCS is a general model which can be readily applied towards verification of coarse
models and protocols, to which it has been applied with great success [Bre90, Bru92,
Par87]. Notational simplicity and succinctness permit this higher level of abstract
modeling in a hierarchical manner. However, it also imposes some limitations as
there is no inductive proof system as exists in higher order logics which simplify the
verification of replicated components such as RAM cells, latches, and so forth. Unfor-
tunately the model also imposes some limitations as to the accuracy and capability
of modeling hardware and the various asynchronous delay models.

There are two basic approaches to this problem. The first is to live within the
limitations of CCS while modeling hardware [LBP94]. This approach allows one

to utilize the CWB for verifications. This approach has a number of drawbacks.
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First there must be a disciplined use of the syntax to assure that the verifications
do not model inappropriate structure. For example, judicious use of handshake
communication is required so that choice is not being modeled. Such requirements
are not automatically checked in the CWB and this weakens the value of verifications
with this method. Further, the lowest level that can be modeled this way is at the
coarse block or protocol level. Modeling AND gates and any asynchronous hazard
model other than the delay-insensitive is not possible.

The second approach is to pinpoint the areas which prevent the accurate modeling
of hardware gates and other asynchronous delay models, and modity CCS to support
these requirements. This is the approach taken in this thesis and implemented in
Analyze. Care has been taken to only modify and extend aspects necessary to
support such features. The extensions in this thesis keep the look and feel as similar
to CCS as possible; the modifications are nearly invisible to the user. Both standard
CCS transitional semantics and those necessary for modeling hardware are present
in Analyze, permitting it to accurately reason about hardware as well as retain the
clarity of CCS specifications.

This second approach has also been taken by Milne in the development of Circal,
a modification of CCS for verifying and modeling hardware [Mil85, MM92]. Cir-
cal is intended as a method for specitying general purpose circuit structures, and
introduces several new syntactic symbols with new semantics. It is intended for
synchronous systems, but recent research has applied this language to asynchronous
circuits [Bai94]. Unfortunately, as with TCCS and other extensions to pure CCS,
the representation of asynchronous circuits becomes cumbersome and awkward and

it may not easily represent all the hazard models.
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The remainder of this section points out the shortcomings that prevent the ver-
ification and modeling of gates and the more useful asynchronous hazard models in
CCS. This thesis assumes that when reasoning about hardware components, the com-
munication between names and conames models a physical communication link in
the circuitry (typically an aluminum wire). Unless otherwise noted, the unbounded
delay model is used with speed-independent verification, and equivalences are based
on branching time bisimulation.

Input and Output Recognition

CCS assigns no meaning to the set of labels A and colabels A other than for
synchronization purposes. However, physical circuits have two main terminal types
— inputs and outputs — with critical differences. This difference goes beyond the
complementary naming convention of CCS as can be seen by examining the equations
for conformance, and static invariant checks of Section 6.3. This thesis assumes that
names A always map to inputs, and conames A always map to outputs.
Verification

Equivalences overly restrict the freedom of design choice. The logic conformance
definitions of Section 5.6 are partial orders allowing standard CCS agent descriptions
to be used as loose specifications. The necessary set of actions includes all inputs
and outputs exactly as they can occur in a transition diagram from the specification.
The behaviors that may not occur include all output actions from any of the states
in the transition diagram of the specification which do not explicitly exist. The set
of irrelevant actions include all others, as the specification guarantees that they are

non-reachable.
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Handshake Synchronization

The communication primitive in CCS is analogous to the handshake primitive of
asynchronous circuits as both a label and colabel must be offered before a commu-
nication can occur. This handshake communication primitive in CCS can greatly
simplify specifications. However, the handshaking synchronization can result in fail-
ures when modeling hardware because the synchronization rules of CCS will not
allow restricted communication signals from “firing” until both the label and the
colabel are offered. A physical circuit can wait arbitrarily long for an input to occur,
but when an output is offered by a circuit, the physical wire is immediately driven
to the new voltage level. If this two-way agreement is necessary in a physical circuit,
it must be modeled by a pair of wires.

Handshaking synchronization also hides many implementation errors if specifica-
tion mirroring is used for verifications as discussed in Chapter 5. The failure caused
by mirroring and the the handshake primitive is modeled as computation interfer-
ence, which will be discussed further in Section 7.3.

Nondeterministic Choice Operator

The CCS choice operator ‘+’ is nondeterministic. This can be exploited in specifi-
cations to simplify or clarify behaviors. However, current digital state of the art does
not permit nondeterministic AFSM implementations. Nondeterministic behavior is
attained through the use of analog ME elements, and even so choice is not entirely
nondeterministic. The inability to reason about fairness in a CCS specification is
primarily due to the nondeterministic nature of the ‘+’ operator.

CCS choice typically models different legal trajectories that a circuit can take

when parallelism or an externally determined (circuit environment) choice is possible.
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Choice is necessary and can be modeled in a deterministic fashion. The burst-mode
requirements discussed later in this chapter assure that choice is used in a fair,
deterministic fashion in AFSMs.
Interconnection Modeling

Hardware components that are composed in parallel are considered intercon-
nected by a wire on all matching labels and colabels. The primitive interconnec-
tion in CCS is a one-to-one event structure as can be seen by the Coms rule of
Figure 1.3. The one-to-one mapping must be possible to reason about DI and
QDI delay models. CCS rules also allow numerous illegal communication struc-
tures and primitives for the DI and QDI models. For example, the CCS agent
E9 &f (@.Al ] a.A2 | a.A3)\{a} results in a = transition where @ handshakes non-
deterministically with either of the two a signals, evolving into (Al | ¢.A2 | A3) or
(A1 ] A2 | a.A3). This competition for communication between sets of names and
conames resulting in nondeterministic choice can greatly simplify a specification, but
cannot be implemented with a wire!
Parallel Composition

Broadcast communication amongst a set of composed parallel agents, necessary
for the QDI, SI, and burst-mode delay models, cannot be modeled in CCS. This is a
serious shortcoming as there are very few valid delay-insensitive circuit implementa-

tions. The isochronous fork assumption and speed-independent assumptions, which

permit realizable circuits, are based on a broadcast communication primitive.
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Figure 7.1: Manchester Carry Chain

bi MANCHESTER-CARRY

( AND [g/c] \
| NOR [aorb/c] \
| NOR [g/a, aorb/b, p/cl \

) \{aorb}

Table 7.1: CCS Description of Manchester Carry Chain

7.2.1 Parallel Conjunction

The Com transition rules in Figure 1.3 on Page 19 do not correctly model the behavior
of interconnected circuits operating in parallel. Whenever inputs or outputs of a
circuit contain the same name or coname, hardware convention assumes that the
circuit has been connected by a communication channel. Assume the simple circuit
of Figure 7.1, specified by the CCS agent in Table 7.1. The AND and NOR agents
are library component specifications having inputs of @ and b, and an output of .
Note from the diagram and table that there are four labels which can communicate
via the ‘| (Com) transition — a, b, ¢ and aorb. Only the aorb signal is restricted to
the local domain — the other signal needs to communicate internally as well as with
external agents.

