1.

a) Find the transfer function, $H(s)=\frac{X_{\mathrm{o}}(s)}{X_{\mathrm{i}}(s)}$, for the above system.
b) If $G=10$, for what values of K is the system stable? (Consider positive and negative values of K.)
2. a) For the circuit shown below, find the simplest possible Boolean expression for F in terms of A and B. The simplest answer has the minimum total number of ANDS, ORS, and NOTS (inverters).

b) Find the simplest Sum-Of-Products (SOP) form for the following Boolean expression:

$$
(A+B)(\bar{A}+\bar{B}) C
$$

c) Show the minimum logic circuit (using logic gates and a Flip-Flop) that has the following timing diagram. CLK, A, and B are inputs, and F is the output. You may use AND, Or, EX-OR, and NOT (inverter) gates. The optimal design has the minimum total number of gate inputs.

$\overline{\mathrm{PRE}}$	$\overline{\mathrm{CLR}}$	CLK	J	K	Q	$\overline{\mathrm{Q}}$	MODE
0	1	X	X	X	1	0	Preset
1	0	X	X	X	0	1	Clear
0	0	X	X	X	-	-	not used
1	1	\uparrow	0	0	Q	$\overline{\mathrm{Q}}$	Hold
1	1	\uparrow	0	1	0	1	Reset
1	1	\uparrow	1	0	1	0	Set
1	1	\uparrow	1	1	$\overline{\mathrm{Q}}$	Q	Toggle
1	1	not \uparrow	X	X	Q	$\overline{\mathrm{Q}}$	Hold

3. a) Find the sum of the following hexadecimal numbers and express the answer in binary and Binary Coded Decimal (BCD).

$$
\mathrm{A} 3+7 \mathrm{~F}
$$

b) Find the product of the following binary numbers and express the answer in octal.

$$
101011 \cdot 011001
$$

c) A Flip-Flop circuit, truth table, and timing diagram are shown below. Fill in the missing waveform for Q in the timing diagram.

4.

Find the numerical value of the equivalent impedance, $z_{\text {eq }}$, for the circuit. Frequency $\omega=1 \mathrm{Mr} / \mathrm{s}$. Express your answer in both rectangular and polar form.

