

Ex:

V	I
12 V	1 A
10 V	0 A
8 V	-1 A

When voltage V is applied to the above battery, the currents shown in the table are measured.

- a) Find a Thevenin equivalent model of the battery.
- b) If a 3 Ω resistor is connected across the battery (instead of V), how much power is dissipated in the 3 Ω resistor?

soln: 9) $V_{Th} = V$ across battery when nothing is connected to the battery, i.e., when no current is flowing

From the table, we see that no current flows when V=10V. But V is the voltage across the battery. So $V_{Th}=V=10V$.

The above diagram shows the circuit model when V = 12V (and I = 1A according to the table).

Using a voltage loop, we can determine the voltage drop across R_{Th} , and then we can use Ohm's law to find the value of R_{Th} from I and V_1 . Starting in the lower left corner of the circuit, we have the following v-loop egh:

$$+V-V_1-V_{Th}=OV$$

or

$$12V - V_1 - 10V = 0V$$

or

$$2V - V_1 = OV$$

or

So we can now compute RTH:

$$R_{Th} = \frac{2V}{I} = \frac{2V}{IA} = 2.2$$

We have a voltage divider circuit.

$$V_2 = V_{th} \frac{3\Omega}{2\Omega + 3\Omega} = 10V\left(\frac{3}{5}\right) = 6V$$

We can compute I2 from Ohm's law:

$$I_2 = \frac{V_2}{3\pi} = \frac{6V}{3\pi} = 2A$$

Our power is $P = I_2V_2 = 2A \cdot 6V = 12W$.

Note: we could also say
$$P = \frac{V_z^2}{3 \cdot R} = \frac{(6V)^2}{3 \cdot R} = 12W$$
.