ECE 1250 Lecture 1 Electrical \& Computer Engineering Design

Lab section issues \& waiting lists
Talk about the syllabus.
Problem sessions \qquad
HW \# 1 due Friday by 5:00 pm in a yet-to-be-determined locker
WARNING: HWs are often due on non-class days.

How to survive

1. Easiest way to get through school is to actually learn and try to retain what you are asked to learn. Even if you're too busy, don't lose your good study practices.
What you "just get by" on today will cost you later.
Don't fall for the "l'll never need to know this" trap. Sure, much of what you learn you may not use, but you will need some of it, some day. Y you will need, either in the current class, or future classes, or maybe sometime in your career. Don't waste time second-guessing the curriculum, It'll still be easier to just do your best to learn and retain.
2. Don't fall for the "traps".

Homework answers, Problem session solutions, Posted solutions, Lecture notes.
3. KEEP UP! Use calendar.
4. Make "permanent notes" after you've finished a subject or section and feel that you know it.

Lecture

Basic electrical quantities	Letter used	Units	Fluid Analogy
Charge, actually moves	Q	Coulomb (C)	m^{3}
Current, like fluid flow	$\mathrm{I}=\frac{\mathrm{Q}}{\mathrm{sec}}$	Amp ($\mathrm{A}, \mathrm{mA}, \mu \mathrm{A}, \ldots$)	$\frac{\mathrm{m}^{3}}{\mathrm{sec}}$
Voltage, like pressure	V or E	volt ($\mathrm{V}, \mathrm{mV}, \mathrm{kV}, \ldots$)	$\mathrm{Pa}=1 \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
Resistance \quad -	$\mathrm{R}=\frac{\mathrm{V}}{\mathrm{I}}$	Ohm ($\Omega, \mathrm{k} \Omega, \mathrm{M} \Omega, \ldots)$	
Conductance \checkmark -	$\mathrm{G}=\frac{1}{\mathrm{R}}$	Siemens (S, also mho, old unit)	
Power $=$ energy/time	$\mathrm{P}=\mathrm{V} \cdot \mathrm{I}$	Watt (W, mW, kW, MW, ...)	W

Symbols (ideal)

KCL, Kirchhoff's Current Law
$\mathrm{I}_{\text {in }}=\mathrm{I}_{\text {out }}$ of any point, part, or section

$$
\mathrm{I}_{1}+\mathrm{I}_{2}=\mathrm{I}_{3}+\mathrm{I}_{4}
$$

Battery also obeys KCL
Conductors
Nonconductors
Massless fluid in our analogy
No gravity effects
No Bernoulli effects
Reasonable because:

$$
\begin{array}{ll}
\text { Electron mass is } & 9.11 \cdot 10^{-31} \cdot \mathrm{~kg} \\
\text { Election mass is } & -1.6 \cdot 10^{-16} \cdot \mathrm{C}
\end{array}
$$

Negative charge flows in negative direction
No accumulation of charge anywhere,
so it must circulate around
Leads to the concept of a "Circuit"

A circuit
Voltage is like pressure
KVL, Kirchhoff's Voltage Law

around any loop

ECE 1250 Lecture 1 notes p2

ECE 1250 Lecture 1 \& 2 notes p3

First Class period usually ends here, pick up in next lecture
Handouts \& Copy Center Packets

Labs Start -- Bring Notebook

Ideal elements

Batteries or voltage sources always the same voltage regardless of current

Wires have no resistance

Resistors

Basic electrical quantities

Resistance	$\mathrm{R}=\frac{\mathrm{V}}{\mathrm{I}}$	$\mathrm{Ohm}(\Omega, \mathrm{k} \Omega, \mathrm{M} \Omega, \ldots)$
Conductance	$\mathrm{G}=\frac{1}{\mathrm{R}}$	Siemens (S, also mho, old unit)
Power energy/time	$\mathrm{P}=\mathrm{V} \cdot \mathrm{I}$	Watt $(\mathrm{W}, \mathrm{mW}, \mathrm{kW}, \mathrm{MW}, \ldots)$

Resistors

Ohm's law	$I=\frac{V}{R}$
$\mathrm{~V}=\mathrm{I} \cdot \mathrm{R}$	V

ideal

Resistors

series:

$$
R_{e q}=R_{1}+R_{2}+R_{3}^{R_{1}}+\ldots
$$

Exactly the same
current through each
resistor

Voltage divider:

$\mathrm{V}_{\mathrm{Rn}}=\mathrm{V}_{\text {total }} \cdot \frac{\mathrm{R}_{\mathrm{n}}}{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}}+\ldots$
parallel: $\mathrm{R}_{\mathrm{eq}}=\frac{1}{\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}}+\ldots . \quad \begin{aligned} & \text { Exactly the same }\end{aligned}$ voltage across each resistor
current divider:

$$
\begin{aligned}
& \text { divider: } \\
& \mathrm{I}_{\mathrm{Rn}}=\mathrm{I}_{\text {total }} \frac{\frac{1}{\mathrm{R}_{\mathrm{n}}}}{\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}+\ldots}
\end{aligned}
$$

Power $\quad P_{\text {IN }}=P_{\text {OUT }}$ for resistor circuits

Unit
Coulomb (C)
Amp (A, mA, $\mu \mathrm{A}, \ldots$)
volt ($\mathrm{V}, \mathrm{mV}, \mathrm{kV}, \ldots$)
$\operatorname{Ohm}(\Omega, \mathrm{k} \Omega, \mathrm{M} \Omega, \ldots)$
Siemens (S, old unit mho)
Watt (W, mW, kW, MW,...)
KCL, Kirchhoff's Current Law
$\mathrm{I}_{\text {in }}=\mathrm{I}_{\text {out }}$ of any point, part, or section

KVL, Kirchhoff's Voltage Law

Node $=$ all points connected by wire, all at same voltage (potential)
Ohm's law (resistors)
$+\square \quad I=\frac{V}{R}$
$\mathrm{V}=\mathrm{I} \cdot \mathrm{R}$

$$
-R \quad R=\frac{V}{I}
$$

Power $\mathrm{P}_{\text {IN }}=\mathrm{P}_{\text {OUT }}$ for resistor circuits

 $P=V \cdot I$ for everything $=I^{2} \cdot R=\frac{V^{2}}{R}$ for resistors

Resistors

series: $\quad R_{e q}=R_{1}+R_{2}+R_{3}+\ldots$

Exactly the same current through each resistor

