KIRCHHOFF'S LAWS Solving circuits EXAMPLE 4

Ex:

Calculate i_1 , i_2 , and v_0 .

soln: First, we label R's.

Second, we write v-loop eghs. We write egins for both inner loops.

$$+240V - V_1 - V_3 - V_2 = 0V$$

 $+V_2 - V_0 = 0V$

Third, we write current-sum egins for all but one node. For the node between R's on the right side we have

$$-i_1 + i_2 + i_0 = 0A$$

CONCEPTUAL TOOLS

Fourth, we equate currents for components in series. We have already done this, however, by using i, for both the I.a. and 15 A R's.

Fifth, we write Ohm's law egins for every R:

$$v_i = \dot{v}_i \cdot 1.52$$

$$V_2 = i_2 \cdot 30 \Omega$$

Now we use the Ohm's law eghs to substitute for v's:

$$+240V - i_1 \cdot 12 - i_1 \cdot 152 - i_2 \cdot 302 = 0V$$

$$+ i_2 \cdot 30 \Omega - i_0 \cdot 30 \Omega = 0V$$

our current sum eg'n is unchanged:

$$-i_1 + i_2 + i_0 = OA$$

From the 2nd of the above 3 eg'ns we have

$$i_0 = i_2$$

Using this in the 3rd egin gives

or
$$i_2(2.16\Omega + 30\Omega) = 240V$$

or
$$i_2 = \frac{240V}{62 \Omega} = \frac{120}{31} A \approx 3.87A$$

$$i_1 = 2i_2 = \frac{240}{31} A \approx 7.74 A$$

$$V_0 = i_0 \cdot 30 \Omega = i_2 \cdot 30 \Omega = \frac{120}{31} (30) V$$

or
$$v_0 = \frac{3600}{31} V \approx 116 V$$