Ex:

The total impedance of the above circuitry is $Z=|Z| e^{j 40^{\circ}}$. We don't know the magnitude of Z, but its phase angle is $+40^{\circ}$. Z is made of a 200Ω resistor in series with one other part. What is that part? Give the type and value of the part, and draw the combination.

$$
\omega=3000 \mathrm{rad} / \mathrm{sec}
$$

sol'n: We can consider the magnitude and phase of Z in separate Ohm's law equations:

$$
|z|=\frac{|V|}{|I T|} \text { and } \angle z=\angle V-\angle I I=40^{\circ}
$$

our value for z is $z=200 \Omega+z_{\text {box }}$, and we know $\angle z=40^{\circ}$. In the complex plane:

From the diagram, we see we need juL, with $\angle R+j \omega L=40^{\circ}$.

$$
40^{\circ}=\tan ^{-1} \frac{\omega L}{R} \text { or } L=\frac{R}{\omega} \tan 40^{\circ}=\frac{200}{3 K}(0.839) \approx 56 \mathrm{mH}
$$

