Ex: Consider a brush DC motor described by the following equations:

$$0 = v - Ri - K\omega$$

$$J\frac{d\omega}{dt} = Ki - C$$

$$\frac{d\theta}{dt} = \omega$$

The parameters for the motor are as follows:

L = 0 H (the motor has no inductance)

$$R = 2 \Omega$$

$$K = 4 \text{ Nm/A}$$

$$J = 0.8 \text{ kg m}^2$$

$$C = 8 \text{ Nm}$$

The voltage applied to the motor is constant at 12 V for a very long time before time t = 0. Thus, the motor is running at constant velocity just before t = 0.

At t = 0, the voltage applied to the motor drops instantly to 0 V and stays at 0 V from then on.

- a) Calculate the value of $\omega(t = 0^-)$. Note that this is just <u>before</u> time t = 0.
- b) Calculate the value of the power, $p_J(t = 0^+)$, arising from the moment of inertia of the motor and its changing velocity immediately after time t = 0. Note that this is just <u>after</u> time t = 0.

sol'n: a) At t=0, the motor is in steady-state.

Thus, $\frac{dw}{dt} = 0$, (constant velocity).

0 = Ki - C and $i = \frac{C}{K}$

Substituting into 1st eg'n, we have

 $0 = v - Ri - K\omega$ where $i = \frac{C}{K}$

After some algebra, $w = \frac{V - RC/K}{K}$,

 $\omega = z r/s$

b) Power from changing velocity of motor is

$$P_{\mathcal{T}}(t=0^{+}) = \mathcal{T}\omega \cdot d\omega/dt \Big|_{t=0^{+}}$$

We know the speed of the motor will not change instantly. Thus, $\omega(t=0^+)=\omega(t=0^-)$, and $\omega(t=0^-)=2$ r/s from (a).

From the 2nd motor egh, $J \frac{dw}{dt} = Kij - C$.

From the 1st motor eg'n, O=V|-Ri|-Kw|t=0+ t=0+ t=0+ $V(0^+) = 0V$ from problem statement.

w(o+) = 2 r/s as noted earlier.

$$i(t=0^{+}) = \frac{OV - K \cdot Zr/S}{R} = -\frac{4 \text{ Nm/A} \cdot 2r/S}{2.2}$$
$$i(t=0^{+}) = -4 \text{ A}$$

$$P_{J}(o^{+}) = J \cdot \omega(o^{+}) \cdot \frac{d\omega}{dt} \Big|_{t=o^{+}} = \left(K \cdot i(o^{+}) - C\right) \omega(o^{+})$$

$$P_{J}(o^{+}) = \left[4 \quad V_{S} \cdot (-4A) - 8 \quad W_{S}\right] \frac{d\omega}{dt} \Big|_{t=o^{+}}$$

$$P_{J}(o^{+}) = -24 \cdot 2 \quad W = -48 \quad W$$

Note: the motor acts like a generator producing i = -4A at $t = 0^+$.