There are three different actions that this circuit can make on wire g according to

pure CCS using the parallel communication rule Com. The g signal can communicate



CHAPTER 7. SYNTHESIS AND VERIFICATION USING ANALYZE 181

independently with the environment as an input (the ¢ transition into the NOR gate)
or an output (7 out of the AND gate), or an internal communication between the
AND and NOR gate can occur resulting in a 7 transition with no interaction with
the environment. When restricted with the Res transition rule, the first two actions
are eliminated.

There is no possibility of the physical AND or NOR gates communicating inde-
pendently with the environment as the Com; and Com; transition rules allow. In
particular, if the AND gate is the only gate driving the g wire, then an independent
input action on the ¢ signal should not occur in absence of crosstalk and other cir-
cuit failures. All external communications from this module on wire ¢ should also
be outputs (7), and will also communicate with the NOR gate. The same sort of
reasoning exists for the SI or burst-mode processing of the inputs a and b, which
must communicate jointly when being driven as an input to the circuit. The required
transitional behavior for modeling this simple circuit under a speed-independent or
burst-mode model is not possible under the CCS Com transition rules — hence new
communication transition rules are necessary. Standard CCS syntax would require
adding a FORK component on each of the wires a, b, and ¢ rather than as a single
wire with three connections. This represents the delay-insensitive hazard model.

New communication transition rules must allow communication between an ar-
bitrary number of agents to model isochronous forks, speed-independent, and burst-
mode hazard models. This requires a conjunctive parallel communication operator,
that allows broadcast-like communication.

There are two methods for formulating broadcast, or conjunctive synchroniza-

tion. One method is to define a reserved atomic action in which many agents can
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participate. This is the definition used in CCS, allowing dual-agent communications
via the atomic action 7 by synchronizing [ and [ as an inseparable action. A second
approach is to define every action to be composed of a finite set of inseparable atomic
actions. As the set of actions are inseparable, they can be considered a single event
that is indivisible in time. Circal takes the latter approach where every action is
defined in terms of finite sets of labels, and where the combinators dictate which
action sets can be synchronized [Mil85].

The desired conjunctive semantics are similar to that of Hoare’s P || () combina-
tor in CSP, which depends on the explicitly supplied sorts of P and ), which Hoare
calls the alphabet of the agents [Hoa85]. This is an alternative method of parallel
composition which could have been selected as the CCS parallel composition opera-
tor, but it is more difficult to implement because the dependency on sorts effectively
results in an infinite family of operators. Hoare’s ¢||” combinator also does not use
the notion of names and conames (inputs and outputs) for communication — any set
of identical characters in the alphabet can communicate. The final significant dif-
ference is that it is more natural to utilize a hiding operator (one which changes an
externally observable action into an invisible action) with the ‘||” combinator, rather
than the restriction operator of CCS (which prevents an action from occurring).
The dependency on sorts can “restrict” the undesirable independent behaviors from
occurring when using conjunctive communication.

A new transition rule called Conjunction (‘|.’) is introduced that forces syn-
chronization amongst a set of agents with similar sort labels. The transition rules
are defined by inference, and are similar to the CSP operator. The dependency of

one action being from the set of names A and the other from the set of conames
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A as in the Com transition rule is not required, but the input-output sense of the

transition is preserved, which is not possible under the Com rules.

. ESE _

Con.]l E |C Fi)E/ |c F (a7a € 'C(F))
. FSF _

COHJ2 E |C F&E |c F/ (O'/7O'/ € ’C(E))

ESE FSF
E|. FSE | F

Conj;

ELE FLE
E|. FLE | F'

Conj, (1€ L(E)N € L(F))

ELE FLE
El|. FSE | P

Conj; (1€ L(E)A € L(F))

Table 7.2: Parallel Conjunction Transition Rules

Note that the side conditions to Conj; and Conj, in Table 7.2 have provided the
desired “restriction” operation for interconnected hardware components. They do
not allow agents to evolve independently when composed in parallel if a matching
name or coname appears in a parallel agent. Conjs, Conjs, and Conjs create the
conjunctive communication. Conjz is applied when all labels are either inputs or
outputs. Conjy, and Conjs are applied when there is a mixture of input or output
labels, and the resulting transition will use an output label.

Correctly modeling hierarchical agents and observational equivalence with 7 tran-

sitions must be possible when the names and/or conames are not externally accessi-
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ble. The operation of creating 7 transitions with conjunctive communication is one
of “localizing” the interconnection between the parallel agents. Removing access to
the signal from outside the current block is achieved by removing the name from
the sort while allowing the effect of the action to proceed unconstrained. This new

hiding operation of Table 7.3 replaces the Res operator when used with Conj.

. ESE' _
Hide, LS ENL (v, & L)

. ESE _
Hide, VAN (o€ Lvae L)

Table 7.3: Hiding Transition Rules

When hiding, L is the set of labels that are being hidden from outside the agent.
Intuitively, where restriction disallows the occurrence of an action, hiding disallows
the action from interacting with the environment — localizing it to the current agent.

The primary advantage of Conj over Com is the ability to synchronize multiple
agents on a single event, an operation that is necessary for speed-independent, burst-
mode and isochronous fork evaluation. For instance, the agents (P |. @ |. R)
with sorts L(P) = K, L(Q) = L, and L(R) = M will result in a three-agent
synchronization when the signal [ as either an input or output is in the label sets
K, L, and M. The signals @ and b in the example from Figure 7.1 and Table 7.1
synchronize the AND and NOR gates with signals being driven from the environment,
and the g signal synchronizes the AND and the other NOR gate and drives the g

signal to the environment. The C-element of Figure 3.6 on Page 63 works the same
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way; two AND gates, one NOR, and the environment all synchronize on the output
€. This new combinator has the effect of reducing the behavior of agents further
than the Com transition rule. The rest of the calculus and proof system remains the

salme.

7.2.2  Analyze Parsing

To simplify the specification of agents, the parallel conjunction operator is textually
specified with the same symbol, ¢|.”, as the standard CCS parallel composition op-
erator. The evaluation mode of Analyze will determine whether the operator uses
composition (‘") or conjunctive (‘|.’) transition rules.

The binding power of the CCS operators place Restriction and Relabeling as
the tightest binding, followed by Prefix, Composition, and finally Summation. This
binding order can result in problems with a circuit definition. For example, the
definition £10 % a.E10'\{a} will result in an agent £10 having a sort that includes
the name ¢ € L(E10). From a hardware perspective, this is an invalid sort, because
the a wire will interact with the environment only outside of agent £10’, while within
the agent events on the wire will not propagate outside the circuit. Therefore the
current version of Analyze makes a slight modification to the binding precedence
of CCS to simplify the language for hardware designers by binding Prefix tightest,
followed by Restriction and Relabeling, Composition, and Summation. Hence a ¢
L(F£10) in the definition of agent £10 when £10 &' 4. £10"\{a}. Parentheses should
always be used to clarify any unobvious bindings. For compatibility with the CWB

and CCS, future versions of the Analyze prototype will use the standard CCS binding

order but will issue a warning on odd usage as listed above.
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7.2.3 Circuit Connections

The general flexibility of CCS specifications permits a number of constructions that,
although useful for specifications, result in errors in an implementation. The static
analysis of Analyze will prove that the circuit specification does not violate physical
properties of the circuit.

