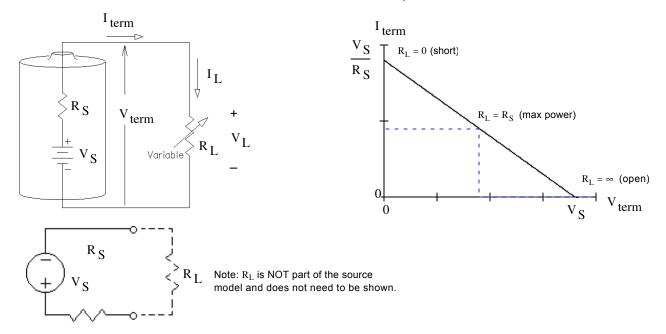
ECE 1250 Lecture notes, Source models & Thévenin Equivalent Circuits

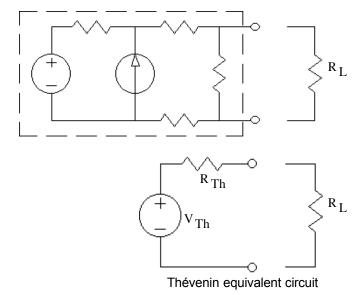
Model of a Real Source

Real sources are not ideal, but we will model them with two ideal components.



Thévevin Equivalent Circuit

The same model can be used for any combination of sources and resistors.



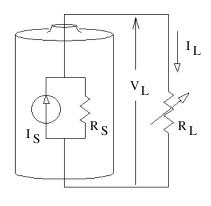
Thévenin equivalent

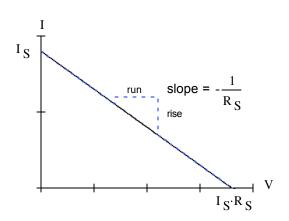
To calculate a circuit's Thévenin equivalent:

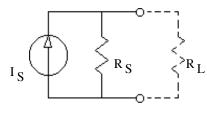
- 1) Remove the load and calculate the open-circuit voltage where the load used to be. This is the Thévenin voltage (V_{Th}) .
- 2) Zero all the sources.

(To zero a voltage source, replace it with a short. To zero a current source, replace it with an open.)

- 3) Compute the total resistance between the load terminals. (DO NOT include the load in this resistance.) This is the Thévenin source resistance R_{Th}).
- 4) Draw the Thévenin equivalent circuit and add your values.







Note: $R_{\rm L}$ is not part of the Norton equivalent and does not need to be shown.

Norton equivalent

To calculate a circuit's Norton equivalent:

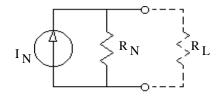
1) Replace the load with a short (a wire) and calculate the short-circuit current in this wire. This is the Norton current (I_N) . Remove the short.

2) Zero all the sources.

(To zero a voltage source, replace it with a short. To zero a current source, replace it with an open.)

3) Compute the total resistance between the load terminals. (DO NOT include the load in this resistance.) This is the Norton source resistance (R_N). (Exactly the same as the Thévenin source resistance (R_{Th})).

4) Draw the Norton equivalent circuit and add your values.



OR (the more common way)...

1) Find the Thévenin equivalent circuit.

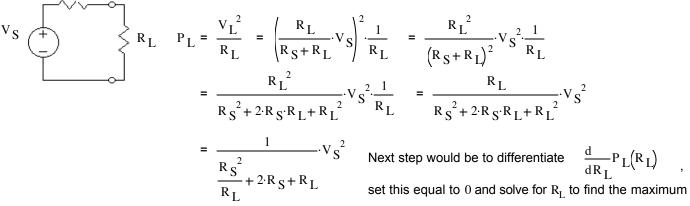
2) Convert to Norton circuit, then >>>

 $R_N = R_{Th}$

d $I_N = \frac{V_{Th}}{R_{Th}}$ R_{Th}

Maximum power transfer

If I wanted to maximize the power dissipated by the load, what $R_{\rm L}$ would I choose?



