Homework M6:

Matlab Primer [1] page numbers:

Conditional Control, pp. 5-2 to 5-5
Loop Control, pp. 5-5 to 5-8
Scripts and Functions, pp. 5-10 to 5-13

1. Write a Matlab ${ }^{\circledR}$ function called Rcode.m that prints out resistor values given color codes. An example of the function's use is as follows:
```
>> R = Rcode('brown','black','red') % 1st argument is 1st color band, etc.
```

$\mathrm{R}=$

1000
The following table shows what value each color represents.

Color	black	brown	red	orange	yellow	green	blue	purple	gray	white
Value	0	1	2	3	4	5	6	7	8	9

The formula for the color code is to turn the first two colors into a two-digit number multiplied by 10 raised to the power represented by the color of the third band.
2. Write a Matlab ${ }^{\circledR}$ function called deg_rad.m that has as input argument a number representing degrees and outputs the input value converted to radians. An example of its use:
>> deg_rad(30) \% 30 degrees to be converted to radians (which is pi/6 = 0.5236) ans $=$
0.5236
3. Write a Matlab ${ }^{\circledR}$ function called trim_sig.m that makes two arrays the same length by shortening the longer one. An example of its use:

```
>> sig1 = [2, 4, 5]; % Horizontal array, 3 elements
>> sig2 = [1, 3]; % Horizontal array, 2 elements
>> [sig1_trim, sig2_trim] = trim_sig(sig1,sig2)
sig1_trim =
    2 4
sig2_trim =
    1 3
```

4. Write a Matlab® function called delay_sig.m that has two input arguments: an array name, and the number of samples by which to delay the array in the first argument. Zeros are inserted at the front of the delayed signal, and the end of the delayed signal is cut off so the resulting delayed array has the same length as it had before being delayed. An example of delay_sig's use:
>> sig = [2, 4, 5, 1, 0, 3]; \% Horizontal array, 6 elements in this case.
>> delay_sig(sig,2) \% Delay "sig" by 2 samples
ans =
$\begin{array}{llllll}0 & 0 & 2 & 4 & 5 & 1\end{array}$
Call your trim_sig function from problem 3 from inside your function as part of your solution.
5. Write a Matlab ${ }^{\circledR}$ function called iphasor.m that has two arguments: a complex number representing a phasor, and a value representing frequency omega. Its output is a string that states what the inverse phasor is. An example of the use of iphasor:
>> iphasor ($3+4 \mathrm{i}, 100$) \% Phasor is $3+4 \mathrm{i}$, frequency is $100 \mathrm{rad} / \mathrm{sec}$
ans $=$
$5 \cos (100 t+53.13 \mathrm{deg})$
Note that $5=\operatorname{sqrt}(\operatorname{real}(3+4 i) \wedge 2+\operatorname{imag}(3+4 i) \wedge 2)$ and
$53.13=\operatorname{atan} 2(i m a g(3+4 i), \operatorname{real}(3+4 i)) * 180 / p i$
Note that the output is a string you will build by concatenating strings. For example, if we wanted to print out $5 \cos (100 t)$, where $A=5$ and omega $=100$, we could use the following code:
```
out_str = [num2str(A), 'cos(', num2str(omega),'t)'];
```

6. Use for loops to write a Matlab ${ }^{\circledR}$ function called my_transpose.m that takes the transpose of its single argument. An example of the use of my_transpose:
$\gg A=[1,2 ; 3,5 ; 0,1] ; \% A=3 \times 2$ matrix with 3 rows: 12 , then 35 , then 01 . >> my_transpose(A)
ans =

1	3	0
2	5	1

Use the following code in problems 7-10:
function [x1, x2] = quad_eqn (a, b, c)
\% Function to compute roots of quadratic equation $a^{*} x^{\wedge} 2+b^{*} x+c=0$.
\% Use: [x1, x2] = quad_eqn (a, b, c)
$\mathrm{D}=\operatorname{sqrt}(\mathrm{b} \wedge 2-4 * a * c) ; \quad \%$ Discriminant
$x 1=(-b+D) /(2 * a)$;
$x 2=(-b-D) /(2 * a) ;$
return
7. If you type help quad_eqn at the command prompt, what will be printed out?
8. Modify the code for quad_eqn.m so that it will work if a, b, and c are arrays. (In this case, $x 1$ and $x 2$ will be arrays, by the way.)
9. What will happen if the user enters the arguments to quad_eqn in reverse order: c, b, a ?
10. If the name of the function file is changed to quadratic_eqn.m, what changes should be made to the code for the function? (List all changes that must be made, and all changes that should be made, and clearly distinguish between the two.)

REF: [1] The Mathworks, Inc, Matlab ${ }^{\circledR}$ Primer, Natick, MA: The Mathworks, Inc, 2012.

