Ex:

Find the values of the following quantities of the above circuit.
a) $\quad R_{5}$
b) $\quad V_{S}$
c) $\quad \mathrm{P}_{\mathrm{S}}$ (the power delivered by the V_{S} source)
sol'n a) We first redraw the circuit to show currents as arrows.

Q. How do we know the direction of the current? A. Since V_{s} is the only source, current will flow out the t terminal and in the - terminal. The current through R_{1} and R_{2} must flow down, since V_{S} is across them with + at the top. Since R_{4} and R_{5} are in parallel, with the same V across them, the current in both is in the same direction, and this must be the direction of 18 mA .

Current must flow to the right in R_{3}, since R_{3} is connected to the + of V_{5} on the left side.

Now we use Ohm's law and Kirchhoff's laws to deduce other quantities.

At the top right node, 18 mA flows in, so 18 mA must flow out. Thus, we have 6 mA flowing down through R_{4}.

$$
i_{R 4}=6 \mathrm{~mA}
$$

By Ohm's law, the voltage drop across R_{4} is $V_{R 4}=i_{R_{4}} R_{4}=6 m A \cdot 1.2 \mathrm{k} \Omega=7.2 \mathrm{~V}$.

Since R_{4} is in parallel with R_{5}, we also have 7.2 V across R_{5}. We find R_{5} using Ohm's law:

$$
R_{5}=\frac{7.2 \mathrm{~V}}{12 \mathrm{~m} A}=600 \Omega \text { or } 0.6 \mathrm{k} \Omega
$$

b) Now we can use Ohm's law to find the voltage across R_{3}, and then we can use a v-loop to find V_{s}. (outside v-loop, that is.)

$$
\begin{aligned}
& V_{R 3}=18 \mathrm{~mA} \cdot 300 \Omega=5.4 \mathrm{~V} \\
& V_{S^{\prime}}=7.2 \mathrm{~V}+5.4=12.6 \mathrm{~V}
\end{aligned}
$$

c) The total current flowing out of V_{S} is $I_{R 1}$ plus $18 \mathrm{~mA}: \quad I_{R 1}=\frac{V_{s}}{1 \mathrm{k} \Omega+5 \mathrm{k} \Omega}=\frac{12.6 \mathrm{~V}}{6 \mathrm{k} \Omega}=2.1 \mathrm{~mA}$

$$
P_{S}=V_{S} I_{S}=12.6 \mathrm{~V}(2.1 \mathrm{~mA}+18 \mathrm{~mA})=253.26 \mathrm{~mW}
$$