Unfortunately this function is a pain to differentiate. What if we just differentiate the denominator and find its minimum, wouldn't that work just as well?

set this equal to 0 and solve for R_L to find the maxim $R_R c^2$

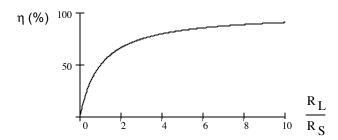
$$\frac{d}{dR_{L}} \left(\frac{R_{S}^{2}}{R_{L}} + 2 \cdot R_{S} + R_{L} \right) = -1 \cdot \frac{R_{S}^{2}}{R_{L}^{2}} + 0 + 1 = 0$$

Maximum power transfer happens when: $R_L = R_S$ Just what we saw in Example 1

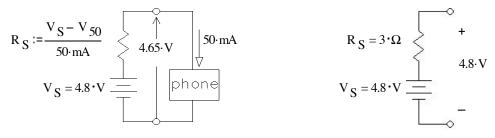
This is rarely important in power circuitry, where there should be plenty of power and $R_{\rm S}$ should be small. It is much more likely to be important in signal circuitry where the voltages can be very small and the source resistance may be significant -- say a microphone or a radio antenna.

What about efficiency?

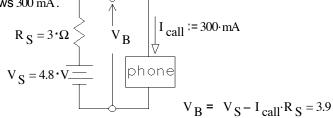
$$\frac{P_L(R_L)}{P_S(R_L)} = \frac{I^2 \cdot R_L}{I^2 \cdot (R_S + R_L)} = \frac{R_L}{R_S + R_L}$$



- **Ex 1** A NiCad Battery pack is used to power a cell phone. When the phone is switched on the battery pack voltage drops from 4.80 V to 4.65 V and the cell phone draws 50 mA. $V_S := 4.80 \cdot \text{V}$ $V_{50} := 4.65 \cdot \text{V}$
 - a) Draw a simple, reasonable model of the battery pack using ideal parts. Find the value of each part.



b) The cell phone is used to make a call. Now it draws 300 mA. What is the battery pack voltage now?



c) The battery pack is placed in a charger. The charger supplies 5.10 V. How much current flows into the battery pack?

$$R_{S} = 3 \cdot \Omega$$

$$V_{chg} := 5.10 \cdot V$$

$$V_{S} = 4.8 \cdot V$$

$$I_{chg} = \frac{V_{chg} - V_{S}}{R_{S}} = 100 \cdot mA$$

d) How much energy does the charger supply in 5 minutes?

$$5.10 \cdot \text{V} \cdot 100 \cdot \text{mA} \cdot 5 \cdot \text{min} \cdot \frac{60 \cdot \text{sec}}{1 \cdot \text{min}} = 153 \cdot \text{joule}$$

e) Is all this energy stored in the battery?

No, some is wasted as heat in $R_{\rm S}$ and more may be lost in the electrical-to-chemical transition.

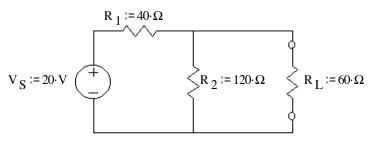
f) This battery pack is hooked to a load resistor. What is the maximum power that this battery pack could supply to the load resistor, and what would be the value load resistor?

$$V_{S} = 4.8 \cdot V \xrightarrow{+} \begin{array}{c} R_{S} = 3 \cdot \Omega \\ \\ R_{L} := R_{S} \\ \\ R_{L} = 3 \cdot \Omega \end{array} \qquad V_{L} := V_{S} \cdot \frac{R_{L}}{R_{S} + R_{L}} \qquad V_{L} = 2.4 \cdot V \\ \\ \text{duh..} \end{array}$$

$$P_{L} = \frac{V_{L}^{2}}{R_{L}} = 1.92 \cdot W$$

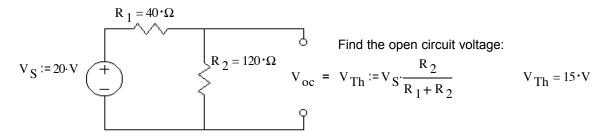
ECE 1250 Lecture 5 & 6 notes p5 **Thévevin & Norton Examples**

Ex 2 Find the Thévenin equivalent:



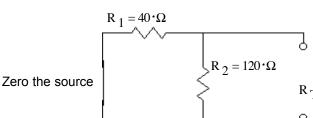
To calculate a circuit's Thévenin equivalent:

1) Remove the load and calculate the open-circuit voltage where the load used to be. This is the Thévenin voltage (V_{Th}) .



