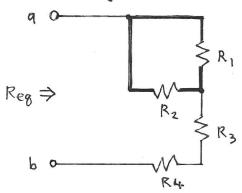

U


2.

- a) Find the equivalent resistance from **a** to **b** with the switch open and then with the switch closed.
- b) If a voltage source is connected across \mathbf{a} and \mathbf{b} and this causes a voltage drop across R_4 of 2V, what is the voltage drop across R_3 ?
 - sol'n: a) With the switch open, R_2 is dangling with one end disconnected. So we may ignore R_2 , which leaves us with R_1 , R_3 , and R_4 in series.

$$Reg = R_1 + R_3 + R_4 = 150 \Omega + 200 \Omega + 10 \Omega$$
or
$$Reg = 360 \Omega \quad \text{with switch open}$$

With the switch closed, we have R_2 in parallel with R_1 . (The opposite ends of R_1 and R_2 are connected, as indicated by the heavy lines in the diagram below.)

switch closed

$$= 50 \Omega \cdot \frac{6}{5} + 210 \Omega$$

switch closed

b) Since R3 and R4 are in series, they carry the same current.

By Ohm's law we have the following current in R4:

$$i = \frac{2V}{R_4} = \frac{2V}{10\Omega} = \frac{1}{5}A$$

By Ohm's law again, we find v_3 (measured with + sign on top and v_4 with + sign on right):

$$V_3 = i R_3 = \frac{1}{5} A \cdot 200 \Omega = 40 V$$