## Matlab Primer [1] page numbers:

Plot symbols, pp. 4-5
3-D plots, meshgrid, surfl , pp. 4-16 to 4-22
Contour plots, p. 4-9
Hold on, plot labels, pp. 4-10 to 4-14
Simultaneous equations and Matrix operations: inv, det, pinv 3-22 to 3-24
$==<=\& \mid$ all any $\& \&$ scalar $|\mid$ scalar 2-26, 2-27, 5-2, 5-3
polyfit 3-71 to 3-75
if then 5-2 to 5-5

1. Write the code to make a 3-D lit surface plot (using meshgrid( )) with interpolated shading of the following function:

$$
z=\cos (2 \pi[3 x-4 y]) \quad 0 \leq x \leq 1(24 \mathrm{pts}) \quad 0 \leq y \leq 0.5(20 \mathrm{pts})
$$

2. Add code to make a contour plot (as Figure 2) for the surface in Problem 1.
3. Add appropriate axis and title labels for the Figures 1 and 2 in Problems 1 and 2.
4. The inverse of the following rotation matrix, $R 1$, should be the same matrix but with $-\theta$ substituted for $\theta$ :

$$
R 1=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

a) Create $R 1$ inv by substituting $-\theta$ for $\theta$ in $R 1$ and simplifying the terms using $\cos (-\theta)=\cos (\theta)$ and $\sin (-\theta)=-\sin (\theta)$.
b) Verify by hand that $R 1$ times $R 1$ inv equals the identity matrix.
c) Which of the following Matlab ${ }^{\circledR}$ command lines could represent a rotation of an initial vector by 30 degrees and then -60 degrees?
i) $\gg[1,0] *[\operatorname{sqrt}(3) / 2,-1 / 2 ; 1 / 2, \operatorname{sqrt}(3) / 2] *[\operatorname{sqrt}(3) / 2,-1 / 2 ; 1 / 2, \operatorname{sqrt}(3) / 2]^{\wedge}-2$
ii) $\gg[1 / 2, \operatorname{sqrt}(3) / 2 ;-\operatorname{sqrt}(3) / 2,1 / 2] *[\operatorname{sqrt}(3) / 2,-1 / 2 ; 1 / 2, \operatorname{sqrt}(3) / 2] *[1 ; 0]$
iii) $\gg 1 . /[\operatorname{sqrt}(3) / 2,-1 / 2 ; 1 / 2, \operatorname{sqrt}(3) / 2]^{\wedge} 2 *[\operatorname{sqrt}(3) / 2,-1 / 2 ; 1 / 2, \operatorname{sqrt}(3) / 2] *[1 ; 0]$
5. Write code to use a matrix, a vector, and the $\operatorname{inv(}$ ) function to solve each of the following sets of simultaneous equations:
a) $x+2 y=1$
$3 x+5 y=-1$
b) $z=4$
$-x+z=-2$
$\frac{1}{2} y-z=1$
6. When using the Matlab ${ }^{\circledR}$ command for a pseudoinverse (that is used to solve least-squares problems involving rectangular matrices), what is the shape of the resulting matrix? (Hint: use the index of the Matlab Primer.)
7. Use the following array definitions for the question below:

$$
\mathrm{A}=\operatorname{magic}(2)=[1,3 ; 4,2] ; \quad \mathrm{B}=\operatorname{eye}(2) ; \quad \mathrm{C}=[1,2 ; 3,5] ;
$$

What is the result of the evaluation of each of the following logical expressions in Matlab ${ }^{8}$ ?
a) $\gg \mathrm{A}==\mathrm{B}$
b) $\gg \operatorname{all}(\mathrm{C}-\mathrm{B}>0)$
c) $\gg$ C $<=\mathrm{A}$
d) $\gg$ A $=$ B $\mid$ C $<=A$
8. Write Matlab ${ }^{\circledR}$ code that uses polyfit( ) to find linear and quadratic fits for the following data points. Store the coefficients in an array called $a$ in each case.

| $x$ values: | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- |
| $y$ values: | 1 | 2 | 3 | 6 |

9. Write a script file that plots the data for Problem 8 and superimposes a plot of the linear and quadratic fits from Problem 8. Hint: for the linear and quadratic fits, use $x$ values from the data and create $y$ values using the $a$ arrays.
10. Write a single script file to do the following tasks (in sequence) for a predefined square matrix, $A$ :
a) Compute $d=$ determinant of $A$
b) If $d$ is negative, display a warning message and return to parent program
c) Otherwise, compute the inverse of $A$ and
d) Display the value of the inverse of $A$

ReF: [1] The Mathworks, Inc, Matlab ${ }^{\circledR}$ Primer, Natick, MA: The Mathworks, Inc, 2012.

