

<u>Matlab Primer</u> [1] page numbers: Conditional Control, pp. 5-2 to 5-5 Loop Control, pp. 5-5 to 5-8 Scripts and Functions, pp. 5-10 to 5-13

1. Write a Matlab® function called Rcode.m that prints out resistor values given color codes. An example of the function's use is as follows:

>> R = Rcode('brown','black','red') % 1st argument is 1st color band, etc.
R =

The following table shows what value each color represents.

Color	black	brown	red	orange	yellow	green	blue	purple	gray	white
Value	0	1	2	3	4	5	6	7	8	9

The formula for the color code is to turn the first two colors into a two-digit number multiplied by 10 raised to the power represented by the color of the third band.

- 2. Write a Matlab® function called deg_rad.m that has as input argument a number representing degrees and outputs the input value converted to radians. An example of its use: >> deg_rad(30) % 30 degrees to be converted to radians (which is pi/6 = 0.5236) ans = 0.5236
- 3. Write a Matlab® function called trim_sig.m that makes two arrays the same length by shortening the longer one. An example of its use:

4. Write a Matlab® function called delay_sig.m that has two input arguments: an array name, and the number of samples by which to delay the array in the first argument. Zeros are inserted at the front of the delayed signal, and the end of the delayed signal is cut off so the resulting delayed array has the same length as it had before being delayed. An example of delay_sig's use:

Call your trim_sig function from problem 3 from inside your function as part of your solution.

¹⁰⁰⁰

5. Write a Matlab® function called iphasor.m that has two arguments: a complex number representing a phasor, and a value representing frequency omega. Its output is a string that states what the inverse phasor is. An example of the use of iphasor:
>> iphasor(3 + 4i, 100) % Phasor is 3+4i, frequency is 100 rad/sec

Note that the output is a string you will build by concatenating strings. For example, if we wanted to print out 5 cos(100t), where A = 5 and omega = 100, we could use the following code:

out_str = [num2str(A), 'cos(', num2str(omega),'t)'];

6. Use for loops to write a Matlab® function called my_transpose.m that takes the transpose of its single argument. An example of the use of my_transpose:

```
Use the following code in problems 7-10:

function [x1, x2] = quad_eqn(a,b,c)

% Function to compute roots of quadratic equation a*x^2 + b*x + c = 0.

% Use: [x1, x2] = quad_eqn(a,b,c)

D = sqrt(b^2 - 4 * a * c); % Discriminant

x1 = (-b + D)/(2 * a);

x2 = (-b - D)/(2 * a);
```

return

- 7. If you type help quad_eqn at the command prompt, what will be printed out?
- 8. Modify the code for quad_eqn.m so that it will work if a, b, and c are arrays. (In this case, x1 and x2 will be arrays, by the way.)
- 9. What will happen if the user enters the arguments to quad_eqn in reverse order: c, b, a?
- 10. If the name of the function file is changed to quadratic_eqn.m, what changes should be made to the code for the function? (List all changes that *must* be made, and all changes that *should* be made, and clearly distinguish between the two.)

REF: [1] The Mathworks, Inc, *Matlab*® *Primer*, Natick, MA: The Mathworks, Inc, 2012.