Ex:

- a) Determine the transfer function V_0/V_i . Hint: Suppose the output were tapped from the point between L and R_1 . Then use a voltage divider.
- b) Plot $|V_0/V_i|$ versus ω .
- c) Find the cutoff frequency, ω_c .

solín: a) Consider tapping the output from between L and R₁. Then use a V-divider to relate v_0 to the voltage between L and R₁.

Using the V-divider formula, we have

$$V_o = V_i(R_1 + R_2)/(R_1 + R_2 + 5L)$$

Thus,
$$H(s) = \frac{V_0(s)}{V_i(s)} = \frac{R_2}{R_1 + R_2} = \frac{R_1 + R_2}{R_1 + R_2 + sL}$$

$$H(s) = \frac{R_2}{R_1 + R_2 + sL}$$

b)
$$|V_o/V_i| = |H(s)|$$

 $\sharp L = 0$ at $w = 0 \Rightarrow L = wire$ at w = 0

Thus, for $\omega = 0$, we have a simple V-divider.

$$\left| H(s=jo) \right| = \frac{R_2}{R_1 + R_2}$$

 $5L \rightarrow \infty$ as $w \rightarrow \infty \Rightarrow L = open$ as $w \rightarrow \infty$

Thus, the output is disconnected from the input and $|H(s)| \rightarrow 0$ as $w \rightarrow \infty$.

/H(s)/ decreases as w increases since

$$|R_1+R_2+5L| = \sqrt{(R_1+R_2)^2+(\omega L)^2}$$
 increase with ω .
 $|H(s)|$
 $|R_2|$ $|H(s)| = \frac{1}{2} \max |H(s)|$

We find we below.

we is the w where |H(s)| is reduced by

a factor of $\sqrt{2}$ relative to $\max_{w} |H(s)|$.

Thus, $|H(s=jw_c)| = \frac{1}{\sqrt{2}} \max_{w} |H(s)| = \frac{1}{\sqrt{2}} \frac{R_2}{R_1 + R_2}$ or $\left|\frac{R_2}{R_1 + R_2 + jw_c}\right| = \frac{1}{\sqrt{2}} \frac{R_2}{R_1 + R_2}$

We write H(s) in the form $k \frac{1}{1+jX}$ where $k \equiv real$ constant, $X \equiv real$ expression

$$H(s) = \frac{R_2}{R_1 + R_2} \frac{1}{1 + j \omega_c L}$$

$$/H(s) = \frac{R_2}{R_1 + R_2} \cdot \frac{1}{1 + j \omega_c L}$$

Thus, we have $\frac{R_2}{R_1+R_2} \frac{1}{\left|1+j\frac{L}{R_1+R_2}\right|} = \frac{R_2}{R_1+R_2} \frac{1}{\left|\frac{1}{2}\right|}$ So $\left|1+j\frac{L}{R_1+R_2}\right| = \sqrt{2}^{\frac{1}{2}}$.

The solution is $1+j\frac{Lw_c}{R_1+R_2}=1\pm j$, since $|1\pm j|=1/2^{l}$. We must have $\frac{Lw_c}{R_1+R_2}=1$.

Thus,
$$\omega_{c} = \frac{R_{1} + R_{2}}{L} = \frac{3.3k \Omega + 0.3k \Omega}{100 \mu H}$$

$$\omega_{c} = \frac{3.6 k \Omega}{100 \mu H} = 36 \text{ M r/s}$$