Ex:

Find the values of the following quantities in the above circuit.
a) I
b) $\quad R_{4}$
c) $\quad P_{\mathrm{R} 1}$ (the power dissipated by R_{1})

Sol'n: a) We use Ohm's law to calculate the current through R_{2}.

$$
I=\frac{6 \mathrm{~V}}{10 \mathrm{k} \Omega}=0.6 \mathrm{~mA}
$$

To find I, we use a current summation at the top center node.

$$
1.5 \mathrm{~mA}=0.6 \mathrm{~mA}+I
$$

or

$$
I=1.5 \mathrm{~mA}-0.6 \mathrm{~mA}=0.9 \mathrm{~mA}
$$

b) The total voltage across R_{2} and R_{3} is related to the voltage across R_{2} by a voltage divider formula.

$$
6 \mathrm{~V}=V_{R 2,3} \cdot \frac{10 \mathrm{k} \Omega}{15 \mathrm{k} \Omega}
$$

or

$$
V_{R 2,3}=6 \mathrm{~V} \cdot \frac{15 \mathrm{k} \Omega}{10 \mathrm{k} \Omega}=9 \mathrm{~V}
$$

This voltage appears across R_{4} and R_{5}. Using I and $V_{R 2,3}$ and Ohm's law yields an equation for R_{4}.

$$
I=\frac{V_{R 2,3}}{R_{4}+R_{5}}=\frac{9 V}{R_{4}+8.2 \mathrm{k} \Omega}=0.9 \mathrm{~mA}
$$

or

$$
R_{4}+8.2 \mathrm{k} \Omega=10 \mathrm{k} \Omega
$$

or

$$
R_{4}=1.8 \mathrm{k} \Omega
$$

c) From a V-loop on the left side, we find the voltage across R_{1}.

$$
12 \mathrm{~V}-V_{R 1}=9 \mathrm{~V}
$$

or

$$
V_{R 1}=3 \mathrm{~V}
$$

We know the current is 1.5 mA , so we can compute the power in R_{1}.

$$
p_{R 1}=1.5 \mathrm{~mA} \cdot 3 \mathrm{~V}=4.5 \mathrm{~mW}
$$

