ECE 1250 Capacitor Lecture Notes

Now that we have voltages and currents which can be
Fluid Model: functions of time, it's time to introduce the capacitor.
Electrical
equivalent:
Electrical
equivalent:

$$
\mathrm{C}=\varepsilon \cdot \frac{\mathrm{A}}{\mathrm{~d}}=\frac{\mathrm{Q}}{\mathrm{~V}}=\frac{\mathrm{dq}}{\mathrm{dv}}
$$

$\forall{ }^{\mathrm{i}} \mathrm{C} \quad \begin{aligned} & \text { flow is like } \\ & \text { current }\end{aligned}$

Units: \quad farad $=\frac{\text { coul }}{\text { volt }}=\frac{\mathrm{amp} \cdot \mathrm{sec}}{\text { volt }}$

$$
\mu \mathrm{F}=1 \cdot 10^{-6} \cdot \text { farad } \quad \mathrm{pF}=1 \cdot 10^{-12} \cdot \text { farad }
$$

For drawings of capacitors and info about tolerances, see Ch. 3 of textbook.

Basic equations

you should know:

$$
\begin{aligned}
& C=\frac{Q}{V} \\
&{ }^{i} C=C \cdot \frac{d}{d t} v \\
& C
\end{aligned}
$$

$$
{ }^{\mathrm{v}} \mathrm{C}=\frac{1}{\mathrm{C}} \cdot \int_{-\infty}^{\mathrm{t}} \quad{ }_{\mathrm{i}} \mathrm{C} \mathrm{dt}=\frac{1}{\mathrm{C}} \text { (the accumulation of current) }
$$

Energy stored in electric field: $\mathrm{W}_{\mathrm{C}}=\frac{1}{2} \cdot \mathrm{C} \cdot \mathrm{V}_{\mathrm{C}}{ }^{2}$

$$
\begin{aligned}
& \text { Or... } \quad{ }^{\mathrm{v}}{ }_{\mathrm{C}}=\frac{1}{\mathrm{C}} \cdot \int_{0}^{\mathrm{t}}{ }^{\mathrm{i}} \mathrm{C}^{\mathrm{dt}}+\mathrm{v}_{\mathrm{C}}(0) \\
& \text { Or... } \\
& { }^{\Delta v^{2}}{ }_{\mathrm{C}}=\frac{1}{\mathrm{C}} \cdot \int_{\mathrm{t}_{1}}^{\mathrm{t}}{ }^{2}{ }_{\mathrm{C}} \mathrm{dt}
\end{aligned}
$$

/ initial voltage

Capacitor voltage cannot change instantaneously
parallel:

series: $\quad C_{e q}=\frac{1}{\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}+\frac{1}{\mathrm{C}_{3}}}+\ldots$
Capacitors are the only "backwards" components.

Sinusoids

Steady-state or Final conditions

If a circuit has been connected for "a long time", then it has reached a steady state condition. that means the currents and voltages are no longer changing.
$\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{v}_{\mathrm{C}}=0$

$$
\begin{aligned}
& { }^{\mathrm{i}} \mathrm{C}^{(\mathrm{t})}=\mathrm{I}_{\mathrm{p}} \cdot \cos (\omega \cdot \mathrm{t}) \\
& { }^{\mathrm{v}} \mathrm{C}^{(\mathrm{t})}=\frac{1}{\mathrm{C}} \cdot \int{ }^{\mathrm{i}} \mathrm{C} \text { dt }=\frac{1}{\mathrm{C}} \cdot \frac{1}{\omega} \cdot \mathrm{I}_{\mathrm{p}} \cdot \sin (\omega \cdot \mathrm{t}) \quad=\frac{1}{\mathrm{C}} \cdot \frac{1}{\omega} \cdot \mathrm{I}_{\mathrm{p}} \cdot \cos (\omega \cdot \mathrm{t}-90 \cdot \mathrm{deg}) \\
& \text { indefinite integral } \\
& \text { Voltage "lags" current, } \\
& \text { makes sense, current } \\
& \text { has to flow in first to } \\
& \text { charge capacitor. }
\end{aligned}
$$

Example

The voltage across a $0.5 \mu \mathrm{~F}$ capacitor is shown below. Make an accurate drawing of the capacitor current. Label the y-axis of your graph (I've already done the time-axis).

The accuracy of your plot at $0,2,6$, and 8 ms is important, so calculate those values and plot or label them carefully. Between those points your plot must simply be the correct shape.

$$
\mathrm{C}:=0.5 \cdot \mu \mathrm{~F}
$$

The curve is $2^{\text {nd }}$ order

1-2ms: $\quad \mathrm{i}_{\mathrm{C}}=\mathrm{C} \cdot \frac{\Delta \mathrm{V}}{\Delta \mathrm{t}}=0.5 \cdot \mu \mathrm{~F} \cdot \frac{-4 \cdot \mathrm{~V}}{2 \cdot \mathrm{~ms}}=-1 \cdot \mathrm{~mA}$
$2 \mathrm{~ms}-6 \mathrm{~ms}$: Initial slope is zero and the final slope is positive, so the current must be a triangle that starts at zero and ends at some height.

$$
\begin{aligned}
\Delta \mathrm{v} \mathrm{C}^{(\mathrm{t})} & =\frac{1}{\mathrm{C}} \cdot \int_{0}^{\mathrm{t}}{ }^{\mathrm{i}} \mathrm{C}^{(\mathrm{t}) \mathrm{dt}} \\
8 \cdot \mathrm{~V} & =\frac{1}{\mathrm{C}} \cdot\left(\frac{4 \cdot \mathrm{~ms} \cdot \mathrm{height}}{2}\right) \\
\text { height } & =8 \cdot \mathrm{~V} \cdot \frac{\mathrm{C} \cdot 2}{4 \cdot \mathrm{~ms}}=2 \cdot \mathrm{~mA}
\end{aligned}
$$

$6 \mathrm{~ms}-8 \mathrm{~ms}$: Slope is zero, so the current must be zero.

