1. A 10 -microfarad capacitor has been charged to a potential of 150 volts. A resistor of 25Ω is then connected across the capacitor through a switch. When the switch has been closed for 10 time constants the total energy dissipated by the resistor is most nearly:
(A) 1.0×10^{-7} joules
(B) 1.1×10^{-1} joules
(C) 9.0×10^{1} joules
(D) 9.0×10^{3} joules
2. a) The switch is closed at time $t=0$ and $v_{C}(0)=0 V$, find $v_{C}(t)$.
b) What is the value of the voltage across C at $\mathrm{t}:=40 \cdot \mu \mathrm{~s}$

3. The switch below has been in the upper position for a long time and is switched down at time $t=0$.

At what time is $\mathrm{v}_{\mathrm{C}}=4 \mathrm{~V}$?

4. a) What is the time constant of this circuit? Hint: Use a Thevenin equivalent circuit.
b) What will be the final value of v_{C} ?
(After the switch has been closed for a long time)

5. The switch has been closed (making contact) for a long time and is opened (as shown) at time $t=0$.
a) Find the complete expression for $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$.
b) Find v_{C} at time $t=2 \tau$.
c) At time $t=2 \tau$ the switch is closed again. Find the complete expression for $v_{C}\left(\mathrm{t}^{\prime}\right)$ where t^{\prime} starts at $\mathrm{t}=2 \tau$.

Answers 1. B 2.a) $12 \cdot \mathrm{~V}-12 \cdot \mathrm{~V} \cdot \mathrm{e}^{-\frac{\mathrm{t}}{0.16 \cdot \mathrm{~ms}}}$
b) $2.65 \cdot \mathrm{~V}$
3. $6.44 \cdot \mathrm{~ms}$
4. a) $5.87 \cdot \mathrm{~ms}$
b) $5 \cdot \mathrm{~V}$
5. a) $15.2 \cdot \mathrm{~V}-9.6 \cdot \mathrm{~V} \cdot \mathrm{e}^{-\frac{\mathrm{t}}{68.6 \cdot \mu \mathrm{~s}}}$
b) $13.9 \cdot \mathrm{~V}$
c) $5.6 \cdot \mathrm{~V}+8.3 \cdot \mathrm{~V} \cdot \mathrm{e}^{-\frac{\mathrm{t}}{25.3 \cdot \mu \mathrm{~s}}}$

