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Aw.. = —7 Y E (Gradient Descent
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DWWy
where  Awji =  change in weight Wi
7 = learning rate or step size
E = oatput error 1{€;- o )z
P z k%
Eguivalent o:
Awip = y 80, (Pelta Rule)
where Sw; = change in  weight w;;
7 = learninj rate or step giwe
0; = input o Synapse wji (ortput of Aeuron L
]
SJ = f (ne.‘t')\zk:. %k w, . = 03(\—03) ZE. %kwkj
0j = outpat o j
8, = 8 for next layer downstream , neuron k
w, = 5 i iohts Fre. i
kj yﬂﬂF 1c wely m  neuron J
40 neuron Kk in  next layer
(pro pagatin 5)
S's Aefined recursively we-ﬁkutj- backward
from error at output layer:
1
LI (£ -0 ) F (nety) for output layer
] .
d; = ¥ (net;) ? Skwkj for  penultimate (n
4o last) layer J
$. = fllret;) 2% w.. ~for seacond +o (c
L ¢ AL _
layer
we usually have omly three layers.
Backward Error Propagation = Delta Rule = Grodient Desten
$'s  come From application of

chain  rule For derivative DE .
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Gradient Descent — Backward Error Propagation (BEP)‘/-\lcjorithm Ceanct..)
K 2
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Last Layer

Update Rule-

Bad

the

notation because

k in W Easily ¢on fused
solution is to use A for

particular synqptic

weish‘t' whose upda'l:e

rule we are finding.
AWA = -7 3 E ' PDP book uses same K
¥ aw&i For both and 15 confudl
K X Same  story for F
= -7 ah_ X é'(‘tk‘ok) w .j.
Wy . =
4@,
K
= 1y é?‘ 24, - 0,) Yo,
= I .
£
Now 0y i3 the c/mnye in ouatpat o
dp .
Ry ,
he weight wy. changes.
wheén j 4" "7
But 0k will  not dhan]e unless w“}' is

n  redron K.

ok = O  unless ke £

a%r
Se we only 5e‘t one term in the gam:
aA wy = + (5 -0,) Q0o
/3 7 4% a_f
i

Now find 30& :
awk}
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Hell £ Cotten
2 o4 = E flnety )
= dFCnety) b netg
9 ne{-& “"‘%',
= flnetg) [1-Flnety)] dnety logistic  sigmoid
) aWAr ’;': ‘;’("f)
I B
dnetg = E WE: °g; 0; 8 inpat +o
BWAI Bwﬁ;r Wy, Srnapse
Aaa'm we o;xly 35{ the +erm where j:},:
\ =L w0
/ bwA. ¢ ¢
= od"
Pu&inj it all (:oye-t‘:/ler:
04 1-04
Aw, = (t, -0, ) f(net )[l-'-f(netﬂ’)] o}
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We define &y as shown, and we call our
1l }

weicjh{ uPala‘(:e rule a delta ru(e.’ We

shall  find that we.iyﬁt apdates for any layer

¢an be written as a delta rule:

Better yet, §'s for previous layers are defined recursively
in terms of 3's For later layers, (conseanence of chain ruie For der



Gradient  Descent — BEP- algorithm (cont.)

Penultimate Layer Update Rule:
W
(Next ~+o~ last) '

z '

= - 3 ! t, -0

7 — 2z k=) k k)
OWJ‘_‘L

Since the output of reuron °p gees to every

neuron on  the /ast [ayer, W}L affects every

o, and we get all the terms in the Z.

Now we repeated/, apply the chain rule +o
0y . The fFirst few steps are +the same

an’-}, as for +the last layer update , and

we can immediq'ée.l)« write down-

do, = {'(netk)[l—f-(netk)] 3 hety

aw}-’j‘ . 3“’}_.&.
T
dnety = 3 Z:: wk:) o5
bwé"" 3Wa',~
Since Wii affects only o0, we get only -the
=ai\uk} o
"
= ”k]" BOE
hud',;_

This  is similar .40 Yoy /Bw‘q‘ , and we  get:

G

-(:erm:
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_ Nl & Citn

b_ﬁ = {-(ne{}\[\-ﬂnet&\] o,
blv}d;

PwH:ing * all ‘bse‘bher:

(23 .
Awg =y kZ; (4 = 0, ) #inet Y [1-#0eti)] wy Finet ) [1-$(net ]
. _
—
Sk
~—
m
8

Notice that Sk is embedded in +he update

- _ rule. ‘We <can write: .
' o", \-o,‘
| K- a . -
) AW}L = 7 kZ.' 5 wk-r f-(nee;,)[l-f-(neta,ﬂ o;
g Ke )
~—
= 7 s;/ o"‘
= /{ S‘r 0’("

So we have a delta rale once agqin. The
9: is defined in  terms of Sk and Syantic

¢
weijh{:s from neuron J 40 neuron K:
oi. l-ei
.- " n K
‘- S} = ‘F‘(ne:é}) [l-‘)c(net}.).] E CIY wk}.

(e can +take £ (1-f) out of gsum sicce it does not
depend on k.)
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Gradient Desdent

Previous

BREP~ a\lsori-hhm (cont .)

Layer Update Rule:

wWe  Aigcover

rule for any layer can be written
terms of §'s  for +the

by calculation +that the update'

in
layer after (t.

The form of resalt For AWJ;A-' carries ower

layers. In
a uuu we obtacn:

to afl previous particular, for

AWM = 5 54.' ‘*ﬁ We use % rather than %
becquse we are on the First
layer of our network ,and +he

inputs to our nearon do not

actually come from a previous
layer. ( Just #notation)

[ I;Oi
where )

. T
= FOnet V[0 FOet) ) Z 8w

n

”" 1
Now we see where tha nrame éuckwqrc(—error-Profayaﬂon

comes From: we start with the output error,

bac k -z‘.hroujh the network
the recursive definrtion of +he §'S.

LY
and Prepag ate it

viq

The Compu'éqtion of the

similar i form to the
Hence, the

update rale js very

neural network computation.
Com pleaity of we}jﬁ‘t alpdafcs 3

roughly the same as the complexity of the setwork
computation. Learning sbws us down by about half.



