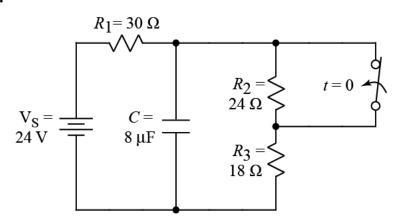
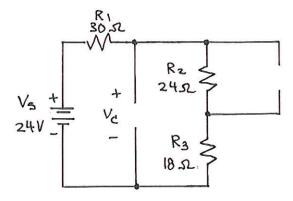
U

Ex:



- a) The switch has been open for a long time and is closed (as shown) at t = 0.
- b) Find the initial and final conditions and write the full expression for $v_C(t)$, including all the constants that you find.

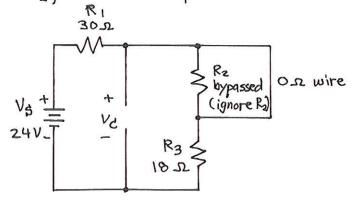
sol'n: At t=0, the switch is open and C=open:



We find $V_c(0^-) = V$ across $R_2 + R_3$ by using a V-divider.

$$V_{c}(0^{-}) = V_{5} \frac{R_{2} + R_{3}}{R_{1} + R_{2} + R_{3}} = 24V \cdot \frac{24 \Omega + 18 \Omega}{30 \Omega + 24 \Omega + 18 \Omega}$$

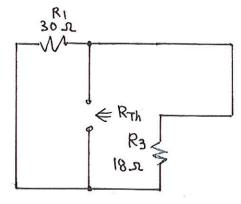
For $t \rightarrow \infty$, the switch is closed, bypassing R_2 , and C = open.



Again, we have a V-divider.

$$V_c(t\rightarrow \infty) = V_5 \frac{R_3}{R_1 + R_3} = 24V \frac{18\Omega}{30\Omega + 18\Omega}$$

For the time constant, $V = R_{Th}C$, we find R_{Th} looking into the circuit from the terminals where C is connected. We turn off V_S , which becomes a wire.



$$R_{Th} = 30\Omega || 18\Omega = 6\Omega \cdot 5|| 3 = 6\Omega \cdot \frac{15}{8} = \frac{90}{8}\Omega$$

 $\tau = R_{Th}C = \frac{90}{8}\Omega \cdot 8\mu F = 90\mu S$

We now use the general soln for RC probs: $v_c(t) = V_c(t \Rightarrow \infty) + \left[V_c(o^+) - V_c(t \Rightarrow \infty) \right] e^{-t/t}$ where $V_c(o^+) = V_c(o^-)$ (c voltage doesn't jump) $V_c(t) = 9V + (14V - 9V) e^{-t/90\mu S}$ or $V_c(t) = 9V + 5Ve^{-t/90\mu S}$