Ex:

Find the values of the following quantities in the above circuit.

- a) *I*
- b) *R*₄
- c) P_{R1} (the power dissipated by R_1)

SOL'N: a) We use Ohm's law to calculate the current through R_2 .

$$I = \frac{6 \,\mathrm{V}}{10 \,\mathrm{k}\Omega} = 0.6 \,\mathrm{mA}$$

To find *I*, we use a current summation at the top center node.

 $1.5\,\mathrm{mA} = 0.6\,\mathrm{mA} + I$

or

 $I = 1.5 \,\mathrm{mA} - 0.6 \,\mathrm{mA} = 0.9 \,\mathrm{mA}$

b) The total voltage across R_2 and R_3 is related to the voltage across R_2 by a voltage divider formula.

$$6 V = V_{R2,3} \cdot \frac{10 \,\mathrm{k}\Omega}{15 \,\mathrm{k}\Omega}$$

or

$$V_{R2,3} = 6 \operatorname{V} \cdot \frac{15 \operatorname{k}\Omega}{10 \operatorname{k}\Omega} = 9 \operatorname{V}$$

This voltage appears across R_4 and R_5 . Using *I* and $V_{R2,3}$ and Ohm's law yields an equation for R_4 .

$$I = \frac{V_{R2,3}}{R_4 + R_5} = \frac{9V}{R_4 + 8.2 \,\mathrm{k}\Omega} = 0.9 \,\mathrm{mA}$$

or

 $R_4+8.2\,\mathrm{k}\Omega=10\,\mathrm{k}\Omega$

or

 $R_4 = 1.8 \,\mathrm{k}\Omega$

c) From a V-loop on the left side, we find the voltage across R_1 .

 $12 V - V_{R1} = 9 V$

or

$$V_{R1} = 3 V$$

We know the current is 1.5 mA, so we can compute the power in R_1 .

 $p_{R1} = 1.5 \,\mathrm{mA} \cdot 3 \,\mathrm{V} = 4.5 \,\mathrm{mW}$