1.



After being on side 1 for a long time, the switch moves from side 1 to side 2 at t = 0.

- a) Find the value of  $v_{\rm C}(t=0)$ .
- b) Find an expression for  $v_{\rm C}(t > 0)$ .
- c) Find the value of the energy stored by the capacitor at time  $t = 3\tau$  where  $\tau =$ time constant for circuit after t = 0.

**SOL'N:** a)  $v_{\rm C}(t=0) = 36$  V. C charges to voltage of power supply.

b) 
$$v_{\rm C}(t \to \infty) = 0 \,\mathrm{V}$$
,  $R_{\rm Thev} = 200 \,\mathrm{k}\Omega$  for  $t > 0$ .  $\tau = R_{\rm Thev}C = 2 \,\mathrm{ms}$ .  
 $v_{\rm C}(t > 0) = 0 \,\mathrm{V} + [36 \,\mathrm{V} - 0 \,\mathrm{V}]e^{-t/2 \,\mathrm{ms}}$ 

c) 
$$v_{\rm C}(t = 3\tau) = 36 \,{\rm V} \,e^{-3} \approx 1.8 \,{\rm V}$$
,  $w_{\rm C} = \frac{1}{2} C V^2 = \frac{1}{2} (0.01 \,\mu) (1.8)^2 \,{\rm J} = 16 \,{\rm nJ}$ 

2.

A function generator outputs the following signal,  $v_i(t)$ .



Design op-amp circuits to output each of the following waveforms when  $v_i(t)$  is the input. You may use either one or two op-amps in each case.



sol'n: Non-inverting amp,  $R_{\rm f} = R_{\rm s} > 1 \text{ k}\Omega$ 





3.

The above circuit is from Lab 4, but some of the component values have been changed.

a) Find the minimum and maximum values allowed for  $R_1$  in order to achieve proper operation: 1) successfully generating a triangle wave (which requires that  $v_1$  switches from high to low and back), and 2) avoiding clipping that would occur if  $v_2$  exceeded the rail voltage for the op-amp.

- **SOL'N:** a)  $R_1$  and  $R_2$  form V-divider between  $v_1$  and  $v_2$ .  $v_2$  must pull  $v_+$  of 1st opamp below 0 V in order to switch  $v_1$  when  $v_1$  is  $-v_{rail}$  and  $v_2$  is  $+v_{rail}$ . Need  $R_1 < R_2$  for that to happen. So  $R_1 = 100 \text{ k}\Omega$  is the maximum. The other condition cannot occur, since if  $v_2$  hits the rail voltage, it will just stay there.  $v_1$  and  $v_2$  will then stay the same and switching will never occur.
- b) Choose an allowed value for  $R_1$  and calculate the period of  $v_2(t)$ .

SOL'N: b) Many solutions. Key equations are:

$$0 V = v_{+} = \frac{v_{1}R_{1} + v_{2}R_{2}}{R_{1} + R_{2}} = \frac{-v_{rail}R_{1} + v_{2}R_{2}}{R_{1} + R_{2}} \text{ solve for peak } v_{2}.$$

$$v_{2}\text{peak} = \frac{v_{rail}R_{1}}{R_{2}} = \frac{9V \cdot R_{1}}{100 \text{ k}\Omega}$$
slope of  $v_{2} = -\frac{I}{C} = -\frac{v_{1}}{R_{3}C} = -\frac{v_{rail}}{R_{3}C} = \frac{-9V}{5\text{ ms}} = -1.8 \text{ kV/s}$ 
Half of period = time for  $v_{2}$  to go from -pk to +pk =  $2v_{2}$  pk

or half period =  $2v_2 p_k$ /slope of  $v_2$ .

c) Draw a graph of  $v_2(t)$  and  $v_3(t)$  for at least one period of  $v_2(t)$ . Label all important times and voltages on the graph.

**SOL'N:** b)  $v_2(t)$  = triangle wave with slope and max  $v_2$  and period from (b).

$$0 V = v_{+} = \frac{v_{1}R_{1} + v_{2}R_{2}}{R_{1} + R_{2}} = \frac{-v_{rail}R_{1} + v_{2}R_{2}}{R_{1} + R_{2}}$$
 solve for peak  $v_{2}$ .

 $v_3(t)$  is rectangular waveform. High voltage =  $+v_{rail} = 9V$ , low V = -9 V.

 $v_3(t)$  is high when  $v_2 > +2$  V = v<sub>+</sub> of third op-amp.