Ex: \quad Show the minimum logic circuit (i.e., using logic gates) to implement the following expression. You may use AND, OR, EX-OR, and NOT (inverter) gates. The optimal design has the minimum total number of gate inputs.

$$
F=A B+\bar{A} C+\bar{C}
$$

Sol'n: We have the following truth table for F versus A, B, and C :

A	B	C	$A B$	$\bar{A} C$	\bar{C}	F
0	0	0	0	0	1	1
0	0	1	0	1	0	1
0	1	0	0	0	1	1
0	1	1	0	1	0	1
1	0	0	0	0	1	1
1	0	1	0	0	0	0
1	1	0	1	0	1	1
1	1	1	1	0	0	1

One simple solution is to use a 3-input NAND gate:

$$
F=\overline{A \bar{B} C}
$$

Applying De Morgan's theorem, we can use a 3-input OR gate:

$$
F=\bar{A}+B+\bar{C}
$$

Applying De Morgan's theorem to A and C, we get another solution with the same number of gate inputs:

$$
F=\overline{A C}+B
$$

The three designs, shown below, all have five gate inputs:

