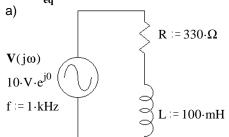
ECE 1250 homework # P1

Read about complex numbers and phasors in your textbook (sections 2.26 & 2.27, starting on p.159).

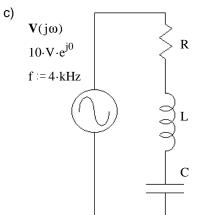
- 1. For the complex numbers $\mathbf{z_1} = -4 + 5 \cdot \mathbf{j}$ and $\mathbf{z_2} = 2 + 4 \cdot \mathbf{j}$ Determine the following
 - a) Does z₁·z₂

- b) Does

- c) Does $|z_1 + z_2|$
- equal
- 2. a) Find the phasor for $v(t) = 8.4 \cdot \cos(100 \cdot t 90 \cdot \deg)$


Express in both forms, polar and rectangular.

- b) The phasor representation of a current is $I = (5 + j \cdot 12) \cdot \mu A$ Find the time-domain representation, i(t). $f = 600 \cdot Hz$
- 3. Add or subtract the sinusoidal voltages using phasors. Draw a phasor diagram which shows all 3 phasors, and give your final answer in time domain form.
 - a) $v_1(t) = 1.5 \cdot V \cdot \cos(\omega \cdot t + 10 \cdot \deg)$
- $v_2(t) = 3.2 \cdot V \cdot \cos(\omega \cdot t + 25 \cdot \deg)$
- Find $v_3(t) = v_1(t) + v_2(t)$


- b) $v_1(t) = 1.5 \cdot V \cdot \cos(\omega \cdot t + 10 \cdot \deg)$
- $v_2(t) = 3.2 \cdot V \cdot \cos(\omega \cdot t + 25 \cdot \text{deg})$ Find $v_4(t) = v_1(t) v_2(t)$

you may add V_4 to the phasor diagram you've already drawn for part a).

- 4. Express the impedance of a 5.2mH inductor at 60 Hz in polar form.
- 5. a) A capacitor impedance has a magnitude of 240Ω at a frequency of 1.8kHz. What is the value of capacitor?
 - b) What value inductor has the same impedance magnitude at the same frequency?
 - c) Find the reactance (magnitude of the impedance with + or sign) of this capacitor and this inductor at 3.6kHz?
 - d) What would be the total impedance of this inductance and this capacitance connected in series at 2.7kHz?
- 6. Find \mathbf{Z}_{eq} in each case.

b) $R := 330 \cdot \Omega$ $V(j\omega)$ $10 \cdot V \cdot e^{j0}$ $C = 0.22 \cdot \mu F$ $f = 2 \cdot kHz$

 $i(t) = 30 \cdot mA \cdot cos(\omega \cdot t + 36 \cdot deg)$

d)

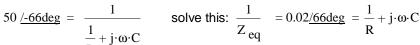
 $L = 160 \cdot mH$ $R := 4 \cdot k\Omega$

000

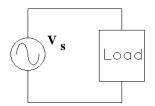
 $C := 0.03 \cdot \mu F$

 $f := 1.5 \cdot kHz$

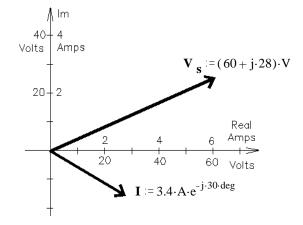
- 7. Find the current $I(j\omega)$ in each case above.
- 8. a) Find Z. Hint: Find the total impedance (R+Z) first.
 - b) Which leads, current or voltage?

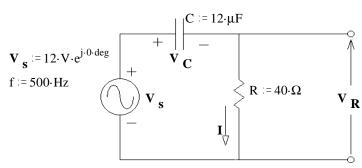

 $v_{g}(t) = 14 \cdot V \cdot \cos(\omega \cdot t + 16 \cdot \deg)$

 $R := 180 \cdot \Omega$ $\omega := 377$ $\mathbf{Z} = ?$


- c) By how much?
 - I.E. what is the phase angle between the voltage and current?

- 9. a) A resistor and a capacitor are connected in series to create an impedance of at a frequency $f = 3 \cdot kHz$ Find R and C.
- $\mathbf{Z} := 50 \cdot \Omega \cdot e^{-j \cdot 66 \cdot \text{deg}} = 50\Omega / -66^{\circ}$
 - $\mathbf{Z} := 50 \cdot \Omega \cdot e^{-j \cdot 66 \cdot \text{deg}} = 50\Omega / -66^{\circ}$ b) A resistor and a capacitor are connected in parallel to create an impedance of at a frequency $f = 3 \cdot kHz$ Find R and C.


Hint: invert
$$\mathbf{Z_{eq}}$$
, Instead of solving this: $50 \, \underline{/-66 deg} = \frac{1}{\frac{1}{\mathbf{p}} + \mathbf{j} \cdot \mathbf{\omega} \cdot \mathbf{0}}$


10. The phasor diagram at right shows the voltage and current in the circuit below

Assume the load consists of a resistor in series with a reactive component and the frequency is 60 Hz.

- a) What is the magnitude of the impedance?
- b) What is the value of the resistor?
- c) What is the reactive component (type and value)?
- 11. For the circuit shown, draw a phasor diagram showing V_S , I, V_R , and V_C . Draw the voltages to scale so that you can show that they obey KVL.

Answers

- 1. a) 28.636 = 28.636 Yes
- b) 1.432 = 1.432
- c) 9.22 not = 10.875 No
- 2. a) $8.4 / -90^{\circ} = 8.4 \cdot e^{-j \cdot 90 \cdot \deg} = -8.4j$
- b) $13 \cdot \mu A \cdot \cos(3770 \cdot t + 67.4 \cdot \deg)$
- 3. a) $v_1(t) + v_2(t) = 4.67 \cdot \cos(\omega \cdot t + 20.2 \cdot \deg) \cdot V$
 - b) $v_1(t) v_2(t) = 1.794 \cdot \cos(\omega \cdot t 142.5 \cdot \deg) \cdot V$
- 4. $1.96 \Omega / 90^{\circ}$
- 5. a) 0.368·μF
- b) 21.2·mH
- c) $-120\cdot\Omega$
- $480 \cdot \Omega$
- d) $200 \cdot \mathbf{j} \cdot \Omega$

- 6. a) $(330 + 628.3 \cdot j) \cdot \Omega = 709.7\Omega / 62.29^{\circ}$
- c) $R + \left(\omega \cdot L \frac{1}{\omega \cdot C}\right) \cdot j$
- d) $1.82k\Omega /-15.2^{o}$

- b) $(330 361.7 \cdot j) \cdot \Omega = 489.6 \Omega / -47.63^{\circ}$ 7. a) $(6.6 - 12.5 \cdot j) \cdot mA = 14.1 mA / -62.29^{\circ}$
- b) $(13.8 + 15.1 \cdot j) \cdot mA = 20.4 mA / 47.63^{\circ}$

11.

- d) 4.4mA /15.2°
- 8. a) 259 160·i b) The current leads the voltage c) 20°
- 9. a) $20.34 \cdot \Omega$ 1.16·µF
- b) $123 \cdot \Omega$
- 0.969·uF

- 10. a) $19.5 \cdot \Omega$
- b) $11.2 \cdot \Omega$
- c) inductor 42.3·mH

Real I = 0.203 + 0.138i · A Amps C = 3.665 - 5.527j ·V