The following checks are applied when the conjunctive communication operator
is used to ensure that the interconnections are physically correct. The sort of the
parallel agents, required for conjunctive communication, is also required by these

interconnection checks.

1. When all signals « in the conjunctive communication are inputs, a € A, all of

the agents evolve in parallel according to Conjs on a single input transition 5.

Under speed-independent or burst-mode analysis, multi-way input connections
are assumed correct. A warning is printed out that this particular wire is
interconnected using the isochronous fork assumption — hence the analysis is
quasi delay-insensitive — when analyzing a circuit in the delay-insensitive mode.
The designer must make sure that the isochronous fork is necessary for the

implementation.

2. More than one conjunctive communication label is an output. This is an illegal
circuit interconnection because two actively driven output signals cannot hand-
shake. This is allowed by the Conjs, Conjs, and Conjs transition rules and is
checked upon verification for correct interconnection. A diagnostic error mes-

sage is printed and the verification aborted when this interconnection occurs.
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The current version of the Analyze prototype cannot model tristate signals as

distributed agents requiring a conjunction of output drivers.

3. There is one and only one label in the conjunctive communication which is an
output. In this case, the rules Conjs and Conjs apply, and the signal [ offered

to the environment is an output, { € A.

The current version of Analyze prints a warning when an unrestricted (unhid-
den) conjunction contains one or more input signals and one output label. This
is a potential site for errors in a circuit as pointed out in Section 3.3.6 because
non-local delay analysis of the implementation and its environment becomes
necessary to assure a hazard free implementation of such an agent. Therefore

this information must be passed on to the physical layout stage.

7.2.4 Restriction and Relabeling

The following static checks of Analyze are associated with the Restriction and Re-
labeling transition rules. Although restriction and relabeling are not necessarily
associated with the composition or conjunction operators, good design practice will
relabel and restrict signals as soon as possible to avoid confusion and computational
complexity. When restrictions are associated directly with a set of parallel compo-
sitions, Analyze can create and analyze the specification compositionally, which can

reduce the time and memory complexity by an order of magnitude and more.

1. Restricted signals can result in deadlock. For example, if the signal b is re-
stricted from agent E11 where E11 def a.b.E11, a deadlock will occur after the

a transition has occurred because the resulting behavior is equivalent to the
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process a.Nil. The deadlock will not occur using the semantics of hiding, and
Ell ~ E12 where E12 &' ¢.E12. Hiding is a more natural use for hardware
specifications as it allows actions to occur uninhibited by the environment,
whereas there is really no way to prevent a signal occurrence as with the re-

striction semantics.

Sometimes a component will contain a redundant or optional input or output.
Simply leaving the signal unconnected results in confusion for several reasons.
First, it is not clear if the module has been incompletely interconnected or if
the signal is to be ignored. Secondly, different behaviors arise if the signal is
removed from environment interaction with restriction or hiding. The correct
way to remove the signal from consideration is to first connect the unused signal
to a “signal sink” and then restrict or hide the signal from the environment.
A signal sink will accept an unbounded number of signal transitions, and is
sometimes called a “block of wood” with a definition WOOD %' ¢.WOOD.
This makes the semantics of composition and restriction or conjunction and
hiding the same, and there is no longer any confusion about the completeness
of the design. Therefore, whenever a signal is restricted or hidden and it does

not communicate with another agent, a warning is issued by Analyze.

2. A warning is issued if any of the labels in a restriction (hiding) or relabeling
set are not in the sort of the bound agent. This occurrence typically results in

circuit failures caused by a typo or an incorrect label set.

3. Verification will usually fail if the sort of the specification and the implemen-

tation are different, because extra behaviors exist in one component that do
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not in the other. When verifying an implementation against a specification, a

warning is issued when the sorts are incompatible.

7.3 Computation Interference

Pure CCS implements compositional communication using handshake synchroniza-
tion. If two agents are composed and restricted on «, then the internal 7 transition
can only occur when one agent offers an « transition and the other offers an @
transition. If only one of the two labels are offered, then the 7 transition will not
occur. This type of handshake synchronization is extremely useful for simplifying
the specification of complex parallel processes [SABL93]. However, it does not model
hardware well because this handshake synchronization will assume that an output

will not be driven until it can be accepted by an input!

Definition 53 Computation interference exists between composed agents if

a.P | Q where a € L(Q) and Q7OZ>

Computation interference exists in a state where an output can fire before its
corresponding input agents are prepared to synchronize with the output. Any circuit
output whose firing is disabled by the handshake communication of CCS should result
in an error.

When an agent is prepared to accept an input signal a label a € A is offered.
No interference occurs when the label is not matched by a colabel (output) from a
parallel agent; the agent offering the input idly waits for the input to occur.

The compositional design of Analyze retains information about the parallel struc-

ture of agents and can detect when computation interference occurs in a circuit.
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There are three types of computation interference which require different responses

from the synthesis and verification procedures.

7.3.1 Interference in a Specification

High level specifications commonly contain synchronizations that contain computa-
tion interference. At this level, interference is not an error but directs the designer
to synchronizations in the design that require further implementation detail. These
synchronizations must be split into agents that implement the synchronization with-
out interference. Directed hierarchical verification and refinement is partially based
on the occurrence of computation interference, as discussed further in Section 7.6.
This type of synchronization must not be disregarded in hierarchical decomposition
by splitting it into two separate high-level specifications, or an unfaithful implemen-

tation may result.

7.3.2 Implementation Interference on an Output

Whenever computation interference occurs in processes modeling hardware compo-
nents an unrecoverable error has occurred. The fault is typically the result of a
hazard in the circuit, but may also be the result of the behavioral faults of an in-
correct design. If the interference is caused by a design fault the circuit must be
redesigned to remove the interference. If the interference is caused by a hazard in
the circuit then the circuit must be redesigned, or this information must be passed
on to the implementation phase so that the occurrence of the hazard can be avoided

through layout engineering.
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Without the ability to detect interference, hazards and behavioral faults can be
hidden by the handshake synchronization of CCS. For example, the static 1 haz-
ards revealed using speed-independent analysis of the C-element of Figure 3.6 in
Section 3.3.5 can only be detected as computation interference. Without detecting
interference, the unstable AND gate would block the output that also feeds back as
an input until the AND gate stabilizes. This causes the OR gate to stabilize, hiding

the hazard.

