1.

After being on side 1 for a long time, the switch moves from side 1 to side 2 at $t=0$.
a) Find the value of $v_{\mathrm{C}}(t=0)$.
b) Find an expression for $v_{\mathrm{C}}(t>0)$.
c) Find the value of the energy stored by the capacitor at time $t=3 \tau$ where $\tau=$ time constant for circuit after $t=0$.

Sol'n: a) $v_{\mathrm{C}}(t=0)=36 \mathrm{~V}$. C charges to voltage of power supply.
b) $v_{\mathrm{C}}(t \rightarrow \infty)=0 \mathrm{~V}, R_{\text {Thev }}=200 \mathrm{k} \Omega$ for $t>0 . \tau=R_{\text {Thev }} C=2 \mathrm{~ms}$.

$$
v_{\mathrm{C}}(t>0)=0 \mathrm{~V}+[36 \mathrm{~V}-0 \mathrm{~V}] e^{-t / 2 \mathrm{~ms}}
$$

c) $v_{\mathrm{C}}(t=3 \tau)=36 \mathrm{~V} e^{-3} \approx 1.8 \mathrm{~V}, w_{\mathrm{C}}=\frac{1}{2} C V^{2}=\frac{1}{2}(0.01 \mu)(1.8)^{2} \mathrm{~J}=16 \mathrm{~nJ}$
2.

A function generator outputs the following signal, $v_{\mathrm{i}}(t)$.

Design op-amp circuits to output each of the following waveforms when $v_{\mathrm{i}}(t)$ is the input.
You may use either one or two op-amps in each case.
a)

b)
c)

sol'n: Non-inverting amp, $R_{\mathrm{f}}=4 R_{\mathrm{S}}>1 \mathrm{k} \Omega$ clipped, so use pwr supply $\pm 5 \mathrm{~V}$.
sol'n: Use comparator v_{i} vs 0 V , pwr supply $\pm 5 \mathrm{~V}$, then summing amp to add 1 V .
3.

The above circuit is from Lab 4, but some of the component values have been changed.
a) Find the minimum and maximum values allowed for R_{1} in order to achieve proper operation: 1) successfully generating a triangle wave (which requires that v_{1} switches from high to low and back), and 2) avoiding clipping that would occur if v_{2} exceeded the rail voltage for the op-amp.

SoL'N: a) R_{1} and R_{2} form V-divider between v_{1} and v_{2}. v_{2} must pull v_{+}of 1 st opamp below 0 V in order to switch v_{1} when v_{1} is $-v_{\text {rail }}$ and v_{2} is $+v_{\text {rail }}$. Need $R_{1}<R_{2}$ for that to happen. So $R_{1}=100 \mathrm{k} \Omega$ is the maximum. The other condition cannot occur, since if v_{2} hits the rail voltage, it will just stay there. v_{1} and v_{2} will then stay the same and switching will never occur.
b) Choose an allowed value for R_{1} and calculate the period of $v_{2}(t)$.

Sol'n: b) Many solutions. Key equations are:

$$
\begin{aligned}
& 0 \mathrm{~V}=v_{+}=\frac{v_{1} R_{1}+v_{2} R_{2}}{R_{1}+R_{2}}=\frac{-v_{\text {rail }} R_{1}+v_{2} R_{2}}{R_{1}+R_{2}} \text { solve for peak } v_{2} . \\
& v_{2 \text { peak }}=\frac{v_{\text {rail }} R_{1}}{R_{2}}=\frac{9 \mathrm{~V} \cdot R_{1}}{100 \mathrm{k} \Omega} \\
& \text { slope of } v_{2}=-\frac{I}{C}=-\frac{v_{1}}{R_{3} C}=-\frac{v_{\text {rail }}}{R_{3} C}=\frac{-9 \mathrm{~V}}{5 \mathrm{~ms}}=-1.8 \mathrm{kV} / \mathrm{s}
\end{aligned}
$$

Half of period $=$ time for v_{2} to go from -pk to $+\mathrm{pk}=2 v_{2 \mathrm{pk}}$
or half period $=2 v_{2} \mathrm{pk} /$ slope of v_{2}.
c) Draw a graph of $v_{2}(t)$ and $v_{3}(t)$ for at least one period of $v_{2}(t)$. Label all important times and voltages on the graph.

Sol'n: b) $v_{2}(t)=$ triangle wave with slope and max v_{2} and period from (b).

$$
0 \mathrm{~V}=v_{+}=\frac{v_{1} R_{1}+v_{2} R_{2}}{R_{1}+R_{2}}=\frac{-v_{\text {rail }} R_{1}+v_{2} R_{2}}{R_{1}+R_{2}} \text { solve for peak } v_{2}
$$

$v_{3}(t)$ is rectangular waveform. High voltage $=+v_{\text {rail }}=9 \mathrm{~V}$, low $\mathrm{V}=-9 \mathrm{~V}$. $v_{3}(t)$ is high when $v_{2}>+2 \mathrm{~V}=\mathrm{v}_{+}$of third op-amp.

