NEURAL NETWORK WITH LOGISTIC SIGMOIDS

Property	Rating	Comment
Network output function:		
Continuous	Yes	
Smooth	Yes	Basis functions—logistic sigmoids—are infinitely differentiable.
Easily visualized	No	Result of summing sigmoids is very difficult to visualize.
Generalizes beyond domain	Somewhat	Sigmoids asymptote at 0 or 1 as argument values approach $\pm \infty$. Thus, the network output is bounded and is constant over wedge shaped regions extending out to infinity.
Method for determining coefficients or weights:		
Inner product of target function and basis function	No	Logistic sigmoids in infinite number are complete but not orthogonal.
Simultaneous equations for data points	Poor	Suffers from the limitations of high-order polynomial fits—possible oscillations between data points. This method also fails to dictate values for hidden-layer weights.
Gradient descent with all points on surface available for training.	Good	Can get stuck in local minimum, but despite this drawback results are usually good. Gradient descent is usually the most viable method of training.
Gradient descent with finite number of points on surface available for training.	Adequate	As a rule of thumb, results are satisfactory if the number of training points is at least ten times the number of weights in the network.
Behavior at data points:		(Gradient descent training assumed.)
Reproduces data values exactly	No	Gives results similar to least squares.
Suited to randomly scattered data versus regular grid	Yes	Scattered data poses no problem so long as coverage of domain is thorough and fairly uniform.
Well-behaved between data points	Poor	Training for too long causes overfitting of data and oscillations between data points.
Expands for new data points	Yes	Need only resume or continue training as new points are added.
Matches slope at finite number of data points	Perhaps	There is no provision for matching slopes in standard gradient descent, but this could be added.
Complexity:		
Difficulty of writing computer program	Medium	Gradient descent equations are somewhat difficult to code correctly and debug.
Speed of coefficient calculation	Low	Gradient descent usually requires many thousands of training pattern presentation.
Speed of function evaluation	Low	Every sigmoid must be evaluated, and each sigmoid calculation is time consuming.