7.3.3 Implementation Interference on a Restricted Signal

If the implementation is a flat leaf cell, then computation interference on internal
(restricted or hidden) signals is an error just as though it were an output. However, if
a specification is hierarchical and the interference is caused by a hardware sub-agent,
the error may be due to the unrestricted behavior of the sub-agent. Replacing the
hardware sub-agent with its specification will remove the computation interference
in a well designed circuit.

The crossing example in Section 7.5 uses a two level refinement because the
two halves of the definition are identical. Conformance will point out interference
violations in the “vehicle” specifications because the environmental restrictions have
not been specified. Using the specification at that level, or a flat implementation,

removes the interference.
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7.4 Bisimulation and Minimization

Several aspects must be considered when designing a synthesis and verification sys-
tem for asynchronous circuits, including the time and memory complexity of the
algorithms, and how accurately the physical circuits are modeled. Trace based sys-
tems were the first to reason about asynchronous systems. These include systems
based on CSP [Ebe88, Udd84] or variants of trace theory [Dil89]. The most appropri-
ate equality for hardware verification should be chosen when significant advantages
are apparent.

One of the features of CCS is the unique canonical representation of agents based
on bisimulation semantics, achieved by merging all indistinguishable states. This
merging, also called minimization, has a side effect of losing the structure of parallel
and hierarchical agents in creating the canonical representation.

Minimization can be used to prove bisimilarity between agents when all of the
states of the agents are minimized together. If the minimized states contain at least
one state from each of the agents, then they are bisimilar. If the agents are not
bisimilar, then all of the minimized states from each agent will be mutually exclusive

of states from the other agent (except the special state Nil).

7.4.1 Minimization and Equivalences

Two processes are bisimilar when they are trace equivalent and determinate as shown
in Proposition 7. Hence trace equivalence and minimization are sufficient to show
bisimilarity amongst determinate processes. Further, two determinate processes that

are trace conformant are also logic conformant.
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Proposition 15 If I and S are determinate, then S =; I if S =, I.

Proof Going from left to right (if S =; [ then S >=; I) can be proven using
the trace and logic conformance definitions of Definition 25 and 27. Going the other
way, it is sufficient to show that

cc {(S,1): S =4I and S, I are determinate}
is a logic conformance up to ;. Since all s-derivatives of a determinate agent are
bisimilar from Definition 23, by Proposition 14 and Definition 27 it can be shown
that the above relation holds. By Definitions 15 and 16 the s-derivatives of a deter-

. o] o o . . . .
minate agent maps to S——=---=35". Since LC is a logic conformation, we also have

[88 . 2y and (S, 1) € LC. O

It the implementation or specification are not determinate then Logic Confor-
mance is not implied by Trace Conformance. Typical verifications will require logic
conformance, which can be calculated more efficiently than trace conformance for

nondeterminate agents.

7.4.2  Minimization Algorithm

The worst case complexity of a set of parallel agents is the product of the state space
of each of the agents. If the state space of the agents can be reduced, such as through
minimization, then the complexity of the parallel composition can be greatly reduced
as well. Minimization also has useful applications for bisimulation and conformance
as shown in the previous section.

Fernandez implemented an efficient algorithm for minimizing agents using bisim-
ulation [Fer90, PT87]. A different algorithm based on branching time bisimulation

and used in Analyze is described here. The concept for minimization is to equate
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all states as if they were all bisimilar, and then separate any states that can be dis-
tinguished by their transitions. States with distinguishable transitions are separated
out until no more distinguishing transitions can split states apart.

The minimization algorithm is calculated as follows:

1. First each state is marked with the set of :&> transitions that are possible from
each state by walking all states. All possible :a> transitions from any state
are fully specified by the state’s transition set when there are no 7 transitions
from the state, and this set is recorded and stored. When a state contains 7
transitions they are followed until a leaf node is reached where no 7 transitions
are possible, or until a state is reached that has already been completed or

touched in this walk. The union of the set of possible transitions is returned

and stored for the source state.

2. All states are initially placed into the same “bin”. States that are not bisimilar
from their transition sets are then split into different bin. For instance, all
states that can only do an a transition are placed in one bin, all that can do

an a and b transition are placed into another bin, etc.

This split will result in a maximum of 2" bins, where n is the number of labels
in the agent’s sort. As an example, assume that an agent has the sort {a, b, c¢}.
Each bin is split by the property of having each transition label in it. Those
states which have the transition go in one bin, those that do not into the
another. Figure 7.2 conceptually shows how this split works. The input or
output sense of each signal is considered significant, so transitions z and z are

separate, distinguishable transitions placed in different bins.



CHAPTER 7. SYNTHESIS AND VERIFICATION USING ANALYZE 195

all states

fa;b,c} {fa,b}  {a,c}  {a}  {bjc}  {b} {c} {

Figure 7.2: Initial Bin Split for Minimization

If a bin contains no states, it is removed or not created. Hence the initial

partition may contain significantly less than the 2™ bins.

3. Following the initial split, this algorithm iteratively splits these bins using

branching time bisimulation until no more splits are possible.

(a)

(b)

The following steps are repeated for each bin, until all bins have been

examined and no extra bins were created.

Each state in the bin is walked, and a data structure is created which
indicates the destination bins for each transition in the state. For example,
two a transitions that go to bins 1 and 2 are recorded in an association

list as (a (1 2)). The 7 transitions must be walked just as in step 1 above.

Each transition label is then examined. All states in the bin must have
an identical set of destination bins for each transition or the current bin
must be split into separate bins distinguishable by the different destination
possibilities. If all association lists are identical for each transition label,
the transitions in this bin cannot be distinguished and the bin is not split.

The association lists must be recalculated for those transitions that have
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the current bin as a destination whenever a split occurs to assure that the
referenced states have not been split into another bin. For efficiency, each

bin is iteratively examined until there no more splits can be made.

7.5 Analyze Usage Example

This section briefly shows a verification session using Analyze. Analyze is a proto-
type verification and synthesis tool written in Common Lisp. The user interface is
designed as a set of functions that can be called after the software is loaded.
Following is a small example circuit based on a railroad crossing proposed by
Bradfield and Stirling [BS90]. In this example, a car and train must not be allowed
to cross the intersection at the same time. This model is based on transitional
semantics, so the crossing will be the transition of a label. The specification is
derived using three parallel processes — one for the car, one for the train, and one
for the semaphore. The semaphore acts like a “stop light”, only allowing either the
car or train to enter the intersection at a time. Following is the definition of the
specification using the notation accepted by the CWB and Analyze (“bi” is used to
name a process using the Con rule, and label complementation is represented using

the quotation ’g rather than an overbar 7).

bi CAR-TRAIN-SPEC

(CAR | TRAIN | CTSEM) \{g,p?}

bi CAR car.g.’ccross.’p.CAR
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bi TRAIN train.g.’tcross.’p.TRAIN

bi CTSEM ’g.p.CTSEM

This specification can be tested behaviorally and for invariant properties. The
following tests were made in the Concurrency Workbench. The if command reads
a file into the CWB, and the cp command is used to see if a process satisfies the

formula.

if car-train.ccs

cp CAR-TRAIN-SPEC
LIVE car

***kx true

cp CAR-TRAIN-SPEC
LIVE train

***kx true

cp CAR-TRAIN-SPEC
LIVE ’ccross

***x true

cp CAR-TRAIN-SPEC

LIVE ’tcross
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***x true

cp CAR-TRAIN-SPEC
CONCURRENT car train

***kx true

cp CAR-TRAIN-SPEC
MUTEX2 ’ccross ’tcross

***kx true

cp CAR-TRAIN-SPEC
HANDSHAKE car ’ccross

***kx true

cp CAR-TRAIN-SPEC
HANDSHAKE train ’tcross

***x true

The specification is live, the outputs are mutually exclusive for concurrent ar-
rivals, and the handshake protocols are obeyed. The specification is not a valid
implementation because there is computation interference on the g signal and there
are multiple output drivers on the p signal.