RC first-order transient circuits

For all first order transients: ${ }^{\mathrm{v}} X^{(t)}={ }^{\mathrm{v}} X^{(\infty)}+\left(\mathrm{v} X^{(0)-\mathrm{v}} X^{(\infty)}\right) \cdot \mathrm{e}^{-\frac{\mathrm{t}}{\tau}} \quad{ }^{\mathrm{i}} X^{(t)}={ }^{\mathrm{i}} X^{(\infty)}+\left(\mathrm{i} X^{(0)-\mathrm{i}} X^{(\infty)}\right) \cdot \mathrm{e}^{-\frac{\mathrm{t}}{\tau}}$
Find the initial condition ${ }^{\mathrm{v}} \mathrm{X}^{(0)}$ or $\mathrm{i}^{(0)}$
Find the capacitor voltage just before time $t=0, v_{C}(0-)$. This will be the same just after timet $=0, v_{C}(0+)$. The capacitor voltage cannot change instantly. (If the initial condition is zero then the capacitor will look like a short just after $t=0$.) Use normal circuit analysis to find your desired variable: ${ }^{v} X^{(0)}$ or ${ }^{i} X^{(0)}$

Find the final condition ("steady-state" or "forced" solution)
Capacitors are opens. Solve by DC analysis to find ${ }^{v} X^{(\infty)}$ or ${ }^{i} X^{(\infty)}$
RC Time constant $=\tau=\mathrm{R}_{\mathrm{Th}} \cdot \mathrm{C}$

Curves

Sample circuit

Basic equations you should know:

$$
\mathrm{v}_{\mathrm{L}}=\mathrm{L} \cdot \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{i} \mathrm{~L}
$$

$$
\mathrm{L}=\mu_{\mathrm{o}} \cdot \mathrm{~N}^{2} \cdot \mathrm{~K}
$$

Electrical equivalent:

μ is the permeability of the inductor core
K is a constant which depends on the inductor geometry N is the number of turns of wire

$$
\begin{aligned}
& \mathrm{i}_{\mathrm{L}}=\frac{1}{\mathrm{~L}} \cdot \int_{-\infty}^{\mathrm{t}}{ }^{\mathrm{v}} \mathrm{~L}_{\mathrm{Lt}} \\
& \text { Or... } \mathrm{i}_{\mathrm{L}}=\frac{1}{\mathrm{~L}} \cdot \int_{0}^{\mathrm{t}}{ }^{\mathrm{v}}{ }_{\mathrm{L}} \mathrm{dt}+\mathrm{i}_{\mathrm{L}}(0) \\
& \text { Or... initial current } \\
& \text { Ori }=\frac{1}{\mathrm{~L}} \cdot \int_{\mathrm{t}_{1}}^{\mathrm{t}}{ }_{2}{ }_{\mathrm{v}}^{\mathrm{L}} \text { dt }
\end{aligned}
$$

Energy stored in electric field: $\mathrm{W}_{\mathrm{L}}=\frac{1}{2} \cdot \mathrm{~L} \cdot \mathrm{I}_{\mathrm{L}}{ }^{2}$
Inductor current cannot change instantaneously
Units: henry $=\frac{\text { volt•sec }}{\mathrm{amp}}$

$$
\mathrm{mH}=10^{-3} \cdot \mathrm{H} \quad \mu \mathrm{H}=10^{-6} \cdot \mathrm{H}
$$

series:

$$
\mathrm{L}_{\mathrm{eq}}=\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{3}+\ldots
$$

parallel:

$$
\begin{aligned}
\mathrm{L}_{\mathrm{eq}} & =\frac{1}{\frac{1}{\mathrm{~L}_{1}}+\frac{1}{\mathrm{~L}_{2}}+\frac{1}{\mathrm{~L}_{3}}}+\ldots \\
&
\end{aligned}
$$

Sinusoids $\quad i_{L}(t)=I_{p} \cdot \cos (\omega \cdot t)$

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{L}}(\mathrm{t})=\mathrm{L} \cdot \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{i} \mathrm{~L}= \mathrm{L} \cdot \omega \cdot\left(-\mathrm{I}_{\mathrm{p}} \cdot \sin (\omega \cdot \mathrm{t})\right) \quad= \\
& \quad-\mathrm{V}_{\mathrm{p}}^{-} \quad \\
& \quad-\omega \cdot \mathrm{I}_{\mathrm{p}} \cdot \cos (\omega \cdot \mathrm{t}+90 \cdot \mathrm{deg}) \\
& \begin{array}{l}
\text { Voltage "leads" current, makes } \\
\text { sense, voltage has to present to } \\
\text { make current change, so voltage }
\end{array} \\
& \\
& \\
& \text { comes first. }
\end{aligned}
$$

