Ex: Find the product of the following binary numbers and express the answer in octal.

$$
101011 \cdot 011001
$$

Sol'n: We do binary multiplication in the same way as decimal long multiplication:

					1	0	1	0	1
1									
				x	$\underline{0}$	$\underline{1}$	$\underline{1}$	$\underline{0}$	$\underline{0}$
$\underline{1}$									
	1	0	1	0	1	1	0	0	0
$\underline{1}$	$\underline{0}$	$\underline{1}$	$\underline{0}$	$\underline{1}$	$\underline{1}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$
1	1	1	1	2	2	2	0	1	1

Where there are 2 's, we must carry a 1 to the next column, since in binary we have 2 is 10 . Also, 3 is 11 .
$\begin{array}{llllllllllll}1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & \text { binary }\end{array}$
To convert to octal, we take three binary digits at a time (starting from the right end and working left), and we write the 3-bit binary numbers in decimal (0-7).

$$
101011 \cdot 011001=2063 \text { octal }
$$

