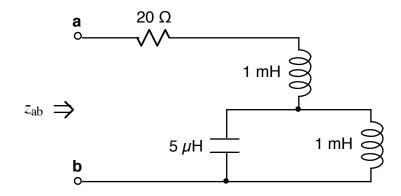
Ex:



Find a frequency, ω , that causes z_{ab} to be real, (i.e., imaginary part equals zero).

For z_{ab} to be real, we must have $z_{L1} + z_{C} || z_{L2} = real$

One simple sol'n is to let $\omega=0$ so both L's act like wires and C acts like open circuit.

Other potential solins are $w=\infty$, (so L's act like opens, resulting in $Zab=\infty$), and w= frequency where $Z_C=-Z_{LZ}$, (so C and L in parallel have equal but opposite impedances).

The latter case, where 2c = - ZL gives

the interesting result that $z_c ||z_c = \frac{L/C}{\Omega} = \infty$

This means $z_{ab} = \infty \, \Omega$. In this case, (unlike $\omega \rightarrow \infty$), $z_{ab} \rightarrow \infty$ along real axis as $z_{cl} | z_{cl} \rightarrow \infty$.

Another soln is that Zellz has a value is minus z, of the top inductor.

In that case, ZL + ZcllZL = 0 and Zab = 0 = wire.

$$\frac{z_{c} \parallel z_{L} = -\frac{j}{\omega c} \parallel j_{\omega L} = -\frac{j}{\omega c} \cdot j_{\omega L} = \frac{L/C}{j(\omega L - \frac{1}{\omega c})}$$

Thus, we want
$$j\omega L - jL/C = 0$$

$$\omega L - L$$

$$\omega C$$

or
$$wL = \frac{L/C}{wL - L}$$

or
$$\omega L(\omega L - \frac{1}{\omega C}) = L/C$$

or
$$\omega^2 L^2 - \frac{L}{C} = \frac{L}{C}$$

or
$$\omega^2 L^2 = 2L$$
 or $\omega^2 = \frac{2}{LC}$
or $\omega = \sqrt{\frac{2}{LC}}$ or $\omega = \sqrt{\frac{2}{5\mu F \cdot lmH}}$
or $\omega = \sqrt{\frac{2}{5}G}$ r/s = $\sqrt{\frac{400M}{5}}$ r/s

or
$$w = \sqrt{\frac{2}{5}} G r/s = \sqrt{400 M} r/s$$