U

Ex:

The above circuit is from Lab 4, but some of the component values have been changed. Note that voltage v_2 is a triangle waveform, and v_3 is a Pulse-Width Modulation (PWM) waveform.

- a) Find the peak voltage reached by v_2 , (i.e., the highest voltage reached by v_2).
- b) Find the period of the square wave, $v_1(t)$. Note that the period is one full cycle of high and low voltage.
- c) Find the duty cycle of $v_3(t)$. That is, find what fraction of each period $v_3(t)$ is high.

sol'n:a) The first stage is a Schmitt trigger that produces square wave v, that goes from + vrail to -vrail or +111 to -111.

 v_1 switches from + to - when v_2 (triangle wave shown above) causes $v_+ = 0v = v_-$ for first op-amp.

 v_{+} is determined by the voltage divider involving R_{1} , R_{2} , v_{1} , and v_{2} .

$$v_2 \circ \underset{10 \text{ ks}}{ \text{ ks}} + \underset{R_2}{ \text{ ks}} v_1$$

We have $v_{R2} = (v_2 - v_1) \frac{R_2}{R_1 + R_2} = (v_2 - v_1) \frac{20 \text{kg}}{30 \text{kg}}$ or $v_{R2} = \frac{2}{3} (v_2 - v_1)$

Now, $v_{+} = v_{1} + v_{R2} = v_{1} + \frac{2}{3}(v_{2} - v_{1})$ or $v_{+} = \frac{1}{3}v_{1} + \frac{2}{3}v_{2} = 0V$ at switch pt

When $v_1 = -11V$, we solve for v_2 :

$$\frac{1}{3}(-11V) + \frac{2}{3}v_2 = 0V$$

or $v_2 = \frac{11}{2}V = 5.5V = \text{peak value of } v_2$.

b) To find the period of V_1 , we need to find the slope of v_2 as it rises from -5.5V to 5.5V. Thus, we need to analyze the charging of C.

We have $V_- = V_+ = OV$ because of the negative feedback. Current $I = V_1 / R_3 = C \Delta V_C / \Delta t$ since I flows into C (not into op-amp).

Since
$$v_z = -v_c$$
, the slope of v_z equals $\frac{\Delta v_c}{\Delta t} = \frac{v_1}{R_3 C} = \frac{-(-11V)}{100 \text{ kg} \cdot 0.1 \text{ µF}} = \frac{11V}{10 \text{ ms}}$

The time it takes v_z to rise from -5.5V to 5.5V is half the period, T:

$$\frac{T}{2} = \frac{5.5V - (-5.5V)}{\text{slope of } v_2} = \frac{11V}{11V/10ms}$$
or $T_2 = 10 \text{ m/s}$

or T = 20 ms = period of vi (and vz)

c) The comparator that produces v_3 trips when $v_+ = v_- = 1V$. The output, v_3 , is high when $v_+ > v_-$.

The duty cycle is $\Delta t_{hi}/T$. T=20ms from (b).

We solve for Athi:

$$5.5V - slope v_2 \cdot \Delta t_{hi} = IV$$

$$\frac{11}{10ms}$$

Duty cycle is Athi/T = 90/11(20) ms = 0.409