

Ex:

Complete the truth table, below, for the logic circuit above. (Note that you must fill in some missing input values in the table, too.)

А	В	С	X	Y
0	0	0		
0		1		
	1	0		
		1		
1	0	1 0 1		
1	0	1		
1	1	0		
1	1	1		

SOL'N: First, we fill in the input values (in red), which correspond to counting up in binary. Second, we look for simple cases where the output values may be determined. If C = 0, for example, Y must be one (green values) because of the NAND gate. If the output of the NOR gate is 0, (if either B or C is a 1), the output of the NOT gate will be 1 and Y will equal C-not (purple values) and the output of the OR gate, X, will be 1 (blue values).

А	В	С	X	Y
0	0	0 1 0 1		1
0	0	1	1	0
0	1	0	1	1
0	1	1	1	0
1	0	0	1	0
1	0	1	1	0
1	0	1 0 1	1	1
1	1	1	1	0

If the output of the NOR gate is 1, (B and C = 0), then X will be 1 if and only if A is 1, (orange values), owing to the AND gate.