ECE 1250 homework #4

- 1. A Lithium-Ion battery pack is used to power an MP3 Player. When the player is switched on the battery pack voltage drops from 3.80 V to 3.75 V and the player draws 10 mA.
 - a) Draw a simple, reasonable model of the battery pack using ideal parts. Find the value of each part.
 - b) When MP3 player is used to play loud music it draws 40 mA. What is the battery pack voltage now?
 - c) The battery pack is placed in a charger. The charger supplies 4.50 V. How much current flows into the battery pack?
- 2. A rechargeable battery is shorted with an ideal ammeter. The ammeter reads 1.5 A. (By the way, this is generally a very bad thing to do and will not usually work well in practice. It is not a good idea to assume linearity all the way down to zero.) The ammeter is replaced with an ideal voltmeter. The voltmeter reads 12 V.
 - a) Draw a simple, reasonable model of the battery pack using ideal parts. Find the value of each part.
 - b) The battery is hooked to a load resistor and the terminal voltage drops to 10 V. Find the value of the load resistor.
 - c) What voltage would be required to charge this battery at 200 mA?
 - d) What is the maximum power this battery can supply to a load resistor (R_L)? You may use whatever R_L you want.
- 3. Consider the circuit at right.
 - a) What value of load resistor (R_L) would you choose if you wanted to maximize the power dissipation in that load resistor.

- b) With that load resistor (R_I) find the power dissipation in the load.
- 4. The terminal voltage of a car's battery drops from 12.5 V to 8.5 volts when starting. The starter motor draws 60 A of current.
 - a) Draw the voltage-source model (like Thevenin equivalent) of this battery. Include the values of V_s and R_s.
 - b) The lights on this car may be modeled as a 1.6 Ω resistor. What battery terminal voltage would you expect if the lights are left on without the engine running?
 - c) If the lights are left on without the engine running, how much power would be required from V_S ? (This includes the power dissipated by R_S .)
 - d) If the lights are left on without the engine running and assuming R_S represents all the losses, what is the discharge-efficiency of the battery? Note: the efficiency of a system is the power out (delivered to the lights) divided by the power in (required from V_S).
 - e) If the lights are left on without the engine running for half an hour, how much energy would be required from V_S? Include the energy dissipated by R_S.
 - f) What terminal voltage would you expect if this battery were being charged at 20 A?
 - g) How long would you have to charge this battery at the 20 A rate to replace the energy used by leaving the lights on for half an hour? Assume R_S represents all the losses.
 - h) What is the efficiency of charging the battery at this rate?

Answers

1. a)
$$3.8 \cdot V$$
 $+$ $5 \cdot \Omega$ b) $3.6 \cdot V$ c) $140 \cdot mA$
3. a) $8 \cdot \Omega$ b) $2 \cdot W$
4. a) $V_{S} = 12.5 \cdot V$ $R_{S} := 0.0667 \cdot \Omega$ b) $12.0 \cdot V$ c) $93.75 \cdot W$
d) $96 \cdot \%$ e) $169 \cdot kJ$ f) $13.83 \cdot V$ g) $11.25 \cdot min$ h) $90.4 \cdot \%$
ECE 1250 homework # 4