Ex: Find the simplest Sum-Of-Products (SOP) form for the following Boolean expression.

$$
A \bar{B}+C \oplus(\bar{A}+B)
$$

Sol'n: We write the X-OR as an OR of two AND's.

$$
A \bar{B}+\bar{C}(\bar{A}+B)+C(\overline{\bar{A}+B})
$$

We apply De Morgan's theorem to the last term.

$$
A \bar{B}+\bar{C} \bar{A}+\bar{C} B+C A \bar{B}
$$

The first term makes the last term redundant.

$$
A \bar{B}+\bar{C} \bar{A}+\bar{C} B
$$

Put letters in alphabetical order in each term:

$$
A \bar{B}+\bar{A} \bar{C}+B \bar{C}
$$

Now we use the rule that $A=A B+A \bar{B}$, etc.

$$
A \bar{B} C+A \bar{B} \bar{C}+\bar{A} B \bar{C}+\bar{A} \bar{B} \bar{C}+A B \bar{C}+\bar{A} B \bar{C}
$$

Now we put the terms in order and eliminate duplicates.

$$
\bar{A} \bar{B} \bar{C}+\bar{A} B \bar{C}+A \bar{B} \bar{C}+A \bar{B} C+A B \bar{C}
$$

Now we use $A=A B+A \bar{B}$, etc., in reverse.

$$
\bar{C}+A \bar{B}
$$

An alternative is to use a truth table:

A	B	C	$A \bar{B}$	$\bar{A}+B$	$C \oplus(\bar{A}+B)$	$A \bar{B}+C \oplus(\bar{A}+B)$
0	0	0	0	1	1	1
0	0	1	0	1	0	0
0	1	0	0	1	1	1
0	1	1	0	1	0	0
1	0	0	1	0	0	1
1	0	1	1	0	1	1
1	1	0	0	1	1	1
1	1	1	0	1	0	0

From the truth table, we see that our previous answer is optimal.

$$
\bar{C}+A \bar{B}
$$

