Ex:

Find a symbolic expression for $V_0(s)$ in terms of not more than R_1 , R_2 , L, C, and constants.

Soln: To find the Laplace transformed circuit elements, we first find initial conditions for L and C: $i_L(o^-)$ and $v_C(o^-)$.

For a long time before t=0, $v_i(t)=4V$.

For this DC input, the circuit will reach an equilibrium with constant currents and voltages. Thus, derivatives di_L/dt and dv_C/dt equal zero. This, in turn, means $v_L=0$ and $i_C=0$. So L= wire and C= open.

The op-amp has negative feedback that acts to keep $V_- \doteq V_+$. Thus, we have OV at the inputs of the op-amp.

If we consider a voltage passing through the 4V source, L=wire, C=open, and across the op-amp inputs=OV drop, we have

$$V_{c}(0^{-}) = 4V.$$

Since C = open, we also have

$$i_L(o^-) = oA.$$

Now we Laplace transform the input voltage to obtain a model for the 5-domain.

Thus, $V_i(s) = ov$ which is wire.

Using a parallel current source for initial conditions on the L, we have 0/5 = 0A = 0 pen. Thus, we may leave out this source.

Using a series voltage source for initial conditions on C, we would have 4v/s. Since we have a virtual reference at v_, however, C is effectively in parallel with R, and C.

Thus, we use a parallel current source for initial conditions on C. The value of the current source is $Cv_c(o^-) = C \cdot 4V$. The direction of current is chosen to place charge instantly on C that will yield 4V at time O^+ across C. (Note that, in the time-domain, $C \cdot 4V$ corresponds to $C \cdot 4V \cdot 8(t)$.)

5-domain model:

To solve this op-amp circuit, we observe that $V_{+} = OV$ and $V_{-} = V_{+} = OV$.

Since no current flows into the op-amp, we also have \mathbb{I}_S flowing toward the - in put from the left is the same as current \mathbb{I}_S flowing in R_Z . We write equations for \mathbb{I}_S and \mathbb{I}_S using $V_- = 0V$. Then we set $\mathbb{I}_S = \mathbb{I}_S$ and solve for $V_0(S)$.

We observe that Is is the current flowing in R, and \$L, and we use a current divider egh.

$$I_{s} = -cv_{c}(o^{-}) \frac{1/sc}{1/sc} + R_{1}||_{sL}$$

$$= -cv_{c}(o^{-}) \frac{1}{1+sc} \cdot R_{1}||_{sL}$$

$$= -cv_{c}(o^{-}) \frac{1+R_{1}/sL}{1+R_{1}+sR_{1}c}$$

$$= -cv_{c}(o^{-}) \frac{sL+R_{1}}{sL+R_{1}+s^{2}R_{1}Lc}$$

$$I_{s} = -cv_{c}(o^{-}) \frac{sL+R_{1}}{sL+R_{1}+s^{2}R_{1}Lc}$$

$$I_{s} = -cv_{c}(o^{-}) \frac{1}{sL+R_{1}+s^{2}R_{1}Lc}$$

$$I_{s} = -cv_{c}(o^{-}) \frac{1}{R_{1}c} \cdot \frac{s+R_{1}/L}{s^{2}+L_{1}s+L_{1}}$$
or
$$I_{s} = -\frac{4v}{R_{1}c} \cdot \frac{s+R_{1}/L}{s^{2}+L_{1}s+L_{1}}$$

For If, we have

$$\mathbb{I}_{f} = \frac{ov - V_{o}(s)}{R_{2}} = -\frac{V_{o}(s)}{R_{2}}$$

Equating Is and If and solving for $V_o(s)$ yields

$$V_o(s) = -R_2 \mathbb{I}_s$$

$$V_o(s) = 4V \cdot \frac{R_z}{R_1} \cdot \frac{s + R_1/L}{s^2 + \frac{1}{R_1C}} + \frac{1}{LC}$$