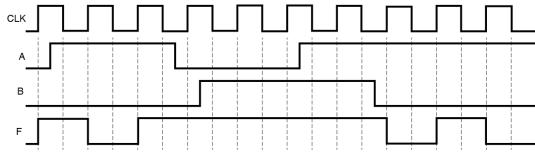
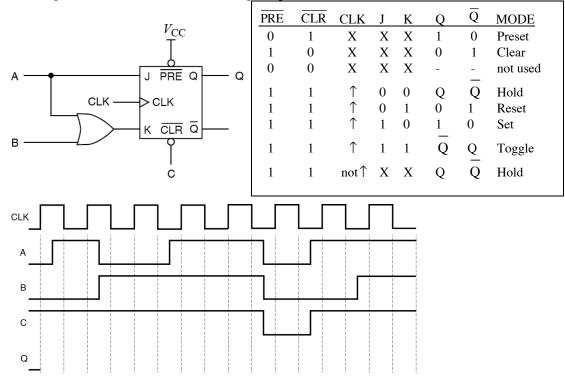

- a) Find the transfer function, $H(s) = \frac{X_0(s)}{X_i(s)}$, for the above system.
- b) If G = 10, for what values of K is the system stable? (Consider positive and negative values of K.)
- 2. a) For the circuit shown below, find the simplest possible Boolean expression for F in terms of A and B. The simplest answer has the minimum total number of ANDS, ORS, and NOTS (inverters).

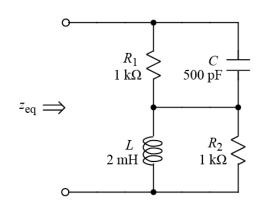
b) Find the simplest Sum-Of-Products (SOP) form for the following Boolean expression:


 $(A+B)(\overline{A}+\overline{B})C$

c) Show the minimum logic circuit (using logic gates and a Flip-Flop) that has the following timing diagram. CLK, A, and B are inputs, and F is the output. You may use AND, OR, EX-OR, and NOT (inverter) gates. The optimal design has the minimum total number of gate inputs.

PRE	CLR	CLK	J	K	Q	\overline{Q}	MODE
0	1	Х	Х	Х	1	0	Preset
1	0	Х	Х	Х	0	1	Clear
0	0	Х	Х	Х	-	-	not used
1	1	\uparrow	0	0	Q	$\overline{\mathbf{Q}}$	Hold
1	1	↑	0	1	0	1	Reset
1	1	\uparrow	1	0	1	0	Set
1	1	\uparrow	1	1	\overline{Q}	Q	Toggle
1	1	not↑	Х	Х	Q	Q	Hold


U


3. a) Find the sum of the following hexadecimal numbers and express the answer in binary and Binary Coded Decimal (BCD).

A3 + 7F

- b) Find the product of the following binary numbers and express the answer in octal. $101011 \cdot 011001$
- c) A Flip-Flop circuit, truth table, and timing diagram are shown below. Fill in the missing waveform for Q in the timing diagram.

4.

Find the numerical value of the equivalent impedance, z_{eq} , for the circuit. Frequency $\omega = 1$ Mr/s. Express your answer in both rectangular and polar form.