1. List the output you would get from the following Matlab ${ }^{\circledR}$ commands:
a) $\gg B=\operatorname{zeros}(4)$;
b) \gg B $=\operatorname{rand}(1,3)$;
c) \gg B $=$ ones $(5,2)$;
$\gg \operatorname{size}(\mathrm{B})$
\gg length(B)
\gg length $(\operatorname{size}(\mathrm{B}))$
2. If $a=2$, find the value of the following
a) $a($ ones $(3,4))$
b) ones(a)
c) $\operatorname{zeros}(3, a)$
3. Which of the following Matlab ${ }^{\circledR}$ commands produce valid output (without an error message)? If the output is valid, write what it is.
a) $\gg \mathrm{M}=[\operatorname{eye}(2) ; \operatorname{zeros}(1,2)]$
b) $\gg \mathrm{M}=[\operatorname{zeros}(1), \operatorname{zeros}(1,1)$; ones $(2)]$
c) $\gg \mathrm{M}=[\operatorname{zeros}(2,1)$; eye $(2,1)]$
d) $\gg \mathrm{M}=[\operatorname{zeros}(2)$, ones $(2,3)]$
4. Given $t=0: 0.1: 2^{*}$ pi, list the exact code you would enter at the command prompt in Matlab ${ }^{\circledR}$ to compute the following functions for all values of t using only one command:
a) $\sqrt{5 t}$
b) $e^{-1 / t}$
c) $\frac{3+\ln (4 t)}{7 *(3+|\tan (3 t)-2|)}$
where $\ln =\log _{e}$ and $|x|$ is absolute value
5. Given $t=0: 0.001: 0.1$, list the exact code you would enter at the command prompt in Matlab ${ }^{\circledR}$ to compute the following function for all values of t using only one command:

$$
5 e^{-t / 0.01} \cos (2 \pi \cdot 100 t)-5 e^{-t / 0.01} \sin (2 \pi \cdot 100 t)+10
$$

For the problems 6 through 8 and 10 , use the following definition of matrix A :

```
>> A = magic(3)
ans =
    8 1 6
    3 5 7
    4 9
```

6. Find the results of executing the following Matlab ${ }^{\circledR}$ commands:
a) $\gg \min (\mathrm{A}(1: 2,2: 3))^{\prime}$
b) $\gg \operatorname{sort}\left(\mathrm{A}^{\prime}\right)$
c) $\gg \operatorname{sum}\left(\left[\operatorname{sum}(\mathrm{A}(1: 2,:)) ; \operatorname{sum}\left(\mathrm{A}^{\prime}\right)\right]\right)$
7. Find the results of executing the following Matlab ${ }^{\circledR}$ commands:
a) \gg find $(A<=3)$
b) \gg A >2
c) $\gg \mathrm{A}(\mathrm{A}>2)$
d) \gg A $((\mathrm{A}>2)+1)$
8. Answer the following questions and explain your answers.
a) What property of A causes the equation $\mathrm{A}\left(\mathrm{A}^{\prime}\right)=\mathrm{A}(\mathrm{A})^{\prime}$ to be valid?
b) What is the value of $\mathrm{A}(\mathrm{A}(2,1))$?
c) What is the value of $\mathrm{A}(\mathrm{A}(2,1), \mathrm{A}(2,1))$?
d) What is the value of A after the following command: >> $\mathrm{A}(\min (\mathrm{A}))=[]$
9. Write a display command to output the following message: Matlab's transpose symbol is ' (Hermitian transpose)
10. Write down a Matlab ${ }^{\circledR}$ command to build a string that looks like another Matlab ${ }^{\circledR}$ command that is the concatenation of the following strings:
a) The following characters: $\mathrm{A}(1,:)=$ [
b) The values in $\mathrm{A}(1,:)$ separated by spaces
c) The following character:]

Note: do Not figure out what $A(1,:)$ is and use those numbers. Instead, have Matlab ${ }^{\circledR}$ convert the values in $\mathrm{A}(1,:)$ into strings using num $2 \operatorname{str}($).

REF: [1] The Mathworks, Inc, Matlab® Primer, Natick, MA: The Mathworks, Inc, 2012.

Selected answers:
1.b) ans =

3
2.a)
ans =
$\begin{array}{llll}2 & 2 & 2 & 2\end{array}$
$\begin{array}{llll}2 & 2 & 2 & 2\end{array}$
$2 \quad 2 \quad 2 \quad 2$
3.c) $\gg M=[\operatorname{zeros}(2,1)$; eye $(2,1)]$

valid
$\mathrm{M}=$
0
0
1
0

d) $\gg \mathrm{M}=[\operatorname{zeros}(2)$, ones $(2,3)]$
valid
ans $=$

0	0	1	1	1
0	0	1	1	1

4.b) $\gg \exp (-1 . / \mathrm{t})$
5. First part of solution: $5 * \exp (-\mathrm{t} / 0.01) . * \cos \left(2 * \mathrm{pi}^{*} 100^{*} \mathrm{t}\right)$...
6.c)

$$
\begin{array}{rll}
\text { ans }= & & \\
26 & 21 & 28
\end{array}
$$

7.d)

$$
\begin{array}{rrr}
\text { ans }= & & \\
3 & 8 & 3 \\
3 & 3 & 3 \\
3 & 3 & 8
\end{array}
$$

8.d)

$$
\mathrm{A}=
$$

$$
\begin{array}{llllll}
1 & 5 & 9 & 6 & 7 & 2
\end{array}
$$

