U

Ex:

The switch has been open for a long time and is closed at t = 0.

Write the full expression for $v_C(t)$ for t > 0, including all the numerical constants that you find.

soln: a) At t=0 the switch is open and C = open.

No current flows, so R's all have OV drops. From V-100p around center and right side, $V_{c}(0^{-}) = 24V$.

For t->00 the switch is closed and C= open.

There is no current in R_3 and no V-drop across R_3 . So V_c is the same as the V across the center branch and the same as the V across R_1 . We use the V-divider formula to find the V-drop across R_1 .

$$V_{c}(t\rightarrow\infty) = 24V \cdot R_{1} = (24V)36k\Omega$$

$$R_{1} + R_{2} = 36k\Omega + 12k\Omega$$

$$V_{c}(t\rightarrow\infty) = 18V$$

For the time constant, $\tau = R_{Th}C$, we look in from the terminals for C with the 24V source turned off (= wire). We see R_3 in series with R_1 parallel R_2 .

$$R_{Th} = R_3 + R_1 || R_2 = 1 k \Omega + 36 k \Omega || 12 k \Omega$$

We have $36 k \Omega || 12 k \Omega = 12 k \Omega \cdot 3 || 1 = 12 k \Omega \left(\frac{3}{4}\right) = 9 k \Omega$.
 $R_{Th} = 1 k \Omega + 9 k \Omega = 10 k \Omega$

We use the general formula for RC solutions:

$$v_{c}(t) = v_{c}(t\rightarrow 00) + [v_{c}(0^{+}) - v_{c}(t\rightarrow 00)]e^{-t/t}$$

where $V_{c}(0^{+}) = V_{c}(0^{-})$

$$V_c(t) = 18V + [24V - 18V]e^{-t/10k\Omega \cdot 300nF}$$
 too
 $V_c(t>0) = 18V + 6Ve^{-t/3 \text{ ms}}$