
U

Ex:

Find the values of the following quantities in the above circuit.

- a) *I*
- b) R_5
- c) P_{R4} (the power dissipated by R_4)

SOL'N: a) We can find the voltage across R_2 and R_3 using a voltage loop on the left side.

$$V_{R2,3} = V_S - 6 \text{ V} = 24 \text{ V} - 6 \text{ V} = 18 \text{ V}$$

Now we use Ohm's law to find *I*.

$$I = \frac{V_{R2,3}}{R_2 + R_3} = \frac{18 \text{ V}}{10 \text{ k}\Omega + 20 \text{ k}\Omega} = 0.6 \text{ mA}$$

b) The voltage across R_2 and R_3 is the same as the voltage across R_4 and R_5 . Using Ohm's law, we can find R_5 .

$$0.9 \,\mathrm{mA} = \frac{V_{R2,3}}{R_4 + R_5} = \frac{18 \,\mathrm{V}}{2 \,\mathrm{k}\Omega + R_5}$$

or

$$2 k\Omega + R_5 = \frac{18 \text{ V}}{0.9 \text{ mA}} = 20 k\Omega$$

$$R_5 = 20 \,\mathrm{k}\Omega - 2 \,\mathrm{k}\Omega = 18 \,\mathrm{k}\Omega$$

c) The power in R_4 is given by current squared times R.

$$p_{R4} = (0.9 \,\mathrm{mA})^2 \cdot 2 \,\mathrm{k}\Omega = 1.62 \,\mathrm{mW}$$