Ex: Consider the steady-state torque equation for an induction motor, [1], with the parameters listed below:

$$\tau_{e} = \frac{n_{p}M^{2}}{R_{R}}I_{S}^{2}\frac{S}{1+\left(T_{R}S\right)^{2}}$$

where

 $\tau_e = \text{torque}(Nm)$

 $n_D = \text{number of pole pairs}$

M = mutual inductance of rotor and stator coils (H)

 $R_R = \text{rotor resistance } (\Omega)$

 $I_S = \text{magnitude of stator current (A)}$

S = slip (rad/s)

 $T_R = \text{rotor time constant} = L_R/R_R \text{ (s)}$

 $L_R = \text{rotor inductance (H)}$

Use Matlab to make a plot of slip frequency, S, versus steady-state electrical frequency, ω_e . Superimpose a plot of ω versus ω_e . Assume the steady-state torque equals friction $B\omega$. (Rewrite ω as $\omega_e - S$ when solving for S. After you find S, use this equation again to calculate ω .) Use values of ω_e in the range [1, 30] rad/s.

NOTE: The equation to be solved is a cubic in S. Use the smallest real root as the value of S. The Matlab function roots ([1,a,b,c]) finds the roots of the following cubic polynomial:

$$S^3 + aS^2 + bS + c$$

Motor parameters:

$$L_R = \frac{2}{100} H$$
 $R_R = \frac{2}{10} \Omega$ $M = \frac{1}{100} H$ $I_S = 200 A$ $B = 20 Nms$ $n_p = 1$

REF: [1] Marc Bodson, "Control of Electric Motors," 2004, University of Utah ECE Dept., eqn 4.62 p. 130.

SOL'N: Define a convenient constant to simplify notation

$$K = \frac{n_p M^2}{R_R} I_S^2 = 20 \text{ Nms}$$

Setting $\tau_e = B\omega$ and substituting for ω in terms of S, we have

$$B(\omega_e - S) = K \frac{S}{1 + (T_R S)^2}$$

Rearranging gives

$$B(\omega_e - S)[1 + (T_R S)^2] = KS$$

Simplifying, we have a cubic equation for *S*:

$$S^3 - \omega_e S^2 + \frac{2}{T_R^2} S - \frac{\omega_e}{T_R^2} = 0$$

We use Matlab to calculate S versus ω_e and ω versus ω_e , (see code below).

We observe that there is a peak motor speed for $\omega_e \approx 15$ rad/s.

```
% ECE5570F05prob3soln.m
% Matlab code for plotting slip frequency S versus electrical freq w_e.
% For induction motor. Uses eqn 4.62 from "Control of Electric Motors"
% by Marc Bodson.
% Set values of motor parameters.
L R = 2/100;
                % (H) = inductance of rotor
R R = 2/10;
                 % (ohms) = resistance of rotor
                 % (H) = mutual inductance of stator and rotor
% (A) = current in stator
M = 1/100;
            % (A)
I s = 200;
J_motor = 5/100; % (kgm^2) = moment of inertia of motor (not used)
                          = number of pole pairs
np = 1;
                 % (-)
% Calculate rotor time constant.
T = L R / R R;
% Use figure 1 for all plots
figure(1)
% Create empty w e vec array so Matlab accepts later statements.
w_e_vec = [];
% Create empty Svec array so Matlab accepts later statements.
Svec = [];
% Plot S for values of w_e in range [1,5] rad/s.
for w_e = 0:1:30
  % Build w e vec.
  w_e_vec = [w_e_vec, w_e];
  % Set coeffs of polynomial to be solved. Polynomial eqn is:
  S^3 - w e * S^2 + 2/T^2 * S - w e/T^2 = 0
  poly coeffs = [1, -w e, 2/T^2, -w e/T^2];
  % Find roots of polynomial.
  S vals = roots(poly coeffs);
  % Find real roots.
  real_S_vals = S_vals(find(abs(imag(S_vals)) < eps));</pre>
  % Use smallest real root.
  S min = min(real S vals);
  % Add answer to array of S values vs w_e.
  Svec = [Svec, S_min];
end
% Calculate motor speed, omega.
omega = w_e_vec - Svec;
  % plot results
  plot(w_e_vec, Svec, 'b-', w_e_vec, omega, 'k.')
  xlabel('w_e [rad/s]')
  ylabel('blue: slip S [rad/s] black: omega [rad/s]')
```