2) Zero all the sources.

(To zero a voltage source, replace it with a short. To zero a current source, replace it with an open.)



3) Compute the total resistance between the load terminals. (DO NOT include the load in this resistance.) This is the Thévenin source resistance (R_{Th}).

Find the Thevenin resistance:

$$R_{Th} := \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}}$$

$$R_{Th} = 30 \cdot \Omega$$

4) Draw the Thévenin equivalent circuit and add your values.

$$R_{Th} = 30 \cdot \Omega$$

If the load were reconnected:

$$V_{Th} = 15 \cdot V$$

$$V_{Th} = 15 \cdot V$$

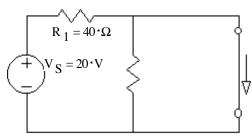
$$V_{L} = V_{Th} \cdot \frac{R_{L}}{R_{Th} + R_{L}} = 10 \cdot V$$

$$I_{L} = \frac{V_{Th}}{R_{Th} + R_{L}} = 166.7 \cdot \text{mA}$$

$$P_{L} = 10 \cdot V \cdot 166.7 \cdot \text{mA} = 1.667 \cdot W$$

Norton equivalent circuit:

b) Find the Norton equivalent circuit:



$$I_N := \frac{V_S}{R_1}$$

$$I_{N} := \frac{V_{Th}}{R_{Th}}$$

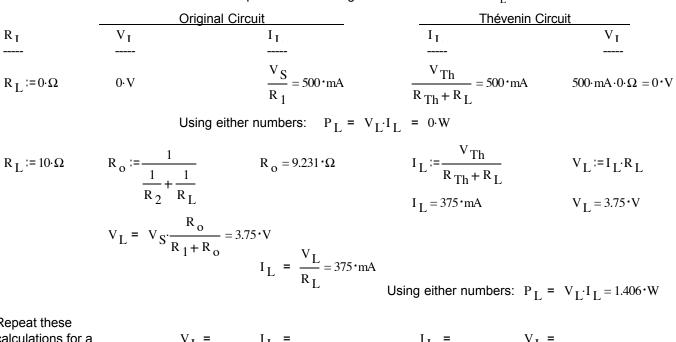
$$I_{N} = 500 \cdot mA$$

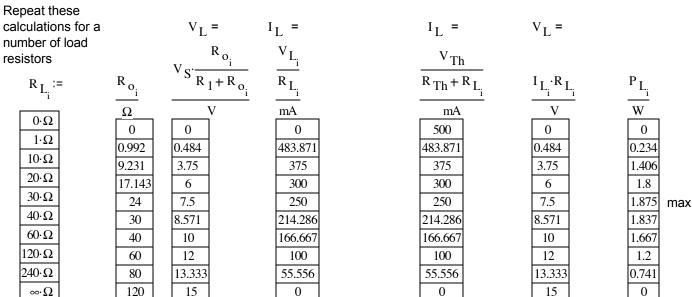
$$R_{N} := R$$

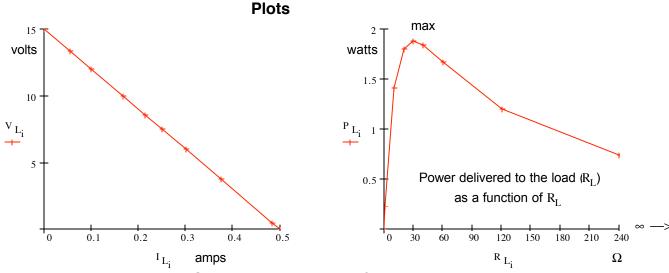
$$R_{N} := R$$

ECE 1250 Lecture 5 & 6 notes p5

c) Show that the Thévenin circuit is indeed equivalent to the original at several values of R_I.



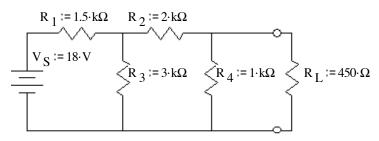




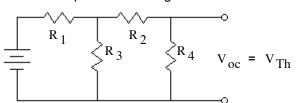
ECE 1250 Lecture 5 & 6 notes p6

Ex 3 a) Find and draw the Thévenin equivalent circuit.

