```
Ex:
function sys_out = conv_v(sys_in,imp_resp)
    sys_in2 = [sys_in, zeros(1,length(imp_resp)-1)];
    for ind = 1:length(sys_in);
        sys_out(ind) = sum(sys_in2(ind:ind+length(imp_resp)-1)...
                            .* imp_resp(end:-1:1));
    end
end
```

For the above Matlab ${ }^{\circledR}$ function, find the result of the following commands:

```
>> vin = [3, 2, 6, 2, 8, 0, 1];
>> h = [1, 0, -1];
>> vout = conv_v(vin,h)
```


Sol'n:

```
>> vin = [3, 2, 6, 2, 8, 0, 1];
>> h = [1, 0, -1];
>> vout = conv_v(vin,h)
```

vout $=$
$\begin{array}{lllllll}3 & 0 & 2 & -2 & -7 & 0 & -1\end{array}$
Explanation:
Inside the function, the input array (vin) is called sys_in2 and
gets
\% lengthened by adding two zeros.
sys_in2 =
$\begin{array}{lllllllll}3 & 2 & 6 & 2 & 8 & 0 & 1 & 0 & 0\end{array}$
Inside the for loop, three values at a time are extracted from the
input array. The first time through, we have
sys_in2(ind:ind+length(imp_resp)-1) = [3, 2, 6]
The imp_resp variable is h in reverse: imp_resp $=[-1,0,1]$
The three values from imp_resp are multiplied element-by-element
with
the three values extracted from vin and summed.
$\operatorname{sum}([3,2,6] . *[-1,0,1])=\operatorname{sum}(-3,0,6)=3$
The next time through the loop, vin is shifted one step to the
right, and
the values extracted are $[2,6,2]$, and the rest of the process is
carried
out as above.

