1.

Find the values of the following quantities of the above circuit.
a) $\quad R_{5}$
b) $\quad V_{S}$
c) $\quad \mathrm{P}_{\mathrm{S}}$ (the power delivered by the V_{S} source)
2.

The switch has been open for a long time and is closed (as shown) at $t=0$.
Find the initial and final conditions and write the full expression for $v_{\mathrm{C}}(t)$, including all the constants that you find.
3.

The total impedance of the above circuitry is $Z=|Z| e^{j 40^{\circ}}$. We don't know the magnitude of Z, but its phase angle is $+40^{\circ}$. Z is made of a 200Ω resistor in series with one other part. What is that part? Give the type and value of the part, and draw the combination.
$\omega=3000 \mathrm{rad} / \mathrm{sec}$
4.

Using op-amps, power supplies, and resistors, draw a circuit to produce $\mathrm{V}_{\text {out }}$ from $\mathrm{V}_{\text {in }}$. (Assume you have a function generator that produces V_{in} for you to use.) Show all relevant information in your circuit, including power supply voltages for op-amps.
5. Write a Matlab ${ }^{\circledR}$ function called grades that prints out the letter grade for a student based on the percent of possible points the student has earned during a semester. Use the classic grade scale used for this course (see Syllabus): 93% or higher $=$ A, 90% or higher $=\mathrm{A}-, 87 \%$ or higher $=\mathrm{B}+, 83 \%$ or higher $=\mathrm{B}$, etc.
6. Write a Matlab function called RCplot that plots the voltage on a capacitor versus time. Specifically, RCplot does the following:
i) Accepts three input values: Vzero, Vinf, and tau representing the initial voltage on the capacitor, the final voltage on the capacitor, and the time constant in the standard formula for capacitor voltage: $v C=v \inf +(v z e r o-v$ inf $) e^{-t / \text { tau }}$
ii) Test whether tau is negative and, if so, prints an error message and returns to the calling program.
iii) Creates an array called t containing time values from 0 to 1 ms (i.e., 0.001 sec) (inclusive) spaced by $1 \mu \mathrm{sec}$ (i.e., 10^{-6} seconds).
iv) Creates an array called $v C$ containing capacitor voltage for each time in array t. (Use the standard formula for $v C$, above.)
v) Plots v_{C} versus t as a blue line on an x-y plot.
vi) Labels the x -axis as "time", the y -axis as "voltage", and titles the plot "Capacitor Voltage".
7. Write a Matlab ${ }^{\circledR}$ script file that does the following:
i) Loads the sound file for Handel's Messiah into variable y.
ii) Shortens y to 8000 samples.
iii) Computes the Fast Fourier Transform (FFT) of y and stores it in yfft. (The values in yfft represent frequency content for frequencies 0 to 7999 Hz .)
iv) Multiplies the samples in yfft by the following function:

$$
F(f)=\left\{\begin{array}{cc}
1+\frac{f}{2000} & 0 \leq f \leq 3999 \\
1+\frac{8000-f}{2000} & 4000 \leq f \leq 7999
\end{array}\right.
$$

where f is the frequency of the sample in yfft.
v) Takes the inverse FFT of the modified yfft and stores it in yout.
vi) Plays the sound in yout.
8. function mat_dist $=$ word_dist(mat)

```
nrows = size(mat,1);
mat_dist = zeros(nrows);
    for ind1 = 1:size(mat,1)
        for ind2 = 1:size(mat,1)
            mat_dist(ind1,ind2) = sum(abs(mat(ind1,:)-mat(ind2,:)));
        end
    end
end
```

For the above Matlab ${ }^{\circledR}$ function, find the result of the following commands:

```
>> D = [1, 0, 1, 0; 0, 0, 1, 1; 1, 0, 0, 1; 0, 0, 0, 1];
```

>> wd = word_dist(D);
>> wd(find(wd(:,1)>0),:)
9. function sys_out = conv_v(sys_in,imp_resp)
sys_in2 = [sys_in, zeros(1,length(imp_resp)-1)];
for ind = 1:length(sys_in); sys_out(ind) $=$ sum(sys_in2(ind:ind+length(imp_resp)-1)...
.* imp_resp(end:-1:1));
end
end
For the above Matlab ${ }^{\circledR}$ function, find the result of the following commands:
>> vin = [3, 2, 6, 2, 8, 0, 1];
>> h = [1, 0, -1];
>> vout = conv_v(vin,h)