The specification can be decomposed using a number of approaches. For the first

pass, let’s assume that the specification is to be decomposed into specifications of
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macro module components, using inverters, TOGGLEs, mutual exclusion elements
(MEs), MERGE gates, and signal sinks (WOOD). The analog device for creating
mutually exclusive signals is the ME element, defined in Table 6.5 on Page 164.
Note that the ME device is a level-sensitive circuit. This means that the interface
for this circuit must convert from transition to four-cycle logic to access the ME

element. The initial pass of a decomposition appears in Figure 7.3.
I— rl ®
1 al
ME
train M | a2
I— r2 (4 > {cross

Figure 7.3: Initial Crossing Decomposition

Y

CCTOSS

car

This decomposition is specified in CCS as “CTImpl-Fails” by the following state-

ments:

bi CTImpl-Fails

( VehicleObv[car/in, rl/r, al/a, ccross/out] \
| VehicleObv[train/in, r2/r, a2/a, tcross/out] \
| MESPEC \

) \{ r1, a1, r2, a2 }

bi VehicleObv
( MERGE[in/a, fb/b, r/c] \

| TOGGLE \
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| WooD[c/al \
| IFORK[b/a, out/b, fb/c] \

) \{ fb, b, ¢}

Since the behavior of the car and the train are the same as can be seen from
closer examination of the specification Figure 7.3, the same definition can be shared.
Relabeling is used to change the names for the correct communication interaction.

This implementation is tested by Analyze, which points out some errors. Analyze
is written in Common Lisp, so commands must be parenthesized. Analyze is loaded
with the load-analyze function, a file of CCS agents is read with the parse-agents
command, and verification is carried out with the analyze function. The default

mode uses the unbounded delay speed-independent model.

> (load "load-analyze'")

> (parse-agents "car-train.ccs")

A\

(delay-insensitive-mode)

A\

(analyze ’|CTImpl-Fails| ’car-train-spec)

333

;33 Parameters set for delay-insensitive analysis with trace verification
333

;53 Generating a trace-determinate specification from CAR-TRAIN-SPEC ...
N ... minimized spec contains 8 states

N ... successfully generated TD specification with 4 states

;3 Generating and trace verifying CTImpl-Fails against CAR-TRAIN-SPEC ...
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;33 ERROR! Computation interference encountered!
HHH Signal ’r2 in agent CTImpl-Fails*

S Trace: (car ’rl train ’r2 t ’a2 ’tcross (’fb) ’r2 train ’r2)

30

;55 The top-level agent contains 80 unminimized states

N The following are warnings or errors detected during analysis:

N - The agent contained computation interference.

MM If this is an implementation it is NOT conformant to

HEH a specification. Otherwise synchronizations are incomplete
N to implement the specification.

NN - This agent contains computation interferences in some

N internal subcells. This can cause an error unless it

MM occurs exclusively in unreachable states.

N - Duplicate error type messages were suppressed.

Warning:

11 errors encountered during creation of agent CTImpl-Fails*-O0.

Do NOT trust the behavior of this agent!
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Analyze points out a violation in this implementation that is due to a race between
the inputs into the MERGE element. In the trace above, the feedback signal from
the output of the TOGGLE and the train input can flip the input to the ME element
before it has responded. This could result in a deadlock or a runt pulse on the output.
A modification of this specification is shown in Figure 7.4.

L o

al — CCToss

car

ME

rl
1
J_ a2 — {cross
|— 12 .—I

Figure 7.4: Trace Crossing Decomposition

train

This implementation verifies using trace conformance but not logic conformance
(bisimulation). Both @cross and fcross can transition concurrently, yet trace con-
formance cannot detect this because all the correct traces are generated. The final
attempt is shown in Figure 7.5. This decomposition is trace and logic conformant
to the specification.

Another method of implementing this circuit is to decompose the initial specifi-
cation into burst-mode specifications which conforms to the specification. Figure 7.6
is a “transition” burst-mode definition of the circuit that interfaces the environment
with the ME element. This specification, when composed with the ME, creates
a circuit that is verified with logic conformance against the original specification
CAR-TRAIN-SPEC. This burst-mode specification can be directly implemented us-
ing MEAT. The interfaces from Figures 7.3 through 7.5 can be verified against this

specification for conformance. Only the circuit of Figure 7.5 conforms to this graph.
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Figure 7.5: Correct Crossing Decomposition
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Figure 7.6: Burst-mode Transition Graph for Train

7.6 High Level Synthesis

This section describes a method for high level synthesis of verified circuits. This
hierarchical synthesis starts with a specification, and applies conformance at all
levels in the hierarchy in a top down fashion to verify the final circuit implementation
conforms to the specification.

Unfortunately conformance is not a congruence, which could invalidate some
results. A congruence does not hold when the initial state of the system contains
an unstable summation. A summation is unstable when a 7 transition is a possible
action in the summation. The congruence does not hold on the summation because

the 7 transition can arbitrarily change the derivations of the initial state. Fortunately,
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it is a simple test to assure that the verification is a congruence by checking the
stability of the initial state of the specification and implementation as a side condition
for verifying conformance.

The high level synthesis method presented here is targeted for high performance
VLSI implementations. This is a directed synthesis system that requires the talent
of an engineer to choose amongst the myriad of architectural choices such as par-
allel versus serial, area and time tradeoffs, etc. A major advantage of this system
over other directed synthesis systems is the ability to verify correct implementations
rather than just assume that the implementations are correct by construction or by
simulations. This would have detected the deadlock and other problems that existed
in the initial Post Office design.

Figure 7.7 shows the method for high level synthesis that is supported by Analyze.
This synthesis system produces a set of communicating burst-mode state machines
as leaf nodes. Software tools are named in parenthesis that support the labeled
operation.

The first synthesis step requires an informal description to be transformed into
a formal specification such as CCS. The informal definition is typically an infor-
mal natural language description of the interface or circuit behavior, or an informal
description using block diagrams, state diagrams, or timing diagrams. An object
oriented style of formalizing parallel specifications is described in [SABL93].

