Matlab Primer [1] page numbers:
Conditional Control, pp. 5-2 to 5-5
Loop Control, pp. 5-5 to 5-8
Scripts and Functions, pp. 5-10 to 5-13

1. Write Matlab ${ }^{\circledR}$ code to test whether a scalar value, x, is larger than 1 , in which case the value of x is set to 1 , or whether x is less than -1 , in which case the value of x is set to -1 . (Otherwise, x is unchanged.)
2. Write a Matlab® function called $\mathrm{ll} . m$ (two letter el's meant to represent the parallel operator for resistors) with one argument, Rarray, (which is an array of resistor values). ll.m has the following specifications:
i) Its return value is called Rpar (meaning "parallel resistance").
ii) It has comments at the beginning that describe its use and purpose. These comments print out when help $l l$ is entered at the Matlab ${ }^{\circledR}$ prompt.
iii) It tests the values in Rarray to see if any of them have negative real parts. If so, it prints a warning that one or more input values has negative resistance.
iv) It computes the parallel resistance value for all the values in Rarray. Rarray is assumed to be a horizontal vector array.
3. Use additon and the function written in problem 2 in a one-line command to find the resistance of the following network of resistors:

10 ohms in parallel with a branch that consists of two 20 ohm resistors in parallel that are in series with a 5 ohm resistor
Hint: the command to find the resistance of a 72 ohm resistor in parallel with a 12 ohm resistor and 24 ohm resistor in series is as follows:
>> $\operatorname{Req}=l l([72,12+24])$
4. Write a Matlab ${ }^{\circledR}$ function called spec_plot.m that computes and plots the magnitude of the Fast Fourier Transform of its argument.
5. Write a Matlab function called label_plot.m that adds labels to a plot. Examples of the use of this function are as follows:
>> label_plot('yaxis','Volts')
>> label_plot('xaxis','time')
>> label_plot('title','Spectrum')
The first argument of the function is one of three terms, 'xaxis', 'yaxis', or 'title', and the second argument is a string containing the desired label. Use a switch statement to decide what the first argument is, and print out an error message if it doesn't match any of the three allowed choices.
6. Write a Matlab® function called z.m to calculate an impedance value. Examples of the use of this function are as follows:
>> z('R',24,0) \% Returns a value of 24 (ohms). Third argument is frequency. >> $z(' L ', 1 e-3,100) \%$ Returns a value of $j^{*} 0.001 * 100$ representing jwL. >> $z(' C ', 0.2 e-6,100) \%$ Returns a value of $1 /\left(j^{*} 0.2 u F * 100 r / s\right)$ representing $1 / j w C$.
7. Write functions called aand, and aor that each operate on a single argument that is a logical array of 1 's and 0 's. If the input array has more than one row and more than one column, aand performs an AND function on the numbers in each column and outputs a horizontal vector array. If the input array is a vector (horizontal or vertical), the aand performs an AND function on all the numbers in the array. aor behaves in a similar fashion but with OR functions.
8. Use your functions from problem 7 to compute the output of a logic circuit of four gates and two inputs. (Your choice of logic circuit.) Show your logic circuit, the input values, the Matlab ${ }^{\circledR}$ command line to compute the output value of the circuit, and the answer you found.
9. Write a function that has input arguments \times (a row vector) and n (a scalar) and outputs a matrix, xpow, of the following form:

$$
\text { xpow }=\left[\begin{array}{c}
\mathrm{x} \\
\mathrm{x} . \wedge 2 \\
\vdots \\
\mathrm{x} . \wedge \mathrm{n}
\end{array}\right]
$$

The function should test for invalid n, (i.e., $n<0$), and return an empty array if n is invalid.
10. Write a Matlab ${ }^{\circledR}$ function called phasor_polar.m that converts phasors in rectangular form $(a+b j)$ to polar form ([mag, phase]). This function returns two values, mag (magnitude) and phase (in radians). The function should accept an array of phasors and return corresponding arrays for mag and phase.

REF: [1] The Mathworks, Inc, Matlab® Primer, Natick, MA: The Mathworks, Inc, 2012.

