ECE 1250 homework \# 5

1. Find and draw the Thevenin equivalent circuit of the circuit below. The load resistor is R_{L}.

2. a) Find and draw the Thévenin equivalent of the circuit shown.
b) Find the power dissipated in the load using your Thévenin equivalent circuit. $\quad \mathrm{P}_{\mathrm{RL}}=$?

3. For the circuit shown at right, use Thevenin's theorem to find the current through the 50Ω resistor R_{4}.

4. For each of the following sinusoidal waves, find:
1) Peak-to-peak voltage or current, $V_{p p}$ or $I_{p p}$
2) Amplitude, $A,\left(V_{p}\right.$, or $\left.I_{p}\right)$
3) Period, T
4) Frequency fin cycles/sec or Hz
5) An expression for $v(t)$ or $i(t)$ in terms of $A \cos (\omega t+\phi)$
(The frequency ω is in radians/sec
the phase angle ϕ is in rad/sec or degrees)
a)

ECE 1250 homework \# 5 p. 2

5. For each of the following waveforms, find:

1) Peak-to-peak voltage or current, $V_{p p}$ or I_{pp}
2) Average, ($\mathrm{V}_{\mathrm{DC}}, \mathrm{I}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{ave}}$, or $\mathrm{I}_{\text {ave }}$)
3) Period, T
4) Frequency f in cycles $/ \mathrm{sec}$ or Hz
b)

c)

6. For problem 5 a above, write a full expression for $v(t)$ in terms of $v(t)=A \cos (\omega t+\phi)+V_{D C}$
7. What is special about a "signal".
8. Could any of the waveforms shown in problems 4,5 , and 6 be considered a "signals"? Why?

Answers

1. a) $4.091 \cdot \mathrm{~V}$
$28.4 \cdot \mathrm{k} \Omega$
2. a) $0.2 \cdot \mathrm{~V} \quad 0.1 \cdot \mathrm{~V} \quad 12 \cdot \mathrm{~ms} \quad 83.3 \cdot \mathrm{~Hz} \quad 0.1 \cdot \mathrm{~V} \cdot \cos (523.6 \cdot \mathrm{t})$
b) $24 \cdot \mathrm{~V} \quad 12 \cdot \mathrm{~V} \quad 0.018 \cdot \mathrm{~ms} \quad 55.6 \cdot \mathrm{kHz}$ $\mathrm{v}(\mathrm{t}):=12 \cdot \mathrm{~V} \cdot \cos (349100 \cdot \mathrm{t}-90 \cdot \mathrm{deg})$
c) $16 \cdot \mathrm{~mA} \quad 8 \cdot \mathrm{~mA} \quad 0.3 \cdot \mathrm{~ms} \quad 3333 \cdot \mathrm{~Hz}$ $8 \cdot \mathrm{~mA} \cdot \cos (20940 \cdot \mathrm{t}+150 \cdot \mathrm{deg})$
3. a) $16 \cdot \mathrm{~V}, 112 \cdot \Omega$
b) $480 \cdot \mathrm{~mW}$
4. $1.88 \cdot \mathrm{~mA}$
$\begin{array}{llll}\text { 5. a) } 12 \cdot \mathrm{~V} & 3 \cdot \mathrm{~V} & 6 \cdot \mathrm{~ms} & 167 \cdot \mathrm{~Hz} \\ \text { b) } 12 \cdot \mathrm{~V} & 6 \cdot \mathrm{~V} & 4 \cdot \mathrm{~ms} & 250 \cdot \mathrm{~Hz} \\ \text { c) } 250 \cdot \mathrm{~mA} & 25 \cdot \mathrm{~mA} & 0.6 \cdot \mathrm{~ms} & 1.667 \cdot \mathrm{kHz}\end{array}$
5. $\mathrm{v}(\mathrm{t}):=6 \cdot \mathrm{~V} \cdot \cos (1047 \cdot \mathrm{t}-90 \cdot \mathrm{deg})+3 \cdot \mathrm{~V}$

ECE 1250 homework \# 5 p. 2
7. It carries information
8. No, you say why