The formal description should be tested to ensure that it is correct before em-
barking on an implementation, as described in [Liu92]. If the implementation fails
the property or behavioral tests, the formal description should be modified and re-

tested. The design should be made as loose as possible such that it does not violate
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Figure 7.7: Synthesis Procedure



CHAPTER 7. SYNTHESIS AND VERIFICATION USING ANALYZE 206

design constraints, yet leaves as much flexibility as possible for design decisions.
When the designer is satisfied that the loose specification meets the design con-
straints, the specification must be refined into an implementation. A specification

must be refined under three circumstances:

1. The implementation has hidden the complexity of an internal behavior.

2. There is a communication which cannot be implemented as specified.

3. The specification cannot be implemented as a burst-mode state machine.

If complexity has been hidden — such as modeling an addition operation with
the communication label ‘add’ — then the implementation details of the operation
will need to be specified. The second cause for refinement is an illegal communica-
tion which cannot be implemented. These illegal communications occur in a circuit
as computation interference, described in Section 7.3. Finally, the implementation
can be tested as a valid burst-mode state machine. If the implementation verifies
as a valid burst-mode specification, a circuit can be synthesized directly from the
specification.

If specification is not a valid burst-mode state machine, then it will need to be re-
fined into a set of parallel subspecifications. These refined subspecifications will then
be tested for conformance against the specification. If the parallel subspecifications
do not conform to the specification, the subspecifications will need to be modified
until they are correct. If the designer cannot find any way to correctly implement
the specification, the designer will need to move up one level in the hierarchy, and

create a new refinement for that level. All verifications that were dependent on the
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modified refinement must be invalidated and reverified against the new agents. This
backtracking can also be used to investigate alternate design approaches.

When the specification is a valid burst-mode definition, the circuit should be
synthesized and then verified for hazards. Typically the hazards can be removed by
the techniques presented in Section 3.7. If no hazard free implementation can be
created, the hazard must be controlled in the layout, place, and route steps. Once the
circuit has been placed and routed, layout information should be passed up through
the system as back annotations. The Analyze system cannot currently utilize back

annotated information such as delays, performance, or power consumption figures.

7.7 Burst-mode State Machine Verification

Decomposition is necessary under three circumstances as indicated on Page 206.
Computation interference points out unimplementable handshakes, and the designer
should be aware of when a complex operation has been modeled abstractly. The
third condition for decomposition occurs when an agent is not a valid burst-mode
specification. Terminal burst-mode specifications can be directly implemented if they
conform to the rules from Section 4. The following steps are necessary enhancements

to Analyze to verify that an agent is a legal burst-mode specification.

1. Inputs and outputs cannot be concurrently enabled (Rule 1).

2. Input bursts must be confluent (see Definition 24) and may not be empty

(Definition 1).

3. Output bursts may be empty and need not be confluent (Definition 2).
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4. There must be an even number of transitions for each label in the sort of the

agent (Rule 7).
5. The AFSM is closed and determinate (Rule 8).
6. The environment will enable only a single input burst from any state (Rule 9).

The first two steps ensure that inputs and outputs are segregated into bursts, and
that the bursts are semi-modular. The first step can easily be checked mechanically
for any agent, independent of its sort. However, it is very difficult to determine from
an arbitrary agent specification what constitutes a valid input burst, particularly
when output bursts may be empty. By adhering to the burst-mode notational ex-
tension to CCS presented in Table 4.1, bursts can easily be specified and Analyze
guarantees that the transition is confluent and semi-modular by generating all the
necessary interleavings. Verifying the confluence of input bursts is implemented as
part of Analyze, so it is the responsibility of the designer to use the burst-mode no-
tation or assure that the interleavings are correctly specified such that burst-mode
is obeyed.

According to Definition 2, the output burst need not be confluent. Since all
input bursts must be confluent, all interleavings of outputs can be accepted. If
a circuit only generates a subset of those interleavings, the system will continue
to operate properly. This makes specifications much looser resulting in increased
design freedom. However, this presents a problem for verification. Specifications
will typically generate all output burst interleavings. If the implementation does not
produce all these interleavings, it will not conform to the specification according to

conformance (Definitions 25 and 30). Currently the specification must be modified to
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reflect the subset of the interleavings that the implementation will produce. Further
research is required to allow logic conformance to automatically verify circuits where
the interleavings of output bursts are subsets of the specification.

Current technology requires that burst-mode state machines are deterministic.

Arbitration must be accomplished with an arbiter or mutual exclusion element.

Proposition 16 A determinate agent will obey Rule 8 in Section 4.6, which guar-
antees that from any given state, there will not be two burst-mode transitions where

the labels of one transition are a subset of the other.

Proof By Definition 23, any s-derivative must result in bisimilar states. By
Definition 1, if one burst is a subset of another then the same sequence s of observable
actions must be possible in both bursts. If the agent is determinate, then these
sequences P=P' and P=P" must arrive at the same state since P’ ~ P”. Hence
Rule 8 must hold as the subsequence can only be part of the longer input burst. O

Therefore, veritying that a circuit specification is determinate is sufficient to
assure Rule 8 holds.

CCS is a transition based protocol, whereas digital logic is bistable. Therefore
some preprocessing, mentioned in step 4 (from Rule 7 on Page 93), may be necessary
to create a specification that can be directly synthesized using MEAT. This rule
assures that the correct rising and falling of voltage levels is specified.

The final requirement for burst-mode state machines assures that, when there
are multiple input bursts available from a single state, the bursts are driven by the
environment in a mutually exclusive fashion. This cannot be verified by examin-

ing the state machine independently, but requires analysis of the environment of
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the state machine. The mutual exclusivity of bursts will automatically be detected
when verifying the circuit in its environment if and only if the signal transitions in
all other bursts are not enabled in the destination states. Otherwise Analyze cannot
automatically verify the mutual exclusive burst requirement. For example, if the
state fragment in Figure 7.8(a) is composed into a circuit that produces @ and b
concurrently, then computation interference will occur in states 1 and 2. Analyze
cannot automatically verify mutual exclusivity on @ and b provided by the environ-
ment to fragment Figure 7.8(b) because state 1 can make a b transition and state 2

can make an a transition.

Figure 7.8: Environmental Burst Constraints

The MUTEX2 macro of the Modal-p calculus defined in Chapter 6 can be used
when conformance cannot determine mutual exclusivity of the bursts. Unfortunately
the specifications need to be modified for this test. The completion of the bursts in
question will each signal completion to the TEE component, and the € output of the
TEE will be connected following the final signal in the burst. The b signal indicates
completion of the burst. The component is then placed into the circuit environment,
and if the b signals of the bursts in question are not mutually exclusive, then the

environment supplies the bursts concurrently.
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TEE ¥ .3.2.TEE (7.1)

For example, the burst-mode specification of the circuit in Figure 4.4 on Page 97
does not require the application of modal-p formulae to its environment. The only
state with a choice of transition bursts is state 4. Since state 5 cannot accept a transi-
tion on deliver, concurrently presenting deliver and ack-send will result in computa-
tion interference on deliver in state 5. However, the nonblocking arbiter specification
of Figure 4.3 on Page 94 will not show computation interference because all inputs
are valid transitions in every state. Compose a TEE between states 0 and 1 and
states 0 and 4 and compose the circuit with its environment. The MUTEX2 formula
will not be satisfied by the resulting circuit, showing that the environment is not well
behaved for this AFSM. Therefore, as discussed in Section 4.5, the SEQUENCER
circuit needs to shield this AFSM from concurrent input changes supplied by the

environment.

