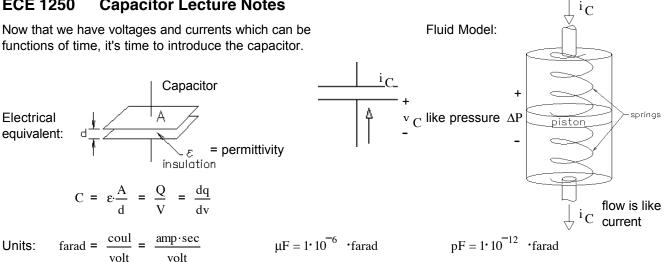
ECE 1250 Capacitor Lecture Notes



For drawings of capacitors and info about tolerances, see Ch.3 of textbook.

 $v_C = \frac{1}{C} \cdot \begin{bmatrix} i_C dt \\ i_C dt \end{bmatrix} = \frac{1}{C}$ (the accumulation of current) **Basic equations** $C = \frac{Q}{V}$ you should know: , initial voltage Or... $v_{C} = \frac{1}{C} \int_{0}^{t} i_{C} dt + v_{C}(0)$ $i_C = C \cdot \frac{d}{v_C} v_C$ Or... $\Delta v_{C} = \frac{1}{C} \int_{t}^{t} \frac{1}{C} dt$ Energy stored in electric field: $W_C = \frac{1}{2} \cdot C \cdot V_C^2$

Capacitor voltage cannot change instantaneously

parallel:
$$C_{eq} = C_1 + C_2 + C_3 + \dots$$

Capacitors are the only "backwards" components.

eries:
$$C_{eq} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}} + \dots$$

$$i_{C}(t) = I_{p} \cdot \cos(\omega t)$$

$$v_{C}(t) = \frac{1}{C} \int i_{C} dt = \frac{1}{C} \cdot \frac{1}{\omega} \cdot I_{p} \cdot \sin(\omega t) = \frac{1}{C} \cdot \frac{1}{\omega} \cdot I_{p} \cdot \cos(\omega t - 90 \cdot \deg)$$
indefinite integral $\sqrt{-V_{p}} - \frac{1}{\sqrt{-V_{p}}}$
Voltage "lags" current, makes sense, current has to flow in first to charge capacitor.

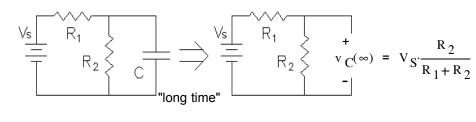
Steady-state or Final conditions

Sinusoids

If a circuit has been connected for "a long time", then it has reached a steady state condition. that means the currents and voltages are no longer changing.

$$\frac{d}{dt}v_{C} = 0 \qquad i_{C} = C \cdot \frac{d}{dt}v_{C} = 0$$

no current means it looks like an open



ECE 1250

Capacitor Lecture Notes p1

sin(ωt)

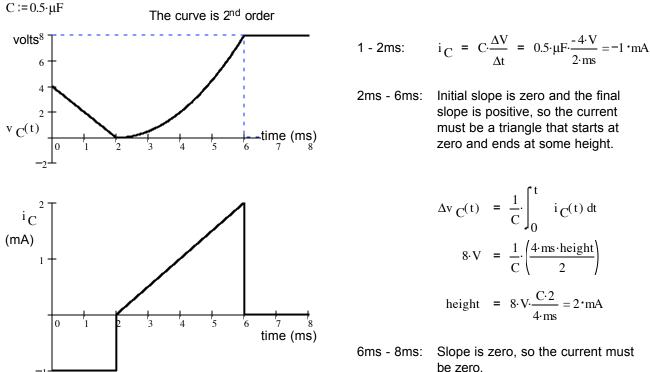
time

ECE 1250 Capacitor Lecture Notes p2

Example

The voltage across a $0.5 \ \mu F$ capacitor is shown below. Make an accurate drawing of the capacitor current. Label the y-axis of your graph (I've already done the time-axis).

The accuracy of your plot at 0, 2, 6, and 8 ms is important, so calculate those values and plot or label them carefully. Between those points your plot must simply be the correct shape.



RC first-order transient circuits

For all first order transients: $v_X(t) = v_X(\infty) + (v_X(0) - v_X(\infty)) \cdot e^{-\frac{\tau}{\tau}}$ $i_X(t) = i_X(\infty) + (i_X(0) - i_X(\infty)) \cdot e^{-\frac{\tau}{\tau}}$

Find the initial condition $v_{\mathbf{X}}(0)$ or $i_{\mathbf{X}}(0)$

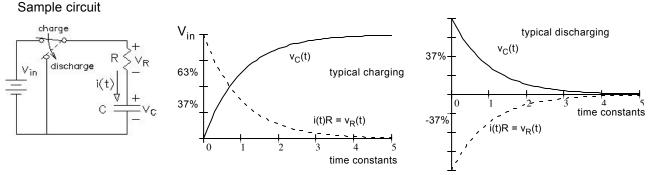
Find the capacitor voltage just before time t = 0, $v_C(0)$. This will be the same just after time t = 0, $v_C(0+)$. The capacitor voltage cannot change instantly. (If the initial condition is zero then the capacitor will look like a short just after t = 0.) Use normal circuit analysis to find your desired variable: $v_X(0)$ or $i_X(0)$

Find the final condition ("steady-state" or "forced" solution)

Capacitors are opens. Solve by DC analysis to find $v_X(\infty)$ or $i_X(\infty)$

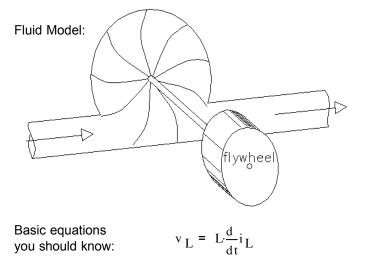
RC Time constant =
$$\tau = R_{Th} \cdot C$$

Curves



ECE 1250 Capacitor Lecture Notes p2

ECE 1250 Inductor Lecture Notes



Electrical
equivalent:
$$i \downarrow$$

 $L = \mu_0 \cdot N^2 \cdot K$

 $\boldsymbol{\mu}$ is the permeability of the inductor core K is a constant which depends on the inductor geometry N is the number of turns of wire

$$i_{L} = \frac{1}{L} \int_{-\infty}^{t} v_{L} dt$$
Or...
$$i_{L} = \frac{1}{L} \int_{0}^{t} v_{L} dt + i_{L}(0)$$
Or...
$$\Delta i_{L} = \frac{1}{L} \int_{t}^{t} v_{L} dt$$

Energy stored in electric field: W_L = $\frac{1}{2}$ L·I_L²

Inductor current cannot change instantaneously

Units: henry = $\frac{\text{volt} \cdot \text{sec}}{\text{amp}}$ mH = 10^{-3} ·H μ H = 10^{-6} ·H

series:

 $v_{I}(t)$

 $L_{eq} = L_1 + L_2 + L_3 + \dots$

Sinusoids $i_{L}(t) = I_{p} \cdot \cos(\omega t)$

=
$$L \frac{d}{dt} i_L$$
 = $L \cdot \omega \left(-I_p \cdot \sin(\omega t)\right)$ = $L \cdot \omega I_p \cdot \cos(\omega t + 90 \cdot deg)$
 $\frac{V_p}{V_p}$ Voltage "leads" current, makes sense, voltage has to present to

parallel:

comes first.

