Ex:

a) Find \mathbf{I}_{1} in rectangular form.
b) Find \mathbf{V}_{T}
c) Find the numerical value of the phase angle between \mathbf{V}_{T} and \mathbf{I}_{1} ?

Sol'n: a) The current is the same everywhere around the loop. Use Ohm's law for z_{2} :

$$
\mathbf{I}_{1}=\frac{\mathbf{V}_{2}}{-j 240 \Omega}=\frac{8 \angle 30^{\circ}}{240 \angle-90^{\circ}} \mathrm{A}=\frac{1}{30} \angle 120^{\circ} \mathrm{A}
$$

or

$$
\mathbf{I}_{1}=33.3 \angle 120^{\circ} \mathrm{mA}=-16.65+j 28.84 \mathrm{~mA}
$$

b) Use a voltage sum with Ohm's law for z_{1} :

$$
\mathbf{V}_{\mathrm{T}}=\mathbf{V}_{1}+\mathbf{V}_{2}=\mathbf{I}_{1} z_{\mathbf{1}}+8 \angle 30^{\circ} \mathrm{V}
$$

or

$$
\mathbf{V}_{\mathrm{T}}=\frac{1}{30} \angle 120^{\circ} \cdot 180 \Omega+8 \angle 30^{\circ} \mathrm{V}
$$

or

$$
\begin{aligned}
\mathbf{V}_{\mathrm{T}}= & 8 \cos \left(30^{\circ}\right)+j 8 \sin \left(30^{\circ}\right) \\
& +6 \cos \left(120^{\circ}\right)+j 6 \sin \left(120^{\circ}\right) \mathrm{V}
\end{aligned}
$$

or

$$
\mathbf{V}_{\mathrm{T}}=8 \frac{\sqrt{3}}{2}+j 8 \frac{1}{2}-6 \frac{1}{2}+j 6 \frac{\sqrt{3}}{2} \mathrm{~V}
$$

or

$$
\mathbf{V}_{\mathrm{T}}=-3+4 \sqrt{3}+j 4+j 3 \sqrt{3} \mathrm{~V}=10 \angle 66.87^{\circ} \mathrm{V}
$$

c) Take the absolute value of the difference of the angles.

$$
\left|\angle \mathbf{V}_{\mathrm{T}}-\angle \mathbf{I}_{1}\right|=\left|66.87^{\circ} \mathrm{V}-120^{\circ}\right|=53.13^{\circ}
$$