7.8 Summary

The CCS calculus is an extremely concise and useful language for specifying parallel
asynchronous circuits, particularly when the specifications are created in an object-
oriented style based on the parallel composition operator. CCS is also amenable to
automatic proof systems due to the succinctness of the language, and proof systems
are implemented in the Concurrency Workbench and the Analyze tool of this thesis.
The attention to structural aspects of concurrent design support accurate hierarchical

circuit synthesis.
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Pure CCS cannot modeling and reasoning about circuits specifications at the
device level due handshake communication. These problems were discussed, and
solutions were proposed and implemented in a software prototype CAD tool called
Analyze. Unfortunately some of these solutions required slight changes to the tran-
sitional rules of CCS, in particular the parallel composition operator was redefined
in terms of a parallel conjunctive composition. The changes impact the basic CCS as
minimally as possible, solely changing aspects where accuracy or simplicity of mod-
eling hardware systems would be compromised. These modifications were all made
as transparently as possible, by pushing the complexity of the changes, such as in
the composition operator, into the Analyze tool rather than burdening the designer
with more additional notation, etc.

These modifications support a powerful synthesis and proof tool for asynchronous
circuits. Invariant analysis of specifications was presented. These are divided into
sets which can be carried out independent of a specification’s structure, and those
that are dependent upon the behavior and component interactions. Definitions and
formulae were presented for the hierarchical verification of circuits based on invariant
analysis. The computational speed of Analyze is much improved over the Concur-
rency Workbench, as many common applications including minimization require an
order of magnitude less CPU time to complete. Analyze attains this performance
advantage through compositional algorithms and by a more restricted applicability.

A high level synthesis procedure based on Analyze is presented that can synthesize
verified circuit implementations in a top-down fashion. This procedure is targeted at
implementations comprising communicating burst-mode state machines. The steps

for validating a correct burst-mode specification are also described.
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The major contribution of this chapter is the software prototype CAD tool de-
veloped for the verification and synthesis of asynchronous circuits. Although there
is still work to do, such as supporting hierarchical burst-mode verification and im-
proving performance, this tool has proven very useful to myself and others who have
exercised its capabilities [vG94]. This tool, along with a short user manual and set
of examples, has been made publicly available via ftp.

The remainder of this chapter notes some of the contributions that are part of

the Analyze tool and synthesis philosophy.

1. A prototype tool has been developed for supporting the hierarchical, top-down
synthesis and verification of asynchronous systems. The hazard modeling of

Analyze is more rigorous than in other tools.

2. Analyze includes all of the common delay models: delay-insensitive, quasi
delay-insensitive, speed-independent, and burst-mode. When a violation oc-
curs, signal backtraces are included to aid the designer in determining the cause

of the fault.

3. Analyze includes multiple equivalences. Currently, complete trace seman-
tics and branching time bisimulation semantics have been defined as “con-

formances”.

4. A designer directed hierarchical top-down synthesis methodology has been de-

veloped.

. A new parallel composition operator, called parallel conjunction, has been

(&2 ¢

defined and implemented. The restriction operator for parallel composition



CHAPTER 7. SYNTHESIS AND VERIFICATION USING ANALYZE 214

has been changed to use hiding semantics for the conjunction operator as this

operator restricts independent actions as a side condition.

6. The definition of computation interference is created for labeled transition sys-
tems. This is an extension of CCS transition semantics, and is the backbone

of the verification and synthesis systems developed for this thesis.

7. The steps required for the verification of correct burst-mode specifications is de-

veloped and spelled out. This is necessary for the top-down synthesis method-

ology.

8. An efficient algorithm for state minimization and branching time bisimulation

is presented in this chapter, and implemented in Analyze.



Chapter 8

Conclusions

“It has long been my personal view that the separation of practical and
theoretical work s artificial and injurious. Much of the practical work
done in computing, both in software and hardware design, is unsound and
clumsy because the people who do it do not have any clear understanding
of the fundamental principles underlying their work. Most of the abstract
mathematics and theoretical work s sterile because it has no contact with
the real computing. One of the central aims of the PRG, as a teaching and
research group, has been to set up an atmosphere in which this separation

cannot happen.”

C Strachey 1974

Perhaps the most significant result of this thesis has been my metamorphosis from
a “devil’s advocate” railing against the lack of utility and maturity of formal methods
for circuit design into a devotee. The simplicity of CCS syntax and semantics are
the foundation of my newly acquired interest. It is a specification notation that
is natural for designers and engineers and is one with which formal proofs can be
carried out automatically.

Chills go down my spine when I recall the “old ways” of simulation and the
months [ spent modifying simulation sequences in the Post Office and manually in-

specting state machines in an attempt to discover the cause of a deadlock. However,

215
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the most significant advantages of verification have yet to move from the concep-
tual, intellectual, and theoretical domains into the labs of engineers. The success of
this work is, in a way, battling a two headed dragon as both formal methods and
asynchronous design must become mainstream for this to happen.

If the momentum behind the work in simulation and clocked systems is to be
stemmed and turned, significant advantages of other techniques must become appar-
ent. The conceptual advantages of verified asynchronous systems have been espoused
here and in other works. The momentum will change only if practical solutions to ev-
eryday engineering problems are available. These practical solutions will only come
about today through the synergy of merging theory, software engineering, and circuit
design in the form of a toolkit. The prototype Analyze tool of this thesis is a first
stab at a practical workbench for the synthesis and verification of industrial strength

asynchronous integrated circuits.

8.1 Challenges

Significant challenges must be addressed before verification becomes widely used.
This section quickly covers some of the areas where further work is required to

facilitate these concepts.

8.1.1 Complexity

Invariant analysis inevitably requires that all states be examined. The performance
of verification techniques is through the complexity of the algorithms directly propor-

tional to the size of the agents being examined. Further, the state space of parallel
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systems grows as the product of the parallel terms. The difficulty of controlling such
consuming complexity becomes apparent when one considers a simple example. The
nacking (or blocking) arbiter implementation of the Post Office requires a sequencer
— a library component for many of the macro module based asynchronous synthesis
systems. My implementation contains four ME’s, 12 2-input NAND gates, six in-
verters, and two set-reset flip flops. The overall complexity of such a rather simple
circuit is 16% x 8% x 26 x 8% = 18,446, 744,073,709, 551,616 states (which exceeds
the address size of a 64 bit architecture). This is typically referred to as the “state
explosion problem”. Some approaches to reducing the complexity are discussed here.
Compositional Tools

Significant improvements in performance can be achieved with compositional
algorithms. Much of the performance gains of Analyze over the Concurrency Work-
bench can be attributed to its compositional style.

