Ex:

Complete the truth table, below, for the logic circuit above. (Note that you must fill in some missing input values in the table, too.)

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| A | B | C | X | Y |
| 0 | 0 | 0 | | |
| 0 | 0 | 1 | | |
| 0 | 1 | 0 | | |
| 0 | 1 | 1 | | |
| 1 | 0 | 0 | | |
| 1 | | | | |
| 1 | | 0 | | |
| | 1 | 1 | | |

Sol'n: First, we fill in the input values (in red), which correspond to counting up in binary. Second, we look for simple cases where the output values may be determined. If $\mathrm{C}=0$, for example, Y must be one (green values) because of the NAND gate. If $\mathrm{A}=0$, the input of the OR gate will be 1 and X will be 0 (orange). If $\mathrm{A}=0$ and $\mathrm{C}=1$, the output of the AND gate $=\mathrm{B}$, and the output of the NAND gate $=\mathrm{B}-$ not (brown values). If $\mathrm{A}=1$, the output of the AND gate will be 0 , and both inputs of the OR gate will
be 0 , so the output of the OR gate will be 1 and X will be 0 (blue). If $\mathrm{A}=$ 1 and the output of the AND gate is 0 , the output of the NAND gate is $\mathrm{Y}=$ 1 (purple).

A	B	C	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

