Ex: \quad For the circuit shown below, find the simplest possible Boolean expression for F in terms of A and B. The simplest answer has the minimum total number of ANDS, ORS, and NOTS (inverters).

Sol'n: From the diagram, we write a Boolean expression for F .

$$
F=\overline{A B}+\overline{B \oplus 0}
$$

The Exclusive-OR simply inverts B , leading to simplification:

$$
F=\overline{A B}+\bar{B}
$$

Using De Morgan's theorem, we can rewrite the first NAND.

$$
F=\bar{A}+\bar{B}+\bar{B}
$$

Eliminating the redundant term, we have an OR function.

$$
F=\bar{A}+\bar{B}
$$

Using De Morgan's theorem again, we have a simple NAND function. Thus, the extra Exclusive-NOR and OR gates were redundant.

$$
F=\overline{A B}
$$