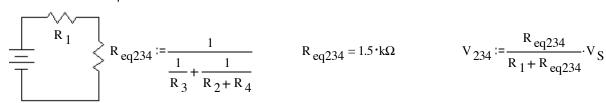
ECE 2210 Lecture 5 & 6 notes p7



Find the open circuit voltage:



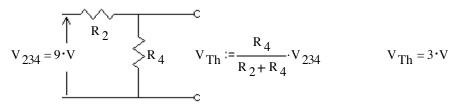
First do some simplification:



$$R_{eq234} = 1.5 \cdot k\Omega$$

$$V_{234} := \frac{R_{eq234}}{R_1 + R_{eq234}} \cdot V_S$$

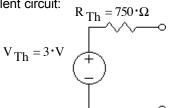
Divide this voltage between R_2 and R_4 :



Find the Thévenin resistance:



Thévenin equivalent circuit:



If the load were reconnected:

$$V_{L} := V_{Th} \cdot \frac{R_{L}}{R_{Th} + R_{L}}$$

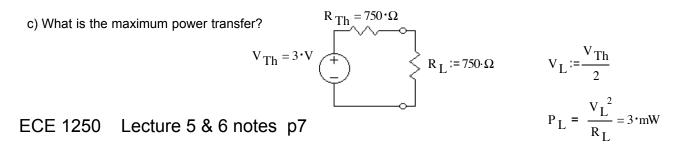
$$V_{L} = 1.125 \cdot V$$

$$I_{L} := \frac{V_{Th}}{R_{Th} + R_{L}}$$

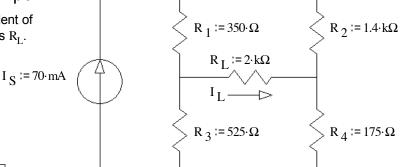
$$I_{L} = 2.5 \cdot mA$$

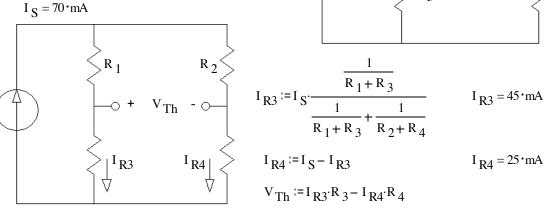
b) What value of R_L would result in the maximum power delivery to R_L?

For maximum power transfer $R_L = R_{Th} = 750 \cdot \Omega$



Ex 3 a) Find and draw the Thévenin equivalent of the circuit shown. The load resistor is R_I.





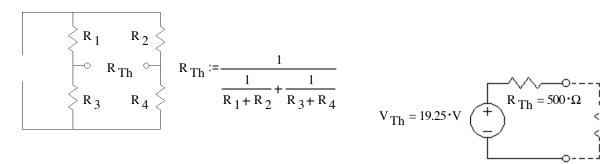
$$I_{R3} := I_{S} \cdot \frac{\frac{1}{R_{1} + R_{3}}}{\frac{1}{R_{1} + R_{3}} + \frac{1}{R_{2} + R_{4}}}$$

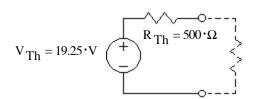
$$I_{R3} = 45 \cdot mA$$

$$^{1}R4 = ^{1}S - ^{1}R3$$

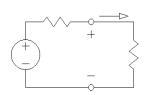
$$I_{R4} = 25 \cdot mA$$

$$V_{Th} := I_{R3} \cdot R_3 - I_{R4} \cdot R_4$$





b) Find the load current using your Thévenin equivalent circuit.



$$I_L := \frac{V_{Th}}{R_L + R_{Th}} \qquad I_L = 7.7 \cdot mA$$

$$I_L = 7.7 \cdot mA$$

b) Find and draw the Norton equivalent circuit.

$$I_N := \frac{V_{Th}}{R_{Th}}$$
 $I_N = 38.5 \cdot \text{mA}$ $R_N = 500 \cdot \Omega$

c) Use your Norton equivalent circuit to find the current through the load.