For example, let’s review the comparison between Analyze and the CWB for
the simple C-element circuit from Section 6.5. This design contains three 2-input
AND gates and a three-input OR gate (or in a CMOS implementation three 2-input
NAND gates and one 3-input NAND gate). This parallel implementation is bounded
by 8% x 16 = 8192 states. The workbench’s non-compositional algorithms create all
8192 states in parsing the circuit, expending 193 CPU seconds. Analyze, which
creates the circuit compositionally, only creates the 36 restricted states, requiring
0.6 seconds of computation time. Verification is also compositional in Analyze, and
is more efficient than parsing. The verification of the C-element using the burst-
mode hazard model takes 0.2 seconds of CPU time and touches 23 states as these

states conform to the four states of the specification.
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Hierarchy and Other Mechanisms

Optimally there would be some means of hiding the complexity of parallelism
from engineers to the extent that large systems could be verified efficiently. Other
simple and obvious techniques have been used by the Analyze prototype, such as
hashing. More complicated techniques, such as applying induction techniques to
regularly interconnected arrays of components, BDD type representations, and more
efficient algorithms may achieve some limited success for controlling complexity.

However, due to the inherent exponential state explosion of parallel components,
careful hierarchical decomposition will always remain a fact of life in highly parallel
architectures. Although CCS facilitates this by accurately modeling the observable
effects of components throughout all levels in the hierarchy, controlling complexity
through this process of decomposition can be very challenging, particularly when
the obvious partitions are just too large to verify. For example, even veritying the

implementation of the sequencer referred to above requires hierarchical modeling.

8.1.2 Tool Support

Unfortunately, designers of industrial strength asynchronous VLSI circuits have been
forced to produce chips without sufficient tool support. Without such assistance,
the cost and possibility of errors is too great for asynchronous circuit design become
mainstream.

An applicable theory that has not been put to work simplifying or solving prob-
lems has been squandered. The practical application of the theories presented here,
that are in themselves based on the founding work of others, is embodied in a soft-

ware prototype that is freely available via anonymous ftp. The work herein is a
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first step toward the ultimate application of these principles in the rapid creation of

verified integrated circuits form an asynchronous designers workbench of tools.

8.2 Analyze Critique

The application of the principles in this thesis are somewhat limited in scope. Value
passing has not been implemented as part of the core CCS transition rules. This re-
sults in a dichotomy of effective applicability of CCS toward circuit design. It can be
very efficient for verifying control, yet quite inefficient for datapath logic. Fortunately
this melds well with the asynchronous design style I have developed over the years.
Regular datapath logic is fairly easy to design correctly and is of universal applica-
bility, whereas correctly designing custom control can be very challenging. Therefore
this method has only been used to verify control and the datapath interfaces.

Complete verification currently requires the use of the Concurrency Workbench as
well as Analyze. Whenever the satistaction of application specific temporal equations
is required, as in certain cases to verify mutually exclusive environmental behavior of
some input bursts, the CWB must be used. The current Analyze prototype does not
yet implement the universal invariant tests such as liveness. It would be convenient
to add the capabilities of verifying liveness and the process logics presented in this
thesis to the Analyze tool.

The multi-way synchronization of the conjunction operator, trace conformance,
and computation interference capabilities of Analyze allow it to couple the simplicity

of the CCS syntax with the ability to accurately model and verify circuits.



CHAPTER 8. CONCLUSIONS 220

The textual and function based user interface of Analyze is rather weak. There
are no programs that can generate textual CCS descriptions from schematic drawing
tools. The tool also contains some theoretical flaws from the (too) early implemen-
tation of logic conformance that result in erroneous results under certain conditions.
There are also some inflexibilities forced upon specifications due to the parser.

One of the largest deficiencies lies in the incompleteness of some essential aspects
of the tool. Trace conformance is computed directly but logic conformance is not.
Checking when an agent definition is a valid burst-mode specification has not yet
been implemented. Hierarchical verification of burst-mode controllers has not yet
been implemented, but the theory is complete. Unfortunately this has postponed a
goal of verifying major portions of the Post Office implementation. The synthesis
procedure is not fully supported as there is no bookkeeping method for tracking
the validity of verifications over many hierarchical levels, and annotation is neither
stored nor used. A more automated system of estimating complexity to aid in the
directed decomposition would greatly reduce designer’s workload. Transistor-level
and tristate models have not been developed. Hence complex gates must be char-
acterized externally and their behavior imported into Analyze before they can be

used.

8.3 Future Directions

My assessment is that CCS is a very promising foundation for the formal verification
and synthesis of asynchronous circuits. The simplicity of the model is a feature

and impediment. Specifications can be concise, parallel, and “object oriented”. The
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conjunctive transition rules allow most hardware components to be directly modeled.
However, datapath logic is not modeled efficiently. Verification of regular datapath
processes such as RAMS, multipliers, registers, etc. can be carried out much more
efficiently with HOL or other inductive proof techniques. The CCS formalism is
very similar to the asynchronous design style in that it seems to vastly simplify
the difficult aspects of design (control verification), whereas the easier tasks such as
datapath module verification are neither easily nor efficiently automated.

Typical tradeoffs exist between a simple, efficient, restricted model versus a
broadly applicable, unwieldy, and less efficient one. The ramifications of such trade-
offs seem to have greater impact on performance and the ability to achieve the desired
goals (proof automation) than with other tools such as programming languages and
simulation based circuit models. Most tools based on labeled transition systems that
have been broadened in scope seem to lose the clarity and simplicity of the underly-
ing proof system without acquiring offsetting benefits when applied to asynchronous
systems. Such broader systems may not be simple or powerful enough to rival other
more complex logic theorem proving systems such as HOL.

A better approach may be to make CCS and labeled transition systems such as
Analyze companions to HOL or VHDL, applying each method to solve problems in
their particular area of expertise. The inductive abilities of HOL can rapidly prove
the correctness of datapath logic, whereas Analyze is more amenable to proving the
correctness of control circuitry. VHDL could be used as the back end for circuit
simulation and as the specification language for automatic synthesis, as well as to
interface with place and route software available from vendors today. Contact has

already been made between VHDL and HOL [vT93]. Unfortunately such a coopera-
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tion would most likely be difficult and only operate on a subset of the syntax of the
more general systems. I would very much like to investigate the feasibility of such a
cooperative tool.

This first prototype has proven its worth in the small set of applications to which
it has been applied. Hopefully it will serve as a stepping stone for a second generation
prototype. I would like to continue my work on the software engineering in this tool,
fix the faults, improve the algorithms and runtime performance, and complete the
open areas. The real test will come when this methodology is applied to an industrial

strength design such as the Post Office, which I hope to